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Abstract: Although genome-wide association studies have successfully identified thousands of 8 

markers associated with various complex traits and diseases, our ability to predict such phenotypes 9 

remains limited. A perhaps ignored explanation lies in the limitations of the genetic models and 10 

statistical techniques commonly used in association studies. However, using genotype data for 11 

individuals to perform accurate genetic prediction of complex traits can promote genomic selection 12 

in animal and plant breeding and can lead to the development of personalized medicine in humans. 13 

Because most complex traits have a polygenic architecture, accurate genetic prediction often 14 

requires modeling genetic variants together via polygenic methods. Here, we also utilize our 15 

proposed polygenic methods, which refer to as the iterative screen regression model (ISR) for 16 

genome prediction. We compared ISR with several commonly used prediction methods with 17 

simulations. We further applied ISR to predicting 15 traits, including the five species of cattle, rice, 18 

wheat, maize, and mice. The results of the study indicate that the ISR method performs well than 19 

several commonly used polygenic methods and stability. 20 
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Introduction  30 

    The continuous accumulation of genetic data in existing association analysis studies has led to 31 

increasing interest use of genetic markers to predict complex trait phenotypes and diseases1-3. In 32 

animals or plants, accurate phenotypic prediction using genetic markers can assist in selecting 33 

individuals that meet the needs of products (high breeding value) and can effectively promote 34 

breeding programs4-6. In human genetics, which accurate use of genetic markers for phenotypic 35 

prediction, especially the heritable and highly polygenic, can promote disease prevention and 36 

intervention7,8, such as, polygenic risk scores that have shown promise in predicting human 37 

complex traits and diseases, and may facilitate early detection, risk stratification, and prevention of 38 

common complex diseases in healthcare settings8-12. And the genotype information can be used to 39 

develop individualized drug delivery for customized treatment and predict possible outcomes13. In 40 

animals, such as cattle, producers have accepted the use of whole-genome selection techniques to 41 

evaluate and select offspring14.  Besides, it also benefits plants. In wheat and maize, studies have 42 

shown that multi-cycle whole-genome selection can achieve better and desirable results2,15-17. 43 

Therefore, in recent years, researchers have regarded phenotype prediction as a critical step in joint 44 

functional genomics and genome-wide research10,18. 45 

    However, with the growth of high-throughput genomics data, accurate phenotype prediction 46 

requires the development of statistical methods that can simulate all or majors SNPs 47 

simultaneously9,19,20. Moreover, previous genome-wide association analysis studies have shown 48 

that many complex trait phenotypes and diseases have a polygenic genetic background, mainly 49 

controlled by many genetic variation sites with smaller effects. For example, in human genetics, 50 

Hundreds of mutation sites have been evaluated to affect human height and body mass index (BMI) 51 

21,22, making the height and BMI of different groups of people diversified. Similarly, in the complex 52 

traits of animals and plants, there are phenotypic variations controlled by dozens of variation sites, 53 

such as traits related to rice yield composition23; features about cattle, such as back fat, milk yield, 54 

And carcass weight24,25. Because complex traits and common diseases have a multi-gene structure, 55 

only a few identified related mutation sites (SNPs) explain a small part of the phenotypic variation, 56 

so accurate phenotype and disease risk prediction cannot be drawn. On the contrary, accurate 57 

phenotype prediction requires a multi-gene model to be able to utilize all or major genome-wide 58 

SNPs genetic marker variations that explain the phenotype. In the past ten years, multi-gene models 59 

have been successfully developed and applied for prediction, and many animal breeding programs 60 

have been changed in the context of selection26-29. In addition, recently, the application of polygenic 61 

models in human GWASs has also achieved promised results30-33. 62 
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    Most of the existing polygenic models used for prediction make assumptions about the 63 

distribution of effect sizes. The different methods are mainly due to the differences in the 64 

assumptions of these other models. For example, the commonly used linear mixed model (LMM), 65 

also known as the genomic best linear unbiased prediction (GBLUP)34, and rrBLUP that one of the 66 

first methods proposed for genomic selection was ridge regression (RR) which is equivalent to best 67 

linear unbiased prediction (BLUP) when the genetic covariance between lines is proportional to 68 

their similarity in genotype space35.  And both assume that the size of the effect obeys a normal 69 

distribution33,35; also, the Bayes alphabetic included BayesA, and BayesB methods assume it the 70 

distribution of the effect size follows the t distribution or other distributions36,37; the effect size 71 

assumed by BayesC is also a normal distribution36; Bayes LASSO follows the double exponential 72 

and Laplace distribution38,39; the BSLMM assumption follows A mixture of two normal 73 

distributions28; while BayesR assumes a three-component normal distribution mixture40; Bayes no-74 

parameter model (DPR, Dirichlet process regression)19 does not rely on any specific assumptions, 75 

but according to the Dirichlet Process Regression to give the hypothesis of a particularly suitable 76 

model. Given many model choices, people naturally think of which method can be used for any 77 

particular trait. Previous studies have shown that accurate prediction needs to choose a priori effect 78 

size distribution, which can be near consistent with the true effect size distribution. The inferred 79 

posterior can be well approximated to the traits with a multi-gene structure under consideration30,40. 80 

However, the priority of the effect size distribution for any particular trait or disease is unknown. 81 

Therefore, in order to maximize the model's strong performance, the most important thing is to 82 

have a reasonable effect size distribution assumption, not the prior distribution while is flexible 83 

enough. As close as possible to the true effect distribution28,40. 84 

    For highly polygenic traits, it is assumed that the normal distribution can well fit the true effect 85 

size distribution. Therefore, LMM (linear mixed model) can obtain high predictive power28,40. As 86 

we all know, the effect size of each SNP site that causes phenotypic variation that can be divided 87 

into small effects, medium effects, and large effects (directly influence (or perfectly tag a variant 88 

that directly influences) the trait of interest, associated ) which inferred that weak effect (small and 89 

medium) and strong effect 27,41,42; These classifications are based on ordinary least squares (OLS) 90 

effect size estimates for each SNP in a regression framework. The remaining loci have no effect 91 

