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Abstract: 

Meningitis and encephalitis are leading causes of central nervous system (CNS) disease and 

often result in severe neurological compromise or death. Traditional diagnostic workflows 

largely rely on pathogen-specific diagnostic tests, sometimes over days to weeks. 

Metagenomic next-generation sequencing (mNGS) is a high-throughput platform that profiles 

all nucleic acid in a sample. We prospectively enrolled 68 patients from New England with 

known or suspected CNS infection and performed mNGS from both RNA and DNA to 

identify potential pathogens. Using a computational metagenomic classification pipeline 

based on KrakenUniq and BLAST, we detected pathogen nucleic acid in cerebrospinal fluid 

(CSF) from 22 subjects. This included some pathogens traditionally diagnosed by serology or 

not typically identified in CSF, including three transmitted by Ixodes scapularis ticks 

(Powassan virus, Borrelia burgdorferi, Anaplasma phagocytophilum). Among 24 subjects 

with no clinical diagnosis, we detected enterovirus in two subjects and Epstein Barr virus in 

one subject. We also evaluated two methods to enhance detection of viral nucleic acid, hybrid 

capture and methylated DNA depletion. Hybrid capture nearly universally increased viral 

read recovery. Although results for methylated DNA depletion were mixed, it allowed 

detection of varicella zoster virus DNA in two samples that were negative by standard 

mNGS. Overall, mNGS is a promising approach that can test for multiple pathogens 

simultaneously, with similar efficacy to pathogen-specific tests, and can uncover 

geographically relevant infectious CNS disease, such as tick-borne infections in New 

England. With further laboratory and computational enhancements, mNGS may become a 

mainstay of workup for encephalitis and meningitis.   

 

Importance: 

Meningitis and encephalitis are leading global causes of central nervous system (CNS) 

disability and mortality.  Current diagnostic workflows remain inefficient, requiring costly 

pathogen-specific assays and sometimes invasive surgical procedures.  Despite intensive 

diagnostic efforts, 40-60% of people with meningitis or encephalitis have no clear cause of 

their CNS disease identified. As diagnostic uncertainty often leads to costly inappropriate 

therapies, the need for novel pathogen detection methods is paramount. Metagenomic next-

generation sequencing (mNGS) offers the unique opportunity to circumvent these challenges 

using unbiased laboratory and computational methods. Here, we performed comprehensive 

mNGS from 68 patients with suspected CNS infection, and define enhanced methods to 
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improve the detection of CNS pathogens, including those not traditionally identified in the 

CNS by nucleic acid detection. Overall, our work helps elucidate how mNGS can become a 

mainstay in the diagnostic toolkit for CNS infections.  
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Introduction: 

Meningitis and encephalitis are leading causes of central nervous system (CNS) disease, 

ranked as the 4th leading contributor to global neurological disability-adjusted life-years (1), 

often resulting in severe neurological compromise or death (2, 3). Traditional diagnostic 

workflows remain inefficient, requiring costly pathogen-specific diagnostics, serial cerebral 

spinal fluid (CSF) testing, and sometimes invasive surgical procedures.  Despite these 

intensive diagnostic efforts, 40-60% of subjects with meningitis or encephalitis have no clear 

cause identified (2, 4–6). 

 

Metagenomic next-generation sequencing (mNGS) offers a unique opportunity to circumvent 

some of these challenges. mNGS consists of unbiased sequencing of all nucleic acid in a 

sample and computational classification of reads to identify potential pathogens (7–9). This 

technique successfully detected a range of pathogens, including bacteria (10–12), fungi (13), 

protozoa (14), and viruses (15–17) in subjects with CNS infection. mNGS is increasingly 

used as a clinical diagnostic test (18–20), and criteria for test performance have been 

described, though not yet standardized (21–23). 

 

In this study, we prospectively enrolled 68 patients with known or suspected CNS infection 

and performed mNGS from both RNA and DNA to identify pathogens. We focused 

laboratory and analysis methods on viral nucleic acid detection since viruses are the most 

common type of pathogen detected in CNS infection (4, 5, 24, 25). Goals for this study were 

to assess the utility of standard mNGS in identifying CNS pathogens and examine enhanced 

laboratory techniques for improving analytic sensitivity, including hybrid capture (HC) of 

viral nucleic acid and methylated DNA depletion (MDD).  

 

Methods: 

Subject enrollment and clinical characterization 

The Prospective Encephalitis and Meningitis Study (PEMS) is a prospective cohort study 

enrolling adults who presented to Massachusetts General Hospital (MGH) with confirmed or 

suspected CNS infection. A total of 136 subjects enrolled in the PEMS between April 2016 

and December 2017, of whom 122 had available CSF.  Immunocompetent patients with CSF 

white blood cell count (WBC) < 5 cells/ul (n = 40) were excluded as unlikely to have 

infectious meningitis or encephalitis.  Additional exclusions included encephalitis due to 

nosocomial bacteria, or bacteria and fungi that would be challenging to distinguish from 
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common laboratory contamination in mNGS (n = 14) (Supplementary Table 1, 

DOI: 10.6084/m9.figshare.13266506). Sixty-eight subjects were included in mNGS analysis 

(Figure 1). This study was approved by the Partners Institutional Review Board under 

protocol 2015P001388. Further details are in Supplementary Methods.   

