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Abstract 19 

The broad application of large-scale single-cell RNA profiling in plants has been restricted by the 20 

prerequisite of protoplasting. We recently found that the Arabidopsis nucleus contains abundant 21 

polyadenylated mRNAs, many of which are incompletely spliced. To capture the isoform 22 

information, we combined 10x Genomics and Nanopore long-read sequencing to develop a 23 

protoplasting-free full-length single-nucleus RNA profiling method in plants. Our results 24 

demonstrated using Arabidopsis root that nuclear mRNAs faithfully retain cell identity information, 25 

and single-molecule full-length RNA sequencing could further improve cell type identification by 26 

revealing splicing status and alternative polyadenylation at single-cell level. 27 

 28 
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 30 

Background 31 

High-throughput single-cell transcriptome studies have thrived in animal and human research in 32 

recent years[1-5]. However, despite successful single-cell characterization at a relatively low scale 33 

in maize developing germ cells[6] and rice mesophyll cells[7] using capillary-based approaches[8], 34 

only a handful of large-scale single-cell RNA studies using high-throughput platforms such as 10x 35 

Genomics or Drop-seq[9] have been published in plants[10], all of which profiled protoplasts 36 

generated from the root of Arabidopsis[11-17]. A major reason for this narrow focus of tissue type 37 

is that plant cells are naturally confined by cell walls, and protoplasting is required to release 38 
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individual cells – a procedure that is thoroughly tested for Arabidopsis roots[18-20] but remains 39 

to be difficult or impractical in many other tissues or species. Moreover, generating protoplasts 40 

from all cells uniformly is challenging given the complexity of plant tissues, and the enzymatic 41 

digestion and subsequent cleanup process during protoplast isolation may trigger the stress 42 

response and influence the transcriptome. Therefore, a protoplasting-free method is urgently 43 

needed to broaden the application of large-scale single-cell analysis in plants. 44 

 45 

We recently characterized full-length nascent RNAs in Arabidopsis and unexpectedly found a 46 

large number of polyadenylated mRNAs that are tightly associated with chromatin[21]. Since it is 47 

considerably easier and more widely applicable to perform nuclei isolation on various plant tissues 48 

than protoplasting, we set out to test if the polyadenylated RNAs in a single nucleus are sufficient 49 

to convey information on cell identity using the 10x Genomics high-throughput single-cell 50 

platform. Besides the standard Illumina short-read library which primarily captures abundance 51 

information, long-read sequencing has recently been incorporated into single-cell studies [22-24]. 52 

To access the large number of intron-containing RNAs in plant nuclei, we also constructed a 53 

Nanopore-based long-read library and developed a bioinformatic pipeline named “snuupy” (single 54 

nucleus utility in python) to characterize mRNA isoforms in each nucleus (Figure 1a, 55 

Supplemental Figure 1). This long-read single-nucleus strategy would enable plant biologists to 56 

bypass protoplasting, study RNA isoforms derived from alternative splicing and alternative 57 
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polyadenylation (APA) at the single-cell level, and provides additional dimensions of 58 

transcriptome complexity that could potentially further improve clustering of different cell types.  59 

 60 

Results and discussion 61 

Here, we chose to use the Arabidopsis root to validate the effectiveness of our protoplasting-free 62 

single-nuclei RNA sequencing approach because of the well-studied cell types[25] and the rich 63 

resource of single-cell data[11-16] of this tissue. We directly isolated nuclei by sorting from 64 

homogenized root tips of 10-day-old Arabidopsis seedlings without protoplasting (Supplemental 65 

Figure 2). The nuclei were fed to the 10x Genomics Chromium platform to obtain full-length 66 

cDNA templates labeled with nucleus-specific barcodes, which are subsequently divided into two 67 

equal parts and used for constructing Illumina short-read and Nanopore long-read libraries, 68 

respectively (Figure 1a). 69 

 70 

From the Illumina library, we obtained a total of 1,186 single-nucleus transcriptomes covering 71 

18,913 genes, with median genes/nucleus at 810 and median UMIs/nucleus at 1131. It is worth 72 

noting that the proportion of intron-containing mRNAs is extremely high in plant nucleus - 54% 73 

compared to less than 2% in total RNAs[26] (Figure 1b). After generating the cell-gene abundance 74 

matrix from Illumina data, we used the Scanorama algorithm[27] to compare our dataset with 75 

several recently published root single-cell datasets from protoplasts[11, 12, 14-16]. The expression 76 
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abundance matrix from our single-nucleus dataset closely resembles the protoplasting-based 77 

single-cell dataset generated from the same tissue (10-days seedling, 0.5 mm primary root tips)[15] 78 