(have no effect on the trait at all, non-associated). So if exiting a model make it true which is good 92 

enough to have identified all loci, can put all the loci are identified, and make use of these variable 93 

loci are also very reasonable to predict and prediction the result is a very good performance, such 94 

as, BayesR28,40. Here, we proposed the Iterative Screen Regression (ISR) also assumes that its effect 95 

size fits a normal distribution. In this study, the proposed Iterative Screen Regression model was 96 
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used to explore the phenotype prediction and compared it with other commonly used methods in 97 

simulation and real phenotype prediction. We use simulation and real data applications to explain 98 

and analyze the advantages and disadvantages of ISR for phenotypic prediction. Results from ISR 99 

are compared with commonly polygenic prediction models, which included DPR, BayesR, 100 

BSLMM (Bayesian sparse linear mixed model), Bayes, BayesB, BayesC, BayesLASSO and 101 

rrBLUP and the genomic selection of 15 traits of five species and 10 complex traits of white mice 102 

will be used for genetic prediction analysis. 103 

Results 104 

Method overview. An overview of our method is provided in the Methods section. For details 105 

please see ISR42. Briefly, we offered a new regression statistics method and combined a unique 106 

variable screening procedure (Fig.1). 107 

Simulations. We first compare the performance of ISR with several other commonly used 108 

prediction methods using simulations. A total of seven different methods are included for 109 

comparison: (1) DPR; (2) BSLMM (GEMMA); (3) BayesA; (4) BayesB; (5) BayesC; (6) 110 

BayesLASSO; (7) rrBLUP. Note that DPR has been recently demonstrated to outperform a range 111 

of existing prediction methods (e.g., BayesR and MultiBLUP ); thus, we do not include other 112 

prediction methods into comparison for polygenic prediction.  113 

To make our simulations as real as possible, we used genotypes from an existing cattle GWAS 114 

dataset with 5024 individuals and 42,551 SNPs and simulated phenotypes. To cover a range of 115 

possible genetic architectures, we consider sixteen simulation settings from four different 116 

simulation scenarios with the phenotypic variance explained (PVE) by all SNPs being either 0.2, 117 

0.5, or 0.8 (details in Methods). In each setting for each PVE value, we performed 20 simulation 118 

replicates. In each replicate, we randomly split the data into training data with 80% individuals and 119 

test data with the remaining 20% individuals. We then fitted different methods on the training data 120 

and evaluated their prediction performance on the test data. We evaluated prediction performance 121 

using either the squared correlation coefficient (R2) or mean squared error (MSE). We contrasted 122 

the prediction performance of all other methods with that of ISR by taking the difference of R2 or 123 

MSE between the other methods and ISR. Therefore, an R2 difference below zero or an MSE 124 

difference above zero suggests worse performance than ISR. For each result of the box plot, it 125 

consists of five numerical points: minimum (lower edge), lower quartile (25%, Q1), median (solid 126 

line in the box), upper quartile (75 %, Q3), and maximum value (upper edge). The lower quartile, 127 

median, and upper quartile form a box with compartments. An extension line is established between 128 

the upper quartile and the maximum value. This extension line is called a "whisker". Since there 129 

are always large differences in the values, these deviating data points are listed separately in the 130 
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figure (the blue points in the figure), so the whiskers in the figure can be modified to the smallest 131 

observation value and the largest observation in two levels Value, that is, the maximum observation 132 

value ( max 3 1.5Q IQR= −  ) and the minimum observation value ( min 1+1.5Q IQR=  ) is set to 133 

1.5 IQR (interquartile range) of the distance between the quartile value. 134 

Figure 2 shows R2 and MSE differences for different methods across 20 replicates in each of the 135 

four simulation settings for PVE = 0.5. Because Fig. 2 shows prediction performance difference, a 136 

large sample variance of a method in the figure only implies that the prediction performance of the 137 

method differs a lot from that of ISR, but does not imply that the method itself has a large variation 138 

in predictive performance. Supplementary Table 1 shows the means and the standard deviation of 139 

absolute R2 values across cross variation replicates; various methods display similar prediction 140 

variability. Supplementary Figs. 1 and 2 show the R2 and MSE differences for PVE = 0.2 and PVE 141 

= 0.8, respectively. The R2 and MSE values of the baseline method, ISR, are shown in the 142 

corresponding figure legend. 143 

As in the previous study shown19, each method works the best when their modeling assumption 144 

is satisfied. In our study also shown that ISR is robust and performs well and stabilization across 145 

all twelve settings from four scenarios. For example, if we rank the methods based on their median 146 

of R2 and MSE difference (boxplot red line) performance across replicates, then when the total 147 

PVE is moderate (e.g., PVE = 0.5, Fig. 2; note that for each PVE there are a total of four simulation 148 

settings for the four scenarios), are the best or among the best (where “among the best” refers to 149 

the case when the difference between the given method and the best method is within ± 0.005 with 150 

ISR) in four simulation settings. Similarly, when the total PVE is high (e.g., PVE = 0.8, 151 

Supplementary Fig. 2), ISR is the best or among the best in four simulation settings and 152 

performance more stabilization in four simulation settings, and it is ranked as the second-best in 153 

scenario II which based on Scenario I that we appended 50 SNPs to group-three SNPs. Even when 154 