 

Nucleic acid isolation and standard mNGS 

To minimize environmental contamination from viruses studied in the research laboratory, 

nucleic acid extraction and library construction were performed in an isolated workspace with 

limited access, extensive decontamination, and strict oversight of supplies, storage areas, and 

reagents. As a negative control, water and/or CSF from an uninfected patient (Negative CSF) 

was included with each batch starting from nucleic acid isolation. Nucleic acid was extracted 

from 140μl of CSF, urine, or plasma stabilized with linear acrylamide using the QIAmp Viral 

RNA Mini Kit (Qiagen). The elution was split into two fractions for RNA and DNA 

sequencing, and External RNA controls consortium (ERCC) spike-in oligonucleotides were 

added to each. Methods for cDNA synthesis have been previously described (26, 27). Both 

DNA and RNA libraries underwent tagmentation with the Nextera XT DNA Library Prep Kit 

(Illumina), and were pooled and sequenced on HiSeq and MiSeq machines using paired-end 

100 or 150bp reads. Methods are outlined in Figure 1B, and details are in Supplementary 

Methods. 

 

Methods to enhance detection of pathogen nucleic acid 

We first assessed whether enrichment for non-methylated microbial DNA would improve 

mNGS yield. We used samples from 12 subjects: 10 with clinically diagnosed DNA virus 

infections and 2 with clinically diagnosed Lyme disease. Samples underwent methylated 

DNA depletion (MDD) using the NEBNext Microbiome DNA Enrichment Kit (New England 

Biolabs), and the enriched fraction was used for DNA library construction as above (Figure 

1). Next, to assess the efficacy of enrichment for viral nucleic acid, we performed hybrid 

capture (HC) using a set of probes targeting all viruses known to infect humans (28). We 

applied HC to 13 RNA and 12 DNA libraries from subjects with clinically diagnosed RNA 

and DNA virus infections, respectively. Given the observed efficacy of HC, we also applied 

HC to samples from 20 subjects in the “Unknown” group (using the RNA library, DNA 

library, or both depending on clinical suspicion for a specific pathogen). To perform HC, 

indexed libraries were pooled in groups of approximately 5 samples per reaction, then 
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underwent hybridization and capture using the SeqCap EZ Enrichment Kit (Roche) with 

modifications described previously (28). HC libraries were pooled and sequenced as 

described above. Finally, we applied both MDD and HC to a subset of 12 samples from 

patients with known or suspected DNA virus infection.  

 

Metagenomic analysis pipeline 

Illumina sequencing reads were demultiplexed via viral-ngs, quality filtered and read 

trimmed using Trimmomatic (29), and depleted of human reads via a comprehensive 

KrakenUniq (30) database. Resulting reads were de-duplicated and assembled into 

metagenomic contigs via metaSPAdes (31). Contigs were classified using a cascading 

BLAST scheme in which unclassified contigs at each stage passed to the next level of more 

intensive BLAST searches from MegaBLAST, BLASTn, to BLASTx (32, 33). Contigs and 

associated hits derived from water and negative control samples were aggregated into a 

contaminant database and used to further deplete the human-depleted reads (Figure 1C, 

Supplementary Figure 1). 

 

Finally, the human- and contaminant-depleted reads were classified by KrakenUniq using the 

same comprehensive database as above. Reads classified as potentially human-pathogenic 

viruses were validated via BLAST, discarding any reads that were not concordantly classified 

by both methods. The counts of reads per taxa were normalized to sequencing depth as reads 

per million (RPM). Kaiju was run on depleted reads to explore divergent taxa hits, while 

viral-ngs was used to assemble genomes for a subset of viruses. 

  

Statistical analyses 

Analyses were performed using Student’s t-test and the Mann-Whitney U test for normally 

and non-normally distributed continuous variables, respectively, and using the 𝜒2 test for 

categorical variables. 

 

Funding source 

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.  

 

Data Availability: 
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Reads after QC filtering, trimming, and depletion of human reads via KrakenUniq to a 

comprehensive database including the human genome (GRChg38/hg38) and all human 

sequences from the BLAST NT database, are available in the NCBI Sequence Read Archive 

(SRA) under accession PRJNA668392. Supplementary tables are available at 

DOI: 10.6084/m9.figshare.13266506, and supplementary figures at 

DOI: 10.6084/m9.figshare.13266488. 

 

Results 

Clinical characteristics 

Of the 68 adults enrolled, 63% (43/68) were male, subjects ranged in age from 24 to 86 years 

(median = 58 years (interquartile range (IQR) [39, 72], Table 1) and 25 (37%) were 

immunocompromised (Supplementary Methods). New England was the primary residence for 

all except one subject who lived in Florida. Altered mental status was described in 56% 

(38/68), while a minority had photophobia (24% (16/68)) or neck stiffness (26% (18/68)). 

Twenty subjects out of 68 (29%) were admitted to the intensive care unit, and in-hospital 

mortality was 6% (4/68).  

 

Based on clinical testing, 44 of the 68 subjects received a conclusive diagnosis by discharge. 