(Supplemental Figure 3). Next, we utilized an unbiased graph-based clustering method Louvain[28] 79 

and identified 14 distinct cell clusters (Figure 1c). We then applied a set of cell type-specific 80 

marker genes provided in a recent massive single-cell study of Arabidopsis roots[17] to annotate 81 

each cluster (See Methods, Supplemental Table 1). We were able to assign cell types to all 14 82 

clusters and identified 10 major root cell types previously reported (Figure 1c, Supplemental 83 

Figure 4), with the signature transcripts for each cell type enriched in the corresponding cluster 84 

(Supplemental Figure 5, Supplemental Figure 6). Consistent with previous reports[11-16], we also 85 

noticed that some cell types from our result are composed of multiple clusters, such as Stem Cell 86 

Niche (cluster 1, 4 and 12), mature Non-hair (cluster 2 and 6), Endodermis (cluster 5 and 8) (Figure 87 

1c), demonstrating additional heterogeneity (subcell types) within cell types. Moreover, we found 88 

the exact same subcell type marker genes of endodermis are enriched in each of its corresponding 89 

subcell types as shown in Zhang et al.[15] (Supplemental Figure 7), demonstrating the robustness 90 

of our single-nucleus data. Taken together, we demonstrated that transcriptomes of single nucleus 91 

are sufficient for cell type identification, and can be used as a reliable alternative to protoplasts. 92 

 93 

As to the Nanopore data analysis, a key challenge is that the relatively low sequencing accuracy 94 

of Nanopore (~95% per base) makes it difficult to correctly recognize the cell barcodes and UMI 95 
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information on each Nanopore read. To solve this problem, Lebrigand et al. developed a method 96 

named Sicelore to use Illumina short reads generated from the same cDNA library as the guide to 97 

allocate Nanopore reads [22]. Sicelore searches for both polyA and adapter sequence and define 98 

the region between these two as the potential barcode and UMI. However, this algorithm relies on 99 

the recognition of polyA tail sequence generated by the Nanopore basecalling software, which 100 

tends to severely underestimate the length of polyA tail [29]. We tried to further improve Sicelore 101 

by developing a polyA independent algorithm (named snuupy), which searches for cell barcodes 102 

and UMIs in the unmapped region of Nanopore reads (See Methods and Supplemental Figure 1, 103 

Supplemental Figure 8a). As the result, snuupy recovers 20% more reads from our Nanopore data 104 

compared to using Sicelore [22] (Supplemental Figure 8b). After snuupy processing, we obtained 105 

1,169 long-read single-nucleus transcriptomes from Nanopore data (compared to the 1,186 from 106 

Illumina data). The median UMI counts per nucleus (729) and the median gene counts per nucleus 107 

(563) from Nanopore data are ~64% and ~70% of the Illumina count, respectively, and highly 108 

consistent in all nuclei (Figure 1d). The clustering result using Nanopore abundance matrix closely 109 

resembles the one generated by Illumina data (Figure 1e, Figure 1f), suggesting that Nanopore data 110 

itself is sufficient for cell-type classification, consistent with a recent large-scale single-cell 111 

analysis in human and mouse cells performed entirely with Nanopore data[22, 23]. 112 

 113 
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The single-nucleus long-read Nanopore library provides isoform-level information such as 114 

splicing and APA, compared to Illumina library which only captures abundance information of 115 

transcripts. Therefore, we generated two additional isoform matrices to track splicing and APA in 116 

single nucleus, respectively (Figure 2a and Supplemental Figure 9), and combined them with the 117 

Illumina abundance matrix for a multilayer clustering, to test if these extra layers of information 118 

could improve cell type classification. Indeed, we found that the original cluster 2 (Mature Non-119 

hair) and cluster 10 (Cortex) from Illumina data (Figure 1c) can be further separated into two 120 

subcell type clusters after the multilayer clustering (Figure 2a). As an example, from the Illumina 121 

data, transcripts of AT3G19010 are present in both subcell type 2.1 and 2.2 (Figure 2b and 2c), 122 

while the Nanopore data revealed a large difference at the splicing level of this gene between the 123 

two sub-clusters, with the second intron largely unspliced in subcell type 2.2 (Figure 2d). It is 124 

worth noting that, JAZ7, the top1 enriched gene in cluster 2.2 (Figure 2e), can regulate splicing 125 