ISR is ranked as the second-best method, the difference between ISR and the best method is often 155 

small. Among the rest of the methods, BSLMM, BayesA, BayesLASSO, rrBLUP, BayesB, BayesC 156 

all work well in polygenic settings (e.g., PVE = 0.2, Supplementary Fig. 1, scenario I, scenario III, 157 

and scenario IV) but can perform poorly in sparse settings with high PVE (e.g., PVE = 0.8, 158 

Supplementary Fig. 2). The performance of DPR and BSLMM in polygenic vs. sparse settings 159 

presumably stems from their polygenic assumptions on the effect size distribution. In contrast, 160 

because of the sparse assumption on the effect size distribution, DPR has an advantage in sparse 161 

settings (e.g., PVE = 0.8, Supplementary Fig. 2; scenario III and scenario IV) but the performance 162 

of DPR is also generally worse than ISR in the challenging setting when PVE is either small or 163 
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moderate, presumably because of the much simpler prior assumption employed in BVSR for the 164 

non-zero effects.  165 

Real data applications. To gain further insights, we compare the performance of ISR with the 166 

other methods in four real data sets to perform genomic selection in animal and plant studies. 167 

   We compare the performance of ISR with the other methods in predicting phenotypes in three 168 

GWAS data sets: (1) a cattle study25, where we focus on three phenotypes: milk fat percentage 169 

(MFP), MY, as well as somatic cell score (SCS); (2) a rice study43, where we use GL as the 170 

phenotype; (3) the Carworth Farms White (CFW) data44, where we focus on ten traits that include 171 

that the heritability estimates are:0.49 testweight (testes weight), 0.28 for soleus, 0.25 for plantaris, 172 

0.10 for fastglucose (fasting glucose), 0.41 for tibial (tibia length), 0.60 for BMD (Bone-mineral 173 

density), 0.39 for TA (tibialis anterior), 0.37 for EDL (extensor digitorum longus), 0.25 for gastric 174 

(gastrocnemius), and 0.29 for sacweight (Testis weights). (4) Wheat PHS data45.  As in simulations, 175 

for each phenotype, we performed 20 Monte Carlo cross validation data splits, except for the wheat 176 

PHS data. In each data split, we fitted methods in a training set with 80% of randomly selected 177 

individuals and evaluated method performance using R2 or MSE in a test set with the remaining 178 

20% of individuals. Because the wheat PHS data set is small, we use the 10-fold cross validation 179 

method to analyze the predictive power of different methods, which is to randomly divide the 180 

sample into ten equal parts each time, and nine of them are used as training samples. The other one 181 

is used as a verification sample, and nine samples are used to estimate the parameters to predict the 182 

remaining one, and the loop 10 times in turn until all individuals are predicted. We again contrasted 183 

the performance of the other methods with that of ISR by taking the R2 difference or MSE 184 

difference with respect to ISR. The results are shown in Fig. 3 (R2 difference) and Supplementary 185 

Fig. 3 (MSE difference), with R2 and MSE of ISR presented in the corresponding figure legend. 186 

Supplementary Table 1 shows the means and standard deviation of absolute R2 values across cross 187 

variation replicates.  188 

   Overall, consistent with simulations, ISR shows robust performance across all traits and is ranked 189 

either as the best or the second-best method or equivalent. In the cattle data (Fig. 2a), for SCS and 190 

MY, both ISR and DPR perform the best. For MFP, ISR and DPR perform equivalent, followed 191 

BayesA, BayesB, BayesLASSO, BSLMM,  rrBLUP, and BayesC. while BSLMM and rrBLUP do 192 

not perform well for MY in the cattle data, but their performance improves for MFP and SCS, 193 

consistent with scenario III and scenario IV (simulation hypothesis is constant). The relative 194 

performance of ISR, DPR BayesA, BayesB in the cattle data is compatible with the distinct genetic 195 

architectures that underlie the three complex traits25,46. While MFP and MY are affected by a few 196 

large or moderate effect SNPs and many small effect SNPs, SCS is a highly polygenic trait 197 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402180
http://creativecommons.org/licenses/by-nd/4.0/


influenced by many SNPs with small effects. BayesC performs poorly for these three traits in the 198 

cattle data. In the rice data (Fig. 2a), BayesA performs the best, followed by ISR, PDR, BayesB, 199 

BSLMM, rrBLUP, BayesC, BayesLASSO, suggesting that a few SNPs influence GL with large 200 

effects43. In the CFW data (Fig. 2b, c), ISR performs the best or among the best for testweight, 201 

soleus, plantaris, BMD, and TA. Its performance is comparable to BayesB and rrBLUP for plantaris, 202 

and follows right behind DPR. Its also performance is comparable to DPR, BayesA, BayesB, and 203 

rrBLUP for EDL, gastric, and sacweight, and follows right behind BSLMM. However, it can be 204 

seen from the MSE difference that compared with ISR, the performance is poor, and its value is 205 

above 0, indicating that the predictive power of this method is quite different, although there may 206 

be several times in the 20 cross-validations A large predictive power can be obtained. Both the 207 

CFW phenotype was low PVE44. 208 

    Because the wheat PHS is a family-based study that PHS resistance showed varied effects under 209 

different environments45. The wheat PHS resistance traits are rarely used in genome selection and 210 

evaluated (prediction) in current research. There are differences in the predictive power of different 211 

methods between different. To eliminate the environmental difference between indifference years, 212 

we have given the four-year BLUP estimate for calculation. The best performance is ISR, followed 213 

by BayesA, BayesB, BayesLASSO, rrBLUP, BSLMM, BayesC, and DPR (Supplementary Fig. 4). 214 