Twelve subjects were diagnosed with viral infection by PCR from CSF (“Infection, CSF 

PCR+” group), 25 were diagnosed with infection by serology or PCR from blood (“Infection, 

Other” group), and 7 had a non-infectious etiology (“Alternative Diagnosis” group). The 

remaining 24 subjects (35%) had no known diagnosis (“Unknown” group) (Table 1). 

Subjects classified as “Unknown” underwent exhaustive clinical testing; 50% of them (12/24) 

had  ≥ 25 infectious disease (ID) tests (Figure 2A; Supplementary Figure 2, Supplementary 

Table 2 (DOI: 10.6084/m9.figshare.13266506)), and no other diagnoses were made by 

clinical work-up alone in long-term follow-up (Supplementary Table 3, 

DOI: 10.6084/m9.figshare.13266506). In contrast, the “Infection, CSF PCR+” group had a 

much lower median number of clinical ID tests performed (12 [IQR:6,56]) vs (22·5 [IQR 11, 

36]) for the “Unknown” group). The “Infection, CSF PCR+” group also had the shortest 

length of stay (LOS) (4·5 days [2,51]), and across the total cohort, LOS moderately 

correlated with the number of ID tests ordered (Spearman’s 𝜌 = 0·65, p<0·01; Figure 2B).  

  

Results from mNGS and enhanced methods  
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To understand mNGS performance in a real-world context, we sequenced 68 CSF, 3 plasma, 

5 serum, and 12 urine samples, along with 47 negative controls. We performed mNGS from 

RNA, DNA, or both, generating an average of 9.6 million reads per subject (Supplementary 

Figure 3, Supplementary Tables 4-6 (DOI: 10.6084/m9.figshare.13266506)).  We identified a 

plausible pathogen in 22 subjects (32.4%): 18 by standard mNGS, an additional 2 with the 

use of HC, and 2 more with the use of MDD (Figure 3, Supplementary Figure 4). As 

expected, we detected viral nucleic acid in most subjects in the “Infection, CSF PCR+” group 

(10 out of 12, 83%, Figure 3), consistent with other mNGS studies (18, 23). mNGS was 

negative in one subject with herpes simplex virus 2 (HSV-2) and another with human 

immunodeficiency virus 1 (HIV-1), illustrating that mNGS can be less sensitive than PCR for 

very low-level infections (Supplementary Results, Supplementary Figure 5). We detected 

reads from both JC virus and HIV in a subject with HIV and progressive multifocal 

leukoencephalopathy (PML), illustrating the capacity of this single platform to identify viral 

coinfections. In assessing our enhanced methods, we found that HC increased the number of 

viral reads in 8 out of 9 cases positive by routine mNGS, sometimes substantially (Figure 4). 

By contrast, MDD led to mixed results, enabling virus detection in some cases (e.g., varicella 

zoster virus (VZV) in M049 and M070) while decreasing yield in others (e.g., Epstein-Barr 

virus (EBV) in M095) (Figure 4, Supplementary Results).  

  

mNGS detects pathogens not traditionally diagnosed by CSF PCR 

Twenty-five subjects in the “Infection, Other” group had infections diagnosed by serology 

from CSF and/or blood, or PCR from blood (Table 1). Fifteen had an infection for which no 

clinically approved CSF PCR assay was available; standard mNGS detected pathogen nucleic 

acid in six, and mNGS plus HC in a seventh, yielding 7/15 positive hits (47%) (Figure 3). 

There were several cases of regional interest. For example, three subjects were clinically 

diagnosed with Powassan encephalitis using a time-consuming send-out serology test, and 

mNGS identified Powassan virus RNA in two cases. In addition, while our methods were 

focused on viral detection, we identified atypical bacteria whose genome reads were readily 

distinguishable from background, including Borrelia burgdorferi in two out of two subjects 

diagnosed with Lyme disease by serology, and Anaplasma phagocytophilum in a subject 

diagnosed by PCR from blood (Supplementary Figure 6).  

 

In the remaining ten subjects from the “Infection, Other” group, a clinical CSF PCR test was 

available and negative for the culprit pathogen (human herpesvirus 6 (HHV-6) (n=1), VZV 
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(n=3), West Nile virus (WNV) (n=3), and mycoplasma (n=3)). While these were negative 

using standard mNGS, the addition of MDD allowed detection of VZV in two subjects 

(M049, M070) (Supplementary Results; Supplementary Figure 7). In both cases, clinical CSF 

VZV PCR from the same sample was negative, illustrating that mNGS may occasionally be 

more sensitive than a clinically validated PCR. By contrast, MDD decreased yield for other 

herpesviruses, suggesting pathogen-specific effects (Supplementary Results; Figure 4). 

 

mNGS detects pathogens not tested by clinicians 

Among the 24 subjects with no identified clinical diagnosis (“Unknown”), standard mNGS 

identified viruses in three subjects, and no additional pathogens were detected using MDD 

and HC. We detected enterovirus in two subjects with lymphocytic meningitis (M108, 

M126), neither of whom had clinical enterovirus PCR testing. These findings were verified 

by sequencing a second CSF aliquot and by assembling a complete enterovirus genome for 

each subject. Phylogenetic analysis from both subjects demonstrated closely-related 

echovirus 30 strains (Supplementary Figure 8). 