during jasmonate response [30], implying a fascinating potential of cell-type specific regulation of 126 

splicing that could be investigated in the future.  127 

 128 

Conclusions 129 

According to previous reports in the animal system, especially for neurons and frozen materials, 130 

single nucleus generates comparable RNA to single cell and establishes a robust transcriptome 131 

atlas[31-34]. As a proof-of-concept demonstration in plant, our results showed that protoplasting-132 
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free large-scale single-nucleus sequencing is sufficient for cell type classification and marker gene 133 

identification in Arabidopsis roots. As we are preparing this manuscript, several groups have also 134 

recently adopted the nuclei-based protoplasting-free strategy independently to investigate various 135 

plant tissues[35-39]. Eliminating protoplasting as a prerequisite would enable large-scale single-136 

cell profiling on a wide range of tissues and plant species. Our method uniquely combined 137 

Nanopore-based full-length RNA sequencing method with single-nuclei sequencing to capture 138 

isoform diversity at single-nucleus level, which can facilitate cell type classification by providing 139 

extra layers of information in addition to abundance. 140 

 141 

Methods 142 

Nuclei isolation from root tip of Arabidopsis 143 

The wild-type Arabidopsis seedlings (Col-0) were grown on 1/2 MS plates at 22 ℃ (16 h light/8 144 

h dark) for 10 days before harvest. The root tip region (5 mm) of seedlings were cut and transferred 145 

immediately into a 1.5 ml RNase-free Eppendorf tube kept in liquid nitrogen and were ground into 146 

fine powder by a 1000 μl pipette tip in the tube. The powder was then dissolved in 300 μl ice-cold 147 

Extraction Buffer (EB) - 0.4 M sucrose, 10 mM Tris-HCl pH 8.0, 10 mM MgCl2, 0.2% (w/v) 148 

Triton X-100, 1 mM dithiothreitol (DTT), 1× protease inhibitor (Roche), 0.4 U/μl RNase inhibitor 149 

(RNaseOUT, Thermo Fisher Scientific). Nonionic surfactant Triton X-100 is used to release nuclei, 150 

and avoid aggregation during FACS[40]. After gentle vertexing and inversion, the homogenate 151 
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was filtered through a 20 μm cell strainer into a new tube. Another 400 μl EB was added to the 152 

strainer to wash the remaining nuclei. After centrifugation at 4 ℃, 2000 g for 5 min, the 153 

supernatant was removed carefully to avoid RNA contaminants from the cytoplasmic fraction. The 154 

pellet was washed twice at 4 ℃, 2000 g, 5 min with 1 ml EB, and then resuspended in 500 μl EB. 155 

For sorting, the nuclei were stained with 4,6-Diamidino-2-phenylindole (DAPI) and loaded into a 156 

flow cytometer with a 70 μm nozzle. 1 ml EB was used as the collection buffer. A total of 40,000 157 

nuclei were sorted based on the DAPI signal and the nuclear size. To avoid aggregation, the sorted 158 

nuclei were pelleted at 4 ℃, 2000 g, 5 min, and then resuspended in 100 μl PBST buffer (1× PBS 159 

with a low concentration of 0.025% Triton X-100). After checking the quality of nuclei and 160 

counting under a microscope using the DAPI channel, 5000 nuclei were transferred into a new 161 

tube with 500 μl PBST buffer and centrifuged at 4 ℃, 2000 g, 5 min. Then the pellet was 162 

resuspended in 20 μl PBST buffer. 163 

 164 

Single nucleus RNA-seq library construction for Illumina and Nanopore sequencing 165 

Libraries were constructed according to the standard 10x Genomics protocol (Single Cell 3’ 166 

Reagent Kits v2 User Guide) with modifications to accommodate Nanopore long-read sequencing. 167 

Briefly, nuclei suspension from the previous step (~5000 nuclei) were loaded onto the 10x 168 

Genomics ChIP, and libraries were made using a 10x Chromium Single Cell 3' Solution V2 kit. 169 

To obtain full-length cDNA, we extend the elongation time during cDNA amplification from the 170 

standard 1 min to 2 minutes. Half of the cDNA template was used to construct Illumina library 171 
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according to the manufacturer’s instruction and sequenced with Illumina NavoSeq (Read1:28 172 

bases + Read2:150 bases); the other half of the template was used to make Nanopore library using 173 

the Oxford Nanopore LSK-109 kit and sequenced on a MinION flow cell (R9.4.1). 174 