In each year's data, both are ISR performs best, and followed BayesA, BayesB, BayesLASSO, and 215 

rrBLUP, BSLMM, BayesC, and DPR.  216 

Overview. Based on the Simulations and Real data applications (did not use the wheat PHS data) 217 

results from the averaged prediction of R2, we use the TOPSIS and cluster methods to ranked all 218 

methods that all-around performance (Fig.4a,b, Supplementary Table 2). Both the TOPSIS and 219 

cluster showed the same result that ISR(0.63) is perform best, and followed by DPR(0.63), 220 

BayesA(0.59), BayesLASSO(0.57), rrBLUP(0.54), BayesB(0.48), BSLMM(0.36) and 221 

BayesC(0.22). If we included the wheat dataset  perform the TOPSIS and cluster analysis that also 222 

showed the ISR(0.66) is perform best, and followed by BayesB(0.57), BayesA(0.54), DPR(0.53), 223 

BayesLASSO(0.46), rrBLUP(0.46), BSLMM(0.35) and BayesC(0.19)( Supplementary Fig. 6, 224 

Supplementary Table 2,3). Finally, we list the eight methods' computational time for the three traits 225 

only in a large dataset, the maize dataset (Supplementary Table 4). And we excluded the BayesC 226 

and added a new BayesR method. Here, we also compare predictive ability, but not described here 227 

again, as shown in the other dataset prediction results. For sampling-based methods  (DPR, BayesR, 228 

BayesA, BayesB, BayesLASSO, and BSLMM), we measure the computational time based on a 229 

fixed 10,000 iterations. However, due to the different convergence properties of different 230 

algorithms, a fixed number of iterations in different methods may correspond to different mixing 231 
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performance19,20. In contrast, rrBLUP is the faster method, while DPR, BayesR, and BSLMM are 232 

as same as computationally efficient. ISR is computationally as efficient as the other three BayesA, 233 

BayesB, and BayesLASSO for YWK, but costest time for GDD and SSK traits. 234 

 235 

Discussion 236 

We have presented a novel statistical method, ISR, for the polygenic prediction of complex traits. 237 

ISR is a flexible model for the different effect size from the normal distribution (Fig.1), which can 238 

be split into three group effects: no effect, weaker effect, and stronger effect and developed for 239 

modeling polygenic traits in genetic association studies. By flexibly modeling the difference effect 240 

size,  ISR can adapt to the polygenic architecture underlying many complex features and enjoys 241 

robust performance across a range of phenotypes. With simulations and applications to five species 242 

real data sets, we have illustrated the benefits of ISR. We have focused on one application of ISR, 243 

which genetic prediction of phenotypes. As the other polygenic methods28,40,47, ISR can also be 244 

applied to models of traits controlled by multiple genes. For example, ISR can be used to estimate 245 

the proportion of variance in phenotypes explained by each of SNPs42, a quantity that is commonly 246 

referred to as SNP heritability28,33. Because ISR assumes a flexible effect size distribution that is 247 

adaptive to the genetic architecture underlying a given trait, it also can provide an accurate 248 

estimation of SNP heritability42. As another example, ISR also can be applied to association 249 

mapping (GWAS)42(Supplementary Fig.9,10,11, and Supplementary Table 4). 250 

Previous studies have shown that the ISR method has a strong power to identify variant loci. It 251 

performs better than current statistical analysis methods, so we use it to perform genome-wide 252 

prediction42. Here, we have restricted ourselves to applying ISR to continuous phenotypes. For 253 

case-control studies (such as maize traits SSK and YWK), we could follow previous approaches of 254 

treating binary phenotypes as continuous traits and apply ISR directly28,29,40. In the present study, 255 

as shown in Fig.4, the cluster analysis of the predictive power of different models of simulated and 256 

real phenotypes (where the distance between variables (rows and columns are the targets) and the 257 

distance between classes are respectively used by Mahalanobis distance and the sum of squares of 258 

deviations) and found that, just as the four methods with consistent simulation results, DPR, ISR, 259 

BayesA, and BayesB performed the best, in the four different simulations at three different 260 

heritability rates, the predictive power was significant, especially at high heritability rates. It is 261 

higher than the other four methods (ANOVA, p=4.06e-07, Supplementary Fig.7), but there is no 262 

significant difference between these four methods (ANOVA, p=0.1403 Supplementary Fig.7). 263 

Under the moderate heritability, the average predictive power of ISR is the highest. However, 264 
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except that it is significantly higher than BayesC (ANOVA, p=0.043, Supplementary Fig.7) and 265 

the remaining methods have no statistically significant differences; as the same, BayesA has the 266 

highest average predictive power at low heritability, and the same except that it is significantly 267 

higher than (ANOVA, p=0.0141, Supplementary Fig.7 ) The difference between the outer BayesC 268 

and the remaining methods is not significant (ANOVA, p=0.0858, Supplementary Fig.7), which is 269 

consistent with the result analysis (Fig.1, Supplementary Fig.1,2). In addition, the classification 270 

given by the cluster analysis between the columns is also very reasonable (Fig.4a, the different 271 

colors of the cluster tree). 272 

The true phenotype analysis is also showed the same with simulation, dividing different predictive 273 

powers into four categories from low to high (Figs.4b, different colors of cluster trees). According 274 

to previous studies, the heritability of the three traits of the for cattle species is 0.94, 0.95, and 0.88 275 