 

We also detected EBV and assembled a complete genome in one subject (M095) during two 

serial hospitalizations for recurrent lymphocytic meningitis. While clinical testing for EBV in 

CSF was not performed, EBV PCR was positive from blood during both admissions. Overall, 

these results are compatible with EBV meningitis or reactivation in the setting of another, 

unidentified primary syndrome (34).  

 

mNGS detects viruses of uncertain significance 

In addition to the plausible pathogens described above, we detected DNA viruses of uncertain 

clinical significance. EBV was present at low levels in CSF from four subjects, three of 

whom had alternative primary diagnoses: VZV (M043), herpes simplex virus 1 (HSV-1) 

(M026), and HSV-2 (M029). For the fourth subject (M085), no alternative diagnosis was 

identified; however, EBV reads were only detected after MDD and HC, and a clinical PCR 

test for EBV from CSF was negative. Review of clinical data for these subjects suggested that 

EBV was unlikely to explain their clinical syndromes, and these findings most likely suggest 

reactivation in the setting of another acute process. 

 

We also detected human herpesvirus 7 (HHV-7) at a low level in a subject (M132) who was 

diagnosed with HSV-2 by clinical PCR, but HSV-2 was not detected by mNGS. Acute 
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encephalitis due to HHV-7 rarely occurs in immunocompetent adults, and has been described 

in three cases of patients with limbic encephalitis (35), facial cranial palsy, and 

polymyeloradiculitis (36, 37); none of these syndromes were compatible with this subject’s 

presentation. Adenovirus reads were detected in two subjects (M090, M121) and were not 

considered vector contaminants due to their distribution across the genome; however, the 

reads were found in RNA libraries only, and subjects were not known to be 

immunocompromised or have features compatible with adenovirus infection.  

  

A known challenge of mNGS is assessment and interpretation of background contamination. 

Even after extensive computational depletion of both human reads and sequences found in 

negative controls, bacteria accounted for ~11% of DNA and ~39% of RNA reads. We also 

found viral reads from bacteriophages and vectors commonly used in molecular biology, such 

as adenovirus, cytomegalovirus (CMV), HIV/lentiviruses, and parvoviruses, consistent with 

prior studies (38). Finally, we found a handful of reads matching recently discovered 

picornaviruses from environmental surveys (Supplementary Results and Supplementary 

Table 7 (DOI: 10.6084/m9.figshare.13266506)) (39). 

 

mNGS is negative in subjects with non-infectious diagnosis 

mNGS did not detect pathogen nucleic acid in the seven subjects with non-infectious diseases 

(“Alternative Diagnosis” group): autoimmune encephalitis and cerebellitis (n=3), lymphoma 

(n=2), and vasculitis (n=2). In this category, the median CSF WBC was 2-6 times lower than 

in the two infection groups. The “Alternative Diagnosis” group had the highest number of ID 

tests ordered in CSF and blood (median 26 tests, range [10,57]; Supplementary Table 2 

(DOI: 10.6084/m9.figshare.13266506)) and is consistent with provider practice to test a 

wide-range of pathogens prior to immunomodulatory therapy; subjects were ultimately 

treated with immunosuppressive agents. 

 

Discussion 

Advances in genomic technologies provide translational researchers the unprecedented 

capacity to identify and study pathogens in patients with meningitis and encephalitis. Here, 

we performed a prospective study using mNGS, enhanced laboratory and analysis techniques, 

and detailed clinical phenotyping to assess the use of this technology as a diagnostic tool for 

hospitalized subjects with inflammatory CSF. We identified a range of CNS pathogens, 

including regionally important tick-borne organisms not typically diagnosed by CSF nucleic 
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acid testing. In 9 cases, we were able to recover full or partial viral genomes, demonstrating 

the utility of this technique for virus characterization studies (e.g., molecular epidemiology 

and identification of neurotropic variants). We also demonstrated that subjects with CNS 

infections diagnosed using CSF PCR assays undergo fewer ID tests compared to other 

clinical groups with inflammatory CSF and typically have shorter lengths of hospital stay 

(40); from this, we infer that the expansion of molecular diagnostic techniques such as mNGS 

may have direct and positive impacts on patient care and associated costs. Together with 

recent reports (18), this work highlights that mNGS is likely to become a mainstay in the 

infectious disease diagnostic toolkit.  

 

Overall, mNGS was highly effective at detecting pathogens diagnosed by clinical PCR 

testing. Metagenomic NGS detected the expected pathogen in 10 of 12 subjects, similar to a 

recent study detecting viruses in 14 out of 16 subjects diagnosed by CSF PCR (18). Our 

results also highlight the benefit of enhanced mNGS techniques. For example, MDD plus 

mNGS detected VZV DNA in two additional samples negative by standard mNGS. However, 

MDD decreased yield for some viruses, indicating that the role of this technique in mNGS 

remains unclear. Pan-viral HC consistently improved sequencing of RNA and DNA viruses, 

and resulted in virus detection in two cases (HSV-1 and HIV) that were negative by standard 

mNGS. 