 175 

Illumina single-nuclei data analysis 176 

Raw reads were mapped to the TAIR10 reference genome by Cell Ranger (v3.1.0) using the default 177 

parameters. Cell Ranger (v3.1.0) only counts reads without introns; to accommodate the high 178 

proportion of intron-containing reads in our single-nucleus libraries, we removed the intron regions 179 

of each read and re-aligned reads to the reference genome by Cell Ranger to identify the nuclei 180 

barcode, UMI, and corresponding gene of each read (Supplemental Figure 1). For quality control 181 

purpose, genes expressed in less than three nuclei were discarded, and cells with gene counts more 182 

than 2300 or fewer than 350 were removed. The Illumina abundance matrix was subsequently 183 

analyzed using Scanpy package (v1.6.0)[41] with recommended parameters for normalization, 184 

log-transformation, and scaling. Then principal component analysis and Louvain algorithm were 185 

used on this abundance matrix for clustering. Next, we used the marker genes for different cell 186 

types identified in a massive single-cell root data [17] (Supplemental Table 1) to annotate the cell 187 

type of each cluster. We first calculate the cell score of each cell type for all cells based on the 188 

enrichment degree of a given marker gene set in a given cell, as previously described method [42]. 189 

If the highest score exceeds zero, the cell is assigned to the corresponding cell type; otherwise it 190 
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is assigned as unknown (Supplemental Figure 4a). Then each cluster was annotated as the cell type 191 

with the highest proportion (Supplemental Figure 4b), and we used developmental stage specific 192 

genes identified in the massive single-cell root data [17] (Supplemental Table 1) to further annotate 193 

the clusters resenting non-hair cells as either mature non-hair or elongating non-hair cells 194 

(Supplemental Figure 4c). 195 

Five previously published single-cell RNA-seq data of protoplasted Arabidopsis roots using 10x 196 

Genomics platform were collected from public databases[11, 12, 14-16]. We use Scanorama[27] 197 

to remove batch effects and calculate the alignment score between different datasets. 198 

 199 

Nanopore single-nuclei data processing and isoform analysis 200 

Raw Nanopore data were basecalled using Guppy (v3.6.0) with the parameters “--c 201 

dna_r9.4.1_450bps_hac.cfg --fast5_out”. The basecalled reads were mapped to the TAIR10 202 

genome by minimap2 (v2.17) with the parameters “-ax splice --secondary=no -uf --MD --sam-hit-203 

only”, and the multi-mapped reads as well as potential chimeric reads (either the 5’ or 3’ unmapped 204 

region is great than 150 nt) were filtered out. The nucleus barcodes and UMI sequences in 205 

Nanopore reads were extracted from the unmapped sequences of each read via aligning against all 206 

barcode/UMI combinations identified from the Illumina library made from the same full-length 207 

cDNA templates, a strategy inspired by the algorithm Sicelore[22]. To reduce search space, we 208 

divided the genome into non-overlapped 500-bp bins, and only matched the Illumina barcode/UMI 209 
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combinations from the bins overlapping or adjacent to the mapping genome region of specific 210 

Nanopore read (Supplemental Figure 6). To speed up the alignment process, we first used the 211 

heuristic algorithm Blastn (v2.10.0) to find potential seed regions with parameters “-word_size 7 212 

-gapopen 0 -gapextend 2 -penalty -1 -reward 1” and then re-aligned the seed regions by the more 213 

accurate Smith-Waterman local alignment algorithm. Our pipeline assigns the closest barcode-214 

UMI match (i.e. with minimal mismatch/gap) to each Nanopore read, allowing up to three base 215 

errors (mismatch/gap) for either barcode or UMI, and remove reads with multiple best matching 216 

barcode-UMIs. After the barcode and UMI assignment, the Nanopore reads with the same UMI 217 

were used to generate an error-corrected consensus sequence of the original RNA molecule by 218 

poaV2[43] and racon[44]. PAS isoform annotation and the intron splicing status of Nanopore read 219 

were determined as previously described[21, 45]. The resulted APA and splicing matrices for all 220 

nuclei were merged with Illumina abundance matrix and analyzed by Scanpy. 221 

The same Cell Ranger result is used as the input file for Sicelore. Except that the maximum edit 222 

distance during Barcode and Umi assignment is forcibly set to 3, the remaining parameters are the 223 

same as the official example (https://github.com/ucagenomix/sicelore/blob/master/quickrun.sh). 224 

 225 

Data and software Availability 226 

All data generated in this study were deposited in NCBI with accession PRJNA664874 227 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA664874). The snuupy package for single-228 
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nucleus Nanopore data processing can be accessed at https://github.com/ZhaiLab-229 