25; the grain length of rice is 0.97643; the germination rate of wheat is 0.8345. The difference between 276 

field and greenhouse experiments is 0.92 and 0.62. The proportion of variance in phenotypes 277 

explained (PVE) of the ten traits of the remaining mice is0.49 for testweight, 0.28 for soleus, 0.25 278 

for plantaris, 0.10 for fastglucose, 0.27 for tibial, 0.60 for BMD, 0.39 for TA, 0.37 for EDL, 0.25 279 

for gastric, and 0.29 for sacweight44. It was found that all phenotypes can be grouped into four 280 

categories according to their PVE rate. For cattle, ISR and DPR have the highest average predictive 281 

ability, but there is no significant difference among the BayesA and BayesB methods (ANOVA, 282 

p=0.7314). This result is consistent with simulation Fig.2, which also shows that the differences 283 

between MSE  value can explain the difference that the accuracy of difference prediction 284 

methods19,28,31,40; In contrast, BayesA, BayesB, and ISR have the highest predictive power in wheat 285 

PHS-2012 dataset, and they are significantly higher than other methods (ANOVA, p =0.0133); and 286 

the highest predictive ability of the remaining wheat PHS is ISR, But has no difference compared 287 

with the rest of the method (ANOVA, p=0.976, Supplementary Fig.8). Here, we can find out that 288 

the estimated value of BLUP in four years which has the highest predictive abillity is ISR, where 289 

is similar to Moore et al.'s research used the marker-assisted selection (0.40~0.59)48; While with 290 

the low of PVE (heritability) of CFW dataset, there are no difference in predictive ability between 291 

methods (ANOVA, p=0.998, Supplementary Fig.8), but the ISR and DPR always has the highest 292 

average pretictive ability (Supplementary Table 1) . 293 

In a words, the performance of all methods in simulating and real phenotype-wide prediction is 294 

consistent (performance under different heritability (PVE)). Therefore, here we use the TOPSIS49 295 

comprehensive evaluation method, which combining the averages of predictive ability of the 296 

simulation and real phenotypes as variables, and the goal is to rank all methods comprehensively. 297 

Where the result show that ISR(0.63) is perform best, and followed by DPR(0.63), BayesA(0.59), 298 
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BayesLASSO(0.57), rrBLUP(0.54), BayesB(0.48), BSLMM(0.36) and BayesC(0.22). While 299 

considered the wheat PHS dataset was small and affected by more the environment with different 300 

years (Supplementary Fig. 5, Supplementary Table 2,3).   301 

        Of course, this study only analyzes the traits related to animals and plants and does not analyze 302 

human diseases related to features (conditional restrictions). Human studies are based on tens of 303 

thousands of individuals and millions of genetic markers, just like Zeng et al.'s simulation and 304 

disease real phenotype research showed that the result currently DPR and BayesR were relatively 305 

best prediction methods19. In addition, since the control of human diseases is mainly controlled by 306 

many genes and many minor genes (many genetic markers with small effects) 8,50,51, they also can 307 

reasonably estimate the effective SNP PVE (narrow-sense heritability)51,52. DPR, which is 308 

consistent with the results of the simulation study by Zeng et al19, and was indeed superior to other 309 

methods (Fig.2). However, the complex posterior distributions and computational complexity of 310 

traditional multiple integrals limited Bayesian methods20. The problem was solved after the MCMC 311 

method and the Gibbs algorithm were introduced to Bayesian statistics. However, in condition 312 

M(SNPs)>>N (samples), which MCMC and Gibbs algorithm iterations is hard to reach the 313 

convergence of the posterior means, which limits the practical application of Bayesian 314 

methods9,28,40,53,54. 315 

         The ISR method is not without its defects. In addition to the calculated efficiency 316 

(Supplementary Table 4), if the trait is controlled by many genes and minor genes (all SNPs genetic 317 

markers have smaller effects), then there will be cases where the predictive ability is low (Fig.1, 318 

Supplementary Fig.1,2,5). For example, the predictive power was low when simulating 500 SNPs 319 

(under low to medium heritability). However, our ISR model can fit the epistasis effect, where if 320 

the interaction between genes is considered, its predictive ability will be improved55-57. Although 321 

the simulation and real performance results show that ISR is superior to other 322 

models(Supplementary Fig. 6, Supplementary Table 2,3), there is still a lot of room for 323 

improvement in this polygenic prediction model. For example, the algorithm's improvement, 324 

combined with the optimization of the model objective function, can make the ISR perform better. 325 

The complexity of the calculation time also needs to be optimized. 326 

 327 

 328 

 329 

 330 

 331 
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Methods 332 

Overview of ISR. We provide a brief overview of ISR here. Detailed methods and algorithms are 333 

provided42. To model the relationship between phenotypes and genotypes, we consider the 334 

following multiple regression model: 335 

                                           
2, ~ MVN(0, I )e ny W X    = + +  336 

where y is an n-vector of phenotypes measured on n individuals; W=(w1,w2…wc) is an n by c matrix 337 

of covariates(fixed effects) including a column of ones for the intercept term; α is a c-vector of 338 

coefficients; X is an n by p matrix of genotypes; β is the corresponding p-vector of effect sizes; ε 339 

is an n-vector of residual errors where each element is assumed to be independently and identically 340 

distributed from a normal distribution with a variance 2

e ; In is an n by n identity matrix and MVN 341 

denotes multivariate normal distribution. 342 

We used the proposed iterative screening regression model—effect size estimates obtained by the 343 

least-square method (LSM) and F-test P values for each SNP. The SNP with the most significant 344 

association is then added to the model as a cofactor for the next step. Combined the proposed 345 

iterative screening regression process, which makes it useful when p>>n (when the number of SNPs 346 

is much greater than the number of individuals). We also proposed a new model selection criteria 347 

(RIC Fig.1) to select the most appropriate model42.  348 

Simulations. We used genotypes from an existing cattle GWAS data set with 5024 individuals and 349 

42,551 SNPs and simulated phenotypes. To cover a range of possible genetic architectures, we 350 

consider four different simulation scenarios to cover a range of possible genetic architectures:  351 