 

An additional strength of this study was the detection of pathogens not routinely diagnosed 

by CSF PCR, most notably the tick-borne pathogens Powassan virus (17), Borrelia 

burgdorferi, and Anaplasma phagocytophilum. These pathogens have increasing rates of 

human infection (41), particularly in the Northeast U.S., where this study was conducted. For 

Powassan virus, which is routinely diagnosed by serology, our findings illustrate the potential 

utility of nucleic-acid based screening. Interestingly, we detected the CSF presence of 

Anaplasma, which is not commonly considered to be a cause of CNS infection (42), although 

the related intracellular bacteria Ehrlichia chaffeensis can cause meningoencephalitis (43, 

44). Overall, the high number of subjects with tick-borne infection highlights the importance 

of conducting mNGS in diverse geographical regions for both diagnostic purposes and 

epidemiological studies. 

  

Among the 24 subjects in whom no diagnosis was achieved by routine clinical testing 

(“Unknown”), metagenomic sequencing detected potential pathogens in three (8%), a rate 
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similar to that of Wilson et al (13/159 = 8%) (18). It is possible that subjects in whom no 

pathogen nucleic acid was detected had a non-infectious syndrome or an infection with a low 

pathogen burden or short duration of replication. We reviewed the post-discharge clinical 

course in the subgroup and none were identified as having an infectious syndrome, signalling 

the likelihood that mNGS did not miss an actionable result.    

 

Our results highlight a few challenges associated with mNGS, particularly for infections with 

low titer or para-infectious complications.  For example, we report an equivocal mNGS result 

in a subject with HIV-1 who had a CSF HIV viral load of 469 copies/ml, a value close to the 

recently reported CSF limit of detection of 313 copies/ml for HIV-1 using mNGS (23). 

Additionally, mNGS results were negative in all four subjects with WNV, three of whom had 

clinical WNV PCR tests from CSF performed, which were also negative. These results 

support other studies showing that WNV nucleic acid is usually undetectable in CSF by 

clinical PCR (23, 45) or mNGS (18), though it may be observed in immunocompromised 

subjects (15, 45–48). Similarly, CSF mycoplasma nucleic acid was not detected clinically or 

by mNGS from three subjects with positive mycoplasma serology, supporting interpretations 

that CNS complications of mycoplasma infections likely reflect a para-infectious antibody-

mediated response, rather than direct infection (49).  

 

While we investigated specific atypical bacteria of interest (Borrelia, Anaplasma, 

Mycoplasma spp.), our study focused on viruses because they are the most common pathogen 

in CNS infection (4, 5, 24, 25), bacteria and fungi often require different laboratory methods 

for processing and nucleic acid extraction (50), bacterial infections are associated with 

greater pleocytosis and therefore higher levels of host background (23), and the analysis of 

viruses is more tractable given that mNGS (50) commonly detects bacterial reads (e.g., P. 

aeruginosa, E. coli) as background from skin and reagents (50). As this was not a clinical 

validation study, we focused on the practical application of mNGS in a defined cohort, rather 

than general diagnostic test performance (21, 23). We adhered to strict practices to minimize 

contamination but we did not conduct this research study in a Clinical Laboratory 

Improvement Amendments (CLIA)-certified laboratory (22), allowing us flexibility in 

iterative testing and refinement of methods. Because this study was conducted primarily 

using clinical excess samples, many of which had undergone multiple prior freeze-thaw 

cycles for clinical testing, it is also possible that some infections were missed due to nucleic 
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acid degradation prior to mNGS, which would be solved if clinical processing for mNGS is 

standardized (50).  

 

Conclusions 

Overall, our results highlight several important benefits of mNGS, including faster turn-

around times than serology (17), recovery of pathogen genomic data, and reducing the 

dependence on test-specific diagnostics. However, our results among subjects with unknown 

etiology of disease suggest that the addition of mNGS to standard clinical testing will lead to 

relatively few additional diagnoses, underscoring the challenge of identifying an etiology in 

these devastating clinical syndromes. One potential strategy for incorporating mNGS into 

clinical diagnostic workflows would be wide implementation early in the diagnostic workup 

to capitalize on one-step detection of common pathogens, potentially sparing subjects 

unnecessary tests and reducing overall cost. An alternative would be to reserve this 

specialized technique for subjects with a high pre-test probability of infection (e.g., 

immunocompromised). Determining how to best utilize mNGS in clinical practice will 

require evaluation of these factors as well as the cost and logistics of implementation (51, 

52). Currently, it is prudent to employ diagnostic mNGS through close communication 

between clinicians and mNGS experts (18) to evaluate the plausibility of pathogens 

identified. This is especially important considering background reads and contamination, the 

essential limitation that mNGS only detects infections with circulating pathogen nucleic acid, 

and our still-evolving understanding of mNGS test characteristics. Results from this study 

will inform ongoing efforts to transition the much-needed and promising technique of mNGS 

from a research tool to a clinical test used in the routine care of patients with suspected CNS 

infection. 
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Figure 1. Overview of methods for subject selection and mNGS  

Enrollment (A), laboratory methods (B), and analysis methods (C) are shown. Enhanced 

laboratory methods for methylated DNA depletion and hybrid capture (dashed lines) were 

included for a subset of the samples as shown. Abbreviations: CSF,  cerebrospinal fluid; 