SUSTech/snuupy. 230 
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Figure 1. Protoplasting-free large-scale single-nucleus RNA-seq reveals the diverse cell types in Arabidopsis root.

a, Schematic diagram of protoplasting-free single-nucleus RNA-seq. b, Incompletely spliced and fully spliced fractions of the

Nanopore reads from our single-nucleus RNA library, compared with a previously published total RNA nanopore library[26]. c,

UMAP visualization of the root cell types clustered using Illumina single-nucleus data (upper panel), and cartoon illustration of

major cell types in Arabidopsis root tip (lower panel). d, Numbers of UMIs (left) and genes (right) detected in each nucleus from

the Illumina and Nanopore data. e, UMAP visualization of the root cell types clustered using abundance information from the

Nanopore single-nucleus data. The cell color is the same as in Figure 1c. f, UMAP visualization of the integration of two datasets.

The batch effect is removed by Scanorama. Alignment score is calculated by Scanorama[27] and in the range from 0 to 1. Higher

alignment score indicates higher similarity between a pair of datasets.
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Figure 2. Nanopore long read single-nucleus RNA-seq improves cell type identification. a, Multi-layer matrices combining

Illumina abundance matrix with Nanopore splicing and APA information improve cell type identification. b,c, Genome-browser plot

of Illumina reads(b) and Nanopore reads(c) aligned to gene AT3G19010. The second intron of AT3G1910 shows different splicing

patterns between Cluster 2.1 and Cluster 2.2. The red arrowhead indicates the second intron. Red bar at the 3’ end of Nanopore

reads (blue) indicates the Poly(A) tail. d, UMAP visualization shows the abundance distribution of AT3G19010 as well as the

differential splicing of the second intron between Cluster 2.1 and Cluster 2.2. e, The top 25 genes enriched in Cluster 2.2 are

ranked by enriched score compared to Cluster 2.1 (upper panel) and UMAP visualization shows the abundance distribution of the

most enriched gene JAZ7 (lower panel). The enriched score is calculated using rank_genes_groups function of Scanpy. The red

arrowhead indicates the most enriched gene in Cluster 2.2.
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Supplemental Figure 1. Schematic diagram of snuupy bioinformatic pipeline.
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Supplemental Figure 2. The sorted nuclei were observed under a microscopy with

DAPI staining. Bar = 20 μm.
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Supplemental Figure 3. Dataset generated by snRNA-seq is consistent with protoplast-based

scRNA-seq. a, Heatmap represents alignment score between the single-nucleus data and single-cell

datasets generated from 10x Genomics platform. Alignment score is calculated by Scanorama[27]. Higher

alignment score indicates higher similarity between a pair of datasets. b, Pairwise integration of three single

cell/nucleus datasets. The batch effect is removed by Scanorama. The expression matrix is downsampled to

the same dimension as the single-nucleus data.
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Supplemental Figure 4. Identification of clusters by a marker-gene-based method. We

calculate the cell score[41] for each cell based on type-specific genes[17]. Cells are classified as the

type with the highest cell score. a, UMAP visualization of the 1186 cells. Colors denote

corresponding cell types. b, Heatmap visualization of the proportion of cell types in each cluster. c,

UMAP visualization of the cells within cluster 2, cluster 6, cluster 14. The developmental stage

specific genes of non-hair cells are used to calculate the cell score and annotate each cell.
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Supplemental Figure 5. Violin plots showing the expression levels of previously reported cell type

specific marker genes in 14 clusters.
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Supplemental Figure 6. UMAP visualization of the representative cell-type marker genes for

each of the 14 cell clusters. The cell clusters and UMAP visualization are the same as those shown

in Figure 1c. Color intensity indicates the relative expression level.
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Supplemental Figure 7. UMAP visualization showing the abundances of representative

marker genes in two subcell types of endodermis. The protoplasting-free single-nucleus RNA-

seq data (a) can also accurately identify the subtypes as previously published protoplasting-based

single-cell RNA-seq data (b)[15].
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Supplemental Figure 8. Snuupy assigns cell barcodes and UMIs for Nanopore reads

according to the information from Illumina data. a, Snuupy uses mapping information to reduce

the search space as previously reported in Sicelore. b, Overlap between snuupy and Sicelore

allocated reads.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.397919doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397919


Supplemental Figure 9. Scheme for deriving the splicing and APA matrices from

Nanopore data.
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