     Scenario I, where we randomly selected 100 SNPs, are causal and SNPs in different effect-size 352 

groups have different effects. Specifically, we randomly selected 10 group-one SNPs, 40 group-353 

two SNPs, 50 group-three SNPs, and set the remaining SNPs to have zero effects. We simulated 354 

SNP effect sizes all from a standard normal distribution but scaled their effects in each group 355 

separately so that the proportion of genetic variance explained by the four groups are 0.15, 0.25, 356 

and 0.60, respectively. We set the total proportion of phenotypic variance (PVE; i.e., SNP 357 

heritability) to be either 0.2, 0.5, or 0.8, representing low, moderate, and high heritability, 358 

respectively. This simulation scenario consists of one simulation setting for each PVE.  359 

    Scenario II based on Scenario I that we appended 50 SNPs to group-three SNPs, the remained 360 

simulation conditions were the same. These causal SNPs come from three effect-size groups. Here, 361 

the proportion of PVE by the three groups are 0.15, 0.25, and 0.6, respectively. Again, we set the 362 

total PVE to be either 0.2, 0.5, or 0.8. This simulation scenario consists of one simulation setting 363 

for each PVE.  364 
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Scenario III is similar to Scenario I where we randomly selected 500 SNPs are causal and SNPs 365 

in different effect-size groups have different effects. Specifically, we randomly selected 50 group-366 

one SNPs, 150 group-two SNPs, 300 group-three SNPs, and set the remaining SNPs to have zero 367 

effects. We simulated SNP effect sizes all from a standard normal distribution but scaled their 368 

effects in each group separately so that the proportion of genetic variance explained by the four 369 

groups are 0.15, 0.25, and 0.60, respectively. We set the total proportion of phenotypic variance 370 

(PVE; i.e., SNP heritability) to be either 0.2, 0.5, or 0.8, representing low, moderate, and high 371 

heritability, respectively. This simulation scenario consists of one simulation setting for each PVE.    372 

Scenario IV satisfies the BayesR modeling assumption, where we randomly selected 500 SNPs 373 

are causal and SNPs come from three effect-size groups. Specifically, we randomly selected 50 374 

group-one SNPs, 150 group-two SNPs, 300 group-three SNPs, and set the remaining SNPs to have 375 

zero effects. The simulated effect size follows a normal distribution with a mean value of 0 and a 376 

variance of 10-2, 10-3, and 10-4, respectively40. Here, the proportion of PVE by the three groups are 377 

0.15, 0.25, and 0.6, respectively. Again, we set the total PVE to be either 0.2, 0.5, or 0.8. This 378 

simulation scenario consists of one simulation setting for each PVE. 379 

To test the power of ISR method, Scenario I to Scenario III were more satisfies the ISR model, 380 

and Scenario IV satisfies the BayesR modeling assumption. Both the scenarios were as same as the 381 

real data perform. In each setting, we performed 20 simulation replicates. In each replicate, we 382 

randomly split the data into training data with 80% individuals and test data with the remaining 20% 383 

individuals. We then fitted different methods on the training data and evaluated their prediction 384 

performance on the test data. 385 

Cattle data. The cattle data25 consists of 5024 samples and 42,551 SNPs after removing SNPs that 386 

have a HWE p-value < 10−4, a genotype call rate <95%, or an MAF < 0.01. For the remaining SNPs, 387 

we imputed missing genotypes with the estimated mean genotype of that SNP. We analyzed three 388 

traits: MFP, MY, and SCS. All phenotypes were quantile normalized to a standard normal 389 

distribution before analysis. 390 

Rice data. The maize data43 which after processing the data, including filtering for missing 391 

genotype data which no measure the traits, and minor allele frequencies(MAF <0.05), the data were 392 

composed of m = 464,831 SNPs and n = 1,132 individuals. For the remaining SNPs, we also 393 

imputed missing genotypes with the estimated mean genotype of that SNP. We only used the grain 394 

length (GL) as the phenotype in genomic selection.  395 

CFW data. Outbred CFW44 (Carworth Farms White) mice population that including a set of 92,734 396 

single-nucleotide polymorphism markers which were genotyped, 1,161 individuals. We analyzed 397 

ten traits: testweight, soleus, plantaris, fastglucose, tibial, BMD, TA, EDL, gastric, and sacweight. 398 
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The heritability estimates are 0.49 for testweight (testes weight), 0.28 for soleus, 0.25 for plantaris, 399 

0.10 for fastglucose (fasting glucose), 0.41 for tibial (tibia length), 0.60 for BMD (Bone-mineral 400 

density), 0.39 for TA (tibialis anterior), 0.37 for EDL (extensor digitorum longus), 0.25 for gastric 401 

(gastrocnemius), and 0.29 for sacweight (Testis weights)44. 402 

Wheat PHS data. A set of 185 winter wheat accessions45, and included 27521 SNPs. The GWAS 403 

panel was evaluated for PHS in the greenhouse experiments of fall (August-December) 2011, 404 

spring (January-May) and fall 2012, and spring 2013. All experiments were conducted in a 405 

randomized complete block design with two replications of five plants. The GWAS panel was also 406 

planted for PHS resistance evaluation in the Kansas State University Rocky Ford Wheat Research 407 

Farm, Manhattan, KS and the Agricultural Research Center-Hays, Hays, KS, respectively, in the 408 

summers of 2013 and 2014. PHS values of four years were used for BLUP estimation to obtain 409 

BLUP values for prediction analysis. The broad-sense heritability across all experiments was high 410 

(0.83), with 0.62 in the greenhouse experiments and 0.92 in the field experiments45. 411 

Maize data. As described20,58 that the maize data consisted of 2279 inbred accessions and three 412 

traits, including two case/control traits: yellow or white kernels YWK) and sweet or starchy kernels 413 