WBC, white blood cells; cDNA, complementary DNA; µl, microliter 

 

Figure 2. Number of infectious disease tests ordered and lengths of stay among subjects 

Distributions showing the number of infectious disease (ID) related tests ordered per subject, 

stratified by clinical diagnosis category.  ID tests were counted if ordered between hospital 

admission day one and hospital discharge.  Box plots with horizontal bars represent medians 

and interquartile ranges for ID tests. Diamonds represent data points greater than 1.5 IQR 

(A).  Scatter plot showing the number of ID tests versus length of stay per subject.  Colors 

indicate clinical diagnosis category. LOS correlated with the number of total ID tests ordered 

(Spearman’s 𝜌 = 0·65, p<0·01). The final clinical diagnosis for viral pathogens is stated for 

cases whose number of ID tests or LOS was an outlier above the 3rd quartile (B).    

 

Figure 3. Viral taxa identified in cerebrospinal fluid using mNGS with or without 

enhanced methods 

Heatmap shows viral taxa identified in each sample. Rows are viral taxa, and columns are 

samples, some with enhanced sequencing methods (HC and/or MDD). Only classifications 

with over 100 unique kmers, at least 1 BLAST confirmed read, and manually reviewed as 

non-contaminant are shown. Rows are grouped by RNA viruses (top section) or DNA viruses 

(bottom section). Color intensity corresponds to the RPM of the taxa. Red boxes correspond 

to detection in RNA libraries while blue boxes correspond to detection in DNA libraries. 

Some DNA viruses were detected in RNA libraries (e.g. adenovirus in M121). Gray shaded 

columns represent samples that did not undergo  DNA or RNA sequencing. Samples in which 

a contaminant were found are included here as blank columns, and the contaminants are 

shown in Supplementary Figure 4. Stars represent the clinical diagnosis. Yellow bars indicate 

the CSF nucleated cell count for each subject. The four groupings of columns from top left to 

bottom right correspond to infections diagnosed with a positive PCR, infections diagnosed by 

non-molecular techniques, subjects with unknown etiology, and negative controls including 

extracted water. 

 

Figure 4. Enhanced methods for mNGS 
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Comparison of specific viral abundances among the non-computationally depleted reports for 

HC, MDD, and HC+MDD for RNA samples (orange) and DNA samples (blue) (A). Hybrid 

capture improved overall coverage for DNA and RNA viruses such as EBV (B), Enterovirus 

(C), and JC polyomavirus 2 (D). Methylated DNA depletion improved coverage for some 

DNA viruses such as JC polyomavirus 2 (panel D) but not others such as EBV, which utilizes 

host methylation in its life cycle (B). 

 

Supplementary Figure 1. Computational processing workflow 

Sequencing reads first underwent universal quality control, human depletion (via stringent 

criteria of >20% kmers within the read classifying specifically to human taxid), and de-

duplication (A). These reads were assembled into contigs, and >600bp contigs were 

BLASTed to recover strong reference matches for long contigs (B). These were used as a 

”negative controls” depletion database, after which remaining reads were classified via 

comprehensive Krakenuniq and Kaiju databases. Viral hits were validated using BLASTn. 

 

Supplementary Figure 2. Correlations between length of hospitalization and diagnostic 

testing ordered, stratified by clinical diagnosis. 

Box plots show median length of stay (LOS; horizontal line) and whiskers indicate 1st and 

3rd quartile. Dots indicate a LOS greater than 1.5*Interquartile range. There were no 

significant differences in LOS between clinical diagnosis groups (A). Scatter plot showing 

the number of CSF tests versus LOS (B) and number of PCR tests versus LOS (C).  Colors 

indicate clinical diagnosis category.  LOS moderately correlated with the number of total ID 

tests ordered (Spearman’s 𝜌 = 0·65, p<0·01; Figure 2B), with number of tests ordered from 

CSF only (Spearman’s 𝜌 = 0·46, p<0·01; Supplementary Figure 2B)  

 

Supplementary Figure 3. Sequencing metrics for various stages of the computational 

pipeline  

The total number of reads in each sequencing library from raw de-multiplexed reads through 

the stages of quality control/trimming, human depletion, deduplication, and negative 

depletion (A). The distribution of the percentage of reads retained after each incremental step 

for all samples (C). Comparison of human abundance for each subject between routine, 

hybrid capture (HC), methylated DNA depletion (MDD), and hybrid capture plus methylated 

DNA depletion (HC+MDD) on DNA samples (B). Comparison for RNA (D).  
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Supplementary Figure 4: Unfiltered metagenomic classifications including 

contaminants 

Heatmap shows viral taxa identified in each sample type. Compared to Figure 3, this Figure 

shows all classified taxa without manually screening out contaminants. Rows are viral taxa, 

and columns are sample types, some with enhanced sequencing methods (HC and/or MDD). 

Only classifications with over 100 unique kmers, and at least 1 BLAST confirmed read are 

shown. Rows are grouped by whether they are RNA viruses vs DNA viruses (top vs bottom 

section). Color intensity corresponds to the RPM of the taxa. Red boxes correspond to 

detection in RNA libraries while blue boxes correspond to detection in DNA libraries. Stars 

represent the clinical diagnosis. Gray shaded columns represent samples that did not undergo 

DNA or RNA sequencing. The yellow bars indicate nucleated cell count in the CSF for each 

subject. The four groupings of columns from top left to bottom right correspond to infections 

diagnosed with a positive PCR, infections diagnosed by non-molecular techniques, subjects 

with unknown etiology, and negative controls including water. 

 

Supplementary Figure 5. Results of HSV-2 and HIV-1 specific PCR 

Amplification curve analysis demonstrated that CSF from subject M029 (blue, positive 

control) amplified in three out of three replicates (mean Ct = 23.8), consistent with positive 

mNGS results for HSV-2. CSF from subject M132 (gray) amplified in only one out of three 

replicates (Ct = 39.8); correspondingly, no HSV-2 reads were detected by mNGS. There was 

no amplification from the negative control (red) (A). Melting curve analysis demonstrated 

consistent curves across all positive wells(B). Amplification curve analysis demonstrated that 

CSF from subject M061 (purple, positive control) amplified in three out of three replicates 

(mean Ct = 25.2), consistent with positive mNGS results for HIV-1. CSF from subjects M051 

(blue) and M010 (gray) amplified at high Ct values, similar to the negative control (red) (C). 

Melting curve analysis demonstrated that only one replicate from M051 melted in a pattern 

consistent with the positive controls; the other positive wells melted at lower temperatures, 

suggestive of nonspecific amplification or primer-dimerization (D).  Gel electrophoresis 

results from PCR products demonstrate a band of the expected size for subject M061 

(positive control) and a faint band of the expected size for subject M051, but not M010 or the 

negative control (E). 

 

Supplementary Figure 6. Enterovirus phylogeny 
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Enterovirus genomes assembled from subjects in this study (red) were aligned with 

representative reference sequences for each subtype within the enterovirus B species (blue). 

This allowed classification of viral subtypes as Coxsackie B4 for M007 and echovirus 30 for 

M072, M108, and M126. Interestingly, viruses from M108 and M126, who were admitted 

approximately one month apart from one another and had no known epidemiological links, 

differed by only 0.6% (42 nucleotides), suggesting a common local circulating strain. 

Abbreviations: EV = enterovirus; Echo = echovirus; Cox = coxsackievirus. 

 

Supplementary Figure 7. Clinical course, laboratory findings and mNGS for subjects 

diagnosed with Varicella Zoster Virus 

Eight subjects were diagnosed clinically with varicella zoster virus (VZV)-related 

neurological diseases.  Cerebrospinal fluid (CSF) metagenomic next generation sequencing 

(mNGS) was positive in three cases of VZV meningoencephalitis (red bar), and negative for 

the other five subjects.  Positive cases had acute onset of symptoms and no prior antiviral 

treatment or minimal exposure (treatment and symptoms bars). CSF white blood cells at time 

of clinical VZV testing and mNGS VZV results are shown.     

 

Supplementary Figure 8: Detection of atypical bacteria 

Heatmap shows the recovery of sequencing reads for a subset of atypical bacteria. Only 

samples classified with over 100 unique kmers, and at least 1 BLAST confirmed read are 

shown. Color intensity corresponds to RPM in DNA samples. 
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Figure 2. Number of infectious disease tests ordered and lengths of stay among subjects
Distributions showing the number of infectious disease (ID) related tests ordered per subject, stratified by clinical diagnosis category.  ID tests were counted if 
ordered between hospital admission day one and hospital discharge.  Box plots with horizontal bars represent medians and interquartile ranges for ID tests.  Dia-
monds represent data points greater than 1.5 IQR (A).  Scatter plot showing the number of ID tests versus length of stay per subject.  Colors indicate clinical diagno-
sis category. LOS correlated with the number of total ID tests ordered (Spearman’s rho = 0·65, p<0·01). The final clinical diagnosis for viral pathogens is stated for 
cases whose number of ID tests or LOS was an outlier above the 3rd quartile (B).   
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Figure 3. Viral taxa identified in cerebrospinal fluid using mNG with or without enhanced methods
Heatmap shows viral taxa identified in each sample. Rows are viral taxa, and columns are samples, some with enhanced sequencing methods (HC and/or MDD). 
Only classifications with over 100 unique kmers, at least 1 BLAST confirmed read, and manually reviewed as non-contaminant are shown. Rows are grouped by RNA 
viruses (top section) or DNA viruses (bottom section). Color intensity corresponds to the RPM of the taxa. Red boxes correspond to detection in RNA libraries while 
blue boxes correspond to detection in DNA libraries. Some DNA viruses were detected in RNA libraries (e.g. adenovirus in M121). Gray shaded columns represent 
samples that did not undergo  DNA or RNA sequencing. Samples in which a contaminant were found are included here as blank columns, and the contaminants are 
shown in Supplementary Figure 4. Stars represent the clinical diagnosis. Yellow bars indicate the CSF nucleated cell count for each subject. The four groupings of 
columns from top left to bottom right correspond to infections diagnosed with a positive PCR, infections diagnosed by non-molecular techniques, subjects with 
unknown etiology, and negative controls including extracted water.
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Figure 4. Enhanced methods for Metagenomic Next Generation Sequencing
Comparison of specific viral abundances among the non-computationally depleted reports for HC, MDD, and HC+MDD for RNA samples (orange) and DNA samples 
(blue) (A). Hybrid capture improved overall coverage for DNA and RNA viruses such as EBV (B), Enterovirus (C), and JC polyomavirus 2 (D). Methylated DNA deple-
tion improved coverage for some DNA viruses such as JC polyomavirus 2 (panel D) but not others such as EBV, which utilizes host methylation in its life cycle (B).
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Table 1: Clinical Characteristics of Enrolled Subjects Stratified by Diagnostic Groups