(SSK), and one quantitative trait: growing degree days (GDD). A total of 681,257 SNPs across all 414 

maize lines were obtained with genotyping by sequencing (GBS). After removing samples missing 415 

is > 20%, SNPs with either MAF < 0.01, 2279 individuals and 195,038 SNPs for GDD; 314 controls, 416 

1281 cases, and 185,493 SNPs for YWK; 2490 controls, 141 cases, and 183,225 SNPs for SSK; 417 

remained in this study. We imputation the missing genotype data with Beagle5.1 418 

(https://faculty.washington.edu/browning/beagle/beagle.html)59,60. And we perform the GWAS use 419 

the ISR model only (Supplementary Fig9,10,11, Supplementary Table 5). The PVE estimates are 420 

0.88 for GDD, 0.63 for SSK, 0.97 for YWK. 421 

Other methods. We compared the performance of ISR mainly with seven existing methods: (1) 422 

DPR19; (2) BSLMM (implemented in the GEMMA software (version 0.95alpha))28; (3) BayesA; 423 

(4) BayesB; (5) BayesC; (6) Bayes LASSO; (7) rrBLUP35, (8) BayesR40. Among them (3)-(6) the 424 

method of receiving in BGLR R package. We used default settings to fit all these methods. To 425 

measure prediction performance, we carried out 20 Monte Carlo cross-validation data splits as in 426 

simulations. In each data split, we fitted methods in a training set with 80% of randomly selected 427 

individuals and evaluated method performance using R2 in the test set with the remaining 20% of 428 

individuals. Because the wheat data set is small, we use the 10-fold cross-validation method to 429 

analyze the predictive power of different methods, which is to divide the sample into ten equal parts 430 

each time randomly, and nine of them are used as training samples. The other one is used as a 431 
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verification sample, and nine samples are used to estimate the parameters to predict the remaining 432 

one, and the loop 10 times in turn until all individuals are predicted. 433 

TOPSIS method. TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), the 434 

technique of approximating the ideal solution, is a multi-criteria decision analysis method. The 435 

basic idea of this method is to define the ideal solution and the negative ideal solution of the 436 

decision-making problem. After the ideal solution and the negative ideal solution are determined, 437 

the distance between the evaluation object and the optimal solution and the worst solution is 438 

calculated respectively, so as to obtain and the optimal solution through calculation. If a certain 439 

evaluation object is infinitely close to the ideal solution and at the same time far away from the 440 

negative ideal solution, then this solution is the optimal solution. 441 

How to calculate the distance is very important. The TOPSIS method uses the Euclidean distance 442 

function to calculate the distance between the evaluation object and the ideal solution and the 443 

negative ideal solution. The Euclidean distance describes the true distance between two points in 444 

the p-dimensional space. Here, suppose there are two points in space 1 2  ,( , , )nA a a a=   and 445 

1 2  ,( , , )nB b b b=  , then, The Euclidean distance calculation formula is as follows: 446 

2( , ) ( ) , ( 1,2, )i id A B a b i n= − =  447 

Suppose the sample material is a multi-attribute decision-making matrix with n evaluation 448 

objects and m evaluation indicators The TOPSIS process is carried out as follows: 449 

Step 1: Convergence processing for each index of the sample material. As the evaluation 450 

process requires the same trend of indicators, that is, either the higher the better, or the lower the 451 

better. Therefore, the original data needs to be converted, that is, the conversion of low-quality 452 

indicators to high-quality indicators or the conversion of high-quality indicators to low-quality 453 

indicators. 454 

 455 

(1) 456 

 457 

 458 

 459 

 460 

Step 2: Construct a normalized decision matrix. In the target decision-making, the different 461 

dimensions of the evaluation index will have a great impact on the evaluation result. The range of 462 

changes of each index is different, and there is no unified measurement standard. Therefore, the 463 

decision matrix needs to be normalized. 464 
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(2) 466 

 467 

 468 

 469 

 470 

Step 3: Find the best plan and the worst plan: 471 

 1 2( , ,..., ) max | 1,2,...,m ij
i

Z Z Z Z Z j m+ + + += = =                       (3) 472 

 1 2( , ,..., ) min | 1,2,...,m ij
i

Z Z Z Z Z j m− − − −= = =                     (4) 473 

Step 4: Calculate the Euclidean distance between each evaluation object and the ideal solution 474 

and the negative ideal solution. 475 

2

1

( )
m

i ij ij

j

D Z Z+ +

=

= − , 2

1

( )
m

i ij ij

j

D Z Z− −

=

= −    (5) 476 

In the formula, iD +
and iD −

 respectively represent the distance between the i-th evaluation 477 

object and the ideal solution and the negative ideal solution; represent the j-th index data of the i-478 

th material in the normalized matrix. 479 

Step 5: Calculate the closeness of  iC  each target solution to the optimal solution to reflect the 480 

quality of the target solution. 481 

, (0 1), 1i
i i i

i i

D
C C C

D D

−

+ −
=   →

+
    (5) 482 

Step 6: Sort by size iC  and give the evaluation result. The larger the value of iC , the better 483 

the overall benefit and the better the plan. 484 

Cluster method. Here, we used hierarchical clustering to evaluate the different methods perform 485 

and use the heat map with dendrograms to show the result. Algorithm for computing the distance 486 

between clusters that we use the ward method and the distance metric was calculated by 487 