Demographics Overall (n=68)  Infection, CSF PCR+ (n=12) Infection, other (n=25) Alternative Diagnosis (n=7) Unknown (n=24)

   Age (median [IQR]) 58.5 [39, 72.3] 57.5 [39, 67.3] 61 [43, 72] 73 [37.5, 77] 57.5 [38, 71]

   Male Gender (%) 43 (63) 5 (42) 19 (76) 6 (86) 13 (54)

   Immunocompetent (%) 43 (63) 7 (58) 17 (68) 5 (71) 14 (58)

   Length of Stay (median [min, max]) 8 [2, 51] 4.5 [2, 51] 9 [3, 51] 12 [3, 30] 7 [5, 22]

Race, n (%)

   White 57 (84) 10 (83.3) 21 (84) 6 (85.7) 20 (83.3)

   Black or African American 2 (3) 1 (8) 0 (0) 1 (14) 0 (0)

Symptom Onset to LP, n (%)

   Acute (0-3 days) 17 (25) 2 (16.7) 7 (28) 1 (14.3) 7 (29.2)

   Early Subacute (4-7 days) 12 (17.6) 5 (41.7) 3 (12) 1 (14.3) 3 (12.5)

   Late Subacute (8-30 days) 30 (44.1) 3 (25) 14 (56) 2 (28.6) 11 (45.8)

   Chronic (>30 days) 9 (13.2) 2 (16.7) 1 (4) 3 (42.9) 3 (12.5)

Symptoms and Signs During Hospitalization, n (%) 

Altered Mental Status 38 (56) 7 (58.3) 14 (56) 5 (71.4) 12 (50)

Photophobia 16 (24) 3 (25) 4 (16) 2 (28.6) 7 (29.2)

Neck Stiffness 18 (27) 2 (16.7) 6 (24) 2 (28.6) 8 (33.3)

Tmax (°C) (median [IQR]) 38.1 [37.4, 39] 37.8 [37.4, 38.1] 38.1 [37.6, 38.9] 37.7 [37.6, 39] 38.4 [37.4, 39.2]

Fever (Max ≥	38°C) 38 (56) 6 (50) 14 (56) 3 (42.9) 15 (62.5)

Laboratory Data, median [IQR]

   Hematology: White Blood Cell 8.6 [7.4, 10.2] 8.8 [8.1, 9.6] 7.84 [6.5, 9.3] 8.7 [8.2, 9.7] 9.6 [7.5, 10.9]

   CSF: White Blood Cell 80.5 [16.8, 131.5] 105.5 [35.5, 337] 47 [14, 105] 17 [10, 25.5] 98.5 [40.5, 133.5]

   CSF: Total Protein 70.5 [50, 117] 51.5 [39.8, 111] 65 [55, 117] 69 [44.5, 92.5] 78.5 [55, 120]

   CSF: Glucose 62 [54, 73.5] 67.5 [55, 82] 62 [55, 69] 60 [55, 64] 60 [52, 73.5]

   Infectious Disease Tests Ordered (median [min, max]) 19 [6, 62] 12 [6, 56] 25 [6, 62] 26 [10, 57] 22.5 [6, 48]

Admission Service, n (%)

   Medicine Floor/ICU 21 (31) 4 (33.3) 9 (36) 0 (0) 8 (33.3)

   Neurology Floor/ICU 37 (54) 6 (50) 13 (52) 7 (100) 11 (45.8)

   Other 10 (15) 2 (16.7) 3 (12) 0 (0) 5 (20.8)

Admission to ICU During Hospitalization 20 (29) 3 (25) 9 (36) 3 (42.9) 5 (20.8)

Admission Month, n (%)

   December 1 - February 28 11 (16) 2 (16.7) 4 (16) 1 (14.3) 4 (16.7)

   March 1 - May 31 14 (21) 3 (25) 5 (20) 2 (28.6) 4 (16.7)

   June 1 - August 31 19 (28) 3 (25) 4 (16) 3 (42.9) 9 (37.5)

   September 1 - November 30 24 (35) 4 (33.3) 12 (48) 1 (14.3) 7 (29.2)

Post-Discharge, n  (%)
   Home

39 (57) 5 (41.7) 12 (48) 3 (42.9) 19 (79.2)   Rehabilitation, Long-term  

   Acute Care, or Skilled Nursing Facility 25 (37) 5 (41.7) 12 (48) 3 (42.9) 5 (20.8)

   Death 4 (6) 2 (16.7) 1 (4) 1 (14.3) 0 (0)

Abbreviations:  CSF, cerebrospinal fluid; IQR, interquartile range; PCR+, positive polymerase chain reaction 
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