Mahalanobis distance, as follows: 488 

2 1 'd ( ) ( )st s t s tx x C x x−= − −  489 

where C  is the covariance matrix. Mahalanobis distance is widely used in cluster analysis and 490 

classification techniques. It is closely related to Hotelling's T-square distribution used for 491 
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multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised 492 

classification61. 493 

 494 

Code availability. Our method is implemented in the ISR software included TOPSIS and cluster 495 

methods, and all script methods analysis in this study can freely available at 496 

https://github.com/czheluo/PPISR and https://github.com/czheluo/ISR.  497 

 498 

Data availability 499 

No data were generated in the present study. The genotype and phenotype data from the Cattle 500 

from25and Cattle: https://www.g3journal.org/content/5/4/615. supplemental; and 501 

Maize: https://datacommons.cyverse.org/browse/iplant/home/shared/panzea. And rice data studies 502 

are available http://www.ricediversity.org/data/. The outbred CFW  mice of genotype and 503 

phenotype data are publicly available at https://github.com/pcarbo/cfw, and the genotype was as 504 

same as the Parker, C.C et..42,44 and the wheat PHS data set provided by Prof. Guihua Bai at the 505 

Kansas State University. 506 
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 683 

Fig. 1 Schematic overview of model-based is iterative screening regression for GS. The first input dataset with markers (SNPs) matrix representing individual 684 

genotypes (rows) of a population with alleles (0, 2, and 1, missing genotypes will be replaced by the mean genotype or imputed by others complicate algorithm) 685 

per marker (columns). Secondly, we formulated a regression information criterion (RIC, objective function) as the screening criterion of the regression model. 686 

Combined the proposed iterative screen optimize the procedure, which mainly included expansion screen and contraction select two-steps. The third, apply it to 687 

multiple regression analysis, and two models can be selected, one for the linear model and the other for is the binomial model (including the epistasis effect).  Here, 688 

we show the polygenic prediction of complex traits which the PHB phenotype distribution, where according to the character numerical simulation and we found 689 

the optimal equation that is five normally distributed superpositions and the black curve is explanation all models. Each of the models is blue curve, green curve, 690 

red curve, cyan curve, and purper curve (five major genes), and the best fitting model is finally selected as follows, and the optimal parameters estimated see the 691 

supplementary Table 6, From R2 =0.9982 (determination coefficient), it can be seen that the fitting degree is very high. This model can well explain the character 692 

(Figure 2). Except for b13 and b14, all the other T-tests reached a significant level. 693 
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 696 

Fig. 2 Comparison of prediction performance of seven methods with ISR in simulations when PVE = 697 

0.5. Performance is measured by R2 difference (a) and MSE difference (b) with respect to ISR, where an R2 698 

difference below zero (i.e., values below the blue horizontal line) or an MSE difference above zero suggests 699 

worse performance than ISR. The sample R2 and MSE differences are obtained from 20 replicates in each 700 

scenario. Methods for comparison include DPR (cyan), BayesB (black), BayesA (green), Bayes LASSO (red),  701 

BSLMM (yellow), rrBLUP (purple), and BayesC (gray). Simulation scenarios include Scenario I, Scenario 702 

II, and Scenario III, which satisfies the DPR modeling assumption;  where the number of SNPs in the large 703 

effect group is 100, 150, or 500; and Scenario IV, which satisfies the BayesR modeling assumption;  For 704 

each box plot, the bottom and top of the box are the first and third quartiles, while the ends of whiskers 705 

represent either the lowest datum within 1.5 interquartile range of the lower quartile or the highest datum 706 

within 1.5 interquartile range of the upper quartile. For ISR, the mean predictive R2 in the test set and the 707 

standard deviation for the eight settings are, respectively, 0.441 (0.019), 0.331 (0.028), 0.267 (0.016), 0.271 708 

(0.023) 709 

 710 
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 714 

Fig. 3 Comparison of prediction performance of seven methods with ISR for fourteen traits from three 715 

data sets. a Prediction performance for MFP, MY, and SCS in the cattle data, and for GL in the rice data; 716 

b,c Prediction performance for the ten traits in the mice data. Performance is measured by R2 difference with 717 

respect to ISR, where a negative value (i.e., values below the red horizontal line) indicates worse performance 718 

than ISR. Methods for comparison include DPR (cyan), BayesB (black), BayesA (green), Bayes LASSO 719 

(red), BSLMM (yellow), rrBLUP (purple), and BayesC (gray). For each box plot, the bottom and top of the 720 

box are the first and third quartiles, while the ends of whiskers represent either the lowest datum within 1.5 721 

interquartile range of the lower quartile or the highest datum within 1.5 interquartile range of the upper 722 

quartile. The sample R2 differences are obtained from 20 replicates of Monte Carlo cross-validation for each 723 

trait. For ISR, the mean predictive R2 in the test set and the standard deviation across replicates are 724 

0.747(0.007) for MFP, 0.618(0.03) for MY, 0.554(0.018) for SCS and 0.658(0.032) for GL, 0.078(0.024) for 725 

testweight, 0.024(0.012) for soleus, 0.017(0.011) for plantaris, 0.018(0.009)  for fastglucose, 0.008(0.01) for 726 

tibial, 0.057(0.008) for BMD, 0.028(0.016) for TA, 0.022(0.005) for EDL, 0.02(0.013) for gastric, and 727 

0.028(0.01) for  sacweight. The heritability estimates are 0.912 for MFP, 0.810 for MY, 0.801 for SCS, and 728 
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0.976 for GL, 0.49 for testweight, 0.28 for soleus, 0.25 for plantaris, 0.10 for fastglucose, 0.27 for tibial, 0.60 729 

for BMD, 0.39 for TA, 0.37 for EDL, 0.25 for gastric, and 0.29 for sacweight. 730 

 731 

 732 

Fig. 4 The clustering result with heatmap. Based on the Simulations and Real data applications (did not 733 

include the wheat PHS data) results in the averaged prediction of R2 734 
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