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Abstract 27 

A high-quality, barley gene reference transcript dataset (BaRTv1.0), was used to quantify gene 28 
and transcript abundances from 22 RNA-seq experiments, covering 843 separate samples. 29 
Using the abundance data we developed a Barley Expression Database (EoRNA* – Expression 30 
of RNA) to underpin a visualisation tool that displays comparative gene and transcript 31 
abundance data on demand as transcripts per million (TPM) across all samples and all the genes. 32 
EoRNA provides gene and transcript models for all of the transcripts contained in BaRTV1.0, 33 
and these can be conveniently identified through either BaRT or HORVU gene names, or by 34 
direct BLAST of query sequences. Browsing the quantification data reveals cultivar, tissue and 35 
condition specific gene expression and shows changes in the proportions of individual 36 
transcripts that have arisen via alternative splicing. TPM values can be easily extracted to allow 37 
users to determine the statistical significance of observed transcript abundance variation among 38 
samples or perform meta analyses on multiple RNA-seq experiments. * Eòrna is the Scottish 39 
Gaelic word for Barley 40 
 41 

Background & Summary 42 

Barley is one our earliest domesticated crops and is used for food and processed as malt to 43 
produce beer and spirits. It is a widely studied crop model with abundant genetic resources that 44 
include diverse natural cultivated, wild and landrace collections, experimentally constructed 45 
populations, introgression and mutant lines.  Its robust diploid genetics are supported by 46 
numerous high-resolution linkage maps and fully sequenced reference and pan-genome 47 
sequences (1, 2, 3, 4, 5). Genomic diversity has contributed to barley being grown worldwide, 48 
producing harvestable yields under a broad range of environmental conditions and climates (1, 49 
4, 6). As a direct consequence, variation in gene expression contributes implicitly to its adaptive 50 
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response.  Plant gene expression constantly changes throughout the day, throughout plant 51 
development and responds to changing environmental conditions, providing a mechanism for 52 
different genotypes to react and adapt to both transient and chronic stresses (For example, 7, 8, 53 
9, 10, 11, 12, 13).  54 

Although the responses of individual genes to specific genetic, biological or environmental 55 
interventions are frequently described, whole transcriptome responses over multiple growth 56 
stages and conditions, and consequently the network of genes and transcripts involved in these 57 
responses, are largely unknown. As growth, morphology and physiology vary substantially 58 
among barley genotypes, either when individual genotypes are grown under different conditions 59 
or when different genotypes are grown under identical conditions, their transcriptomes reveal a 60 
landscape that is highly dynamic, adaptable and unique to the applied conditions (14, 15). This 61 
is not simply the product of the regulation of gene expression at the level of transcription. 62 
Differentially abundant precursor messenger RNAs (pre-mRNAs) may be further subjected to 63 
alternative splice site selection, forming an assembly of specific transcript isoforms. (12, 13, 64 
16, 17, 18). The cellular transcriptome is therefore comprised of transcripts derived from a 65 
combination of both transcriptional and post-transcriptional processes. 66 

A high confidence barley reference transcript dataset (BaRTv1.0) represented by 60,444 gene 67 
models and 177,240 transcript sequences are provided in a database 68 
(https://ics.hutton.ac.uk/barleyrtd/index.html) that positions the transcripts on the barley cv. 69 
Morex reference genome version 1 (19). The database is fully searchable using either BaRT or 70 
HORVU gene names from the Barley cv Morex pseudomolecules, by key word annotation or 71 
by BLAST sequence searches. The database provides best BLAST homologies of the longest 72 
transcript to Arabidopsis, rice and Brachypodium, and provides links to GO annotations and 73 
GO enrichment studies. The BaRTv1.0 reference transcript dataset (RTD) enables rapid and 74 
precise quantification using non-alignment bioinformatic tools such as Kallisto and Salmon 75 
from short-read RNA-seq data (20, 21). Levels of expression from these tools are measured in 76 
Transcripts per million (TPM) for a given BaRTv1.0 transcript (22).  77 

In summary, to highlight the utility of the barley RTD coupled to transcript quantification with 78 
Salmon, we quantified gene and transcript abundances from 22 separate RNA-seq studies, 79 
covering 843 samples from a broad range of different tissues, conditions and genotypes. Our 80 
aim was to allow rapid and intuitive access to the transcript quantification values of each of 81 
these RNA-seq studies without considering any experimental batch, sample or study variation 82 
and without making any statement about significant changes in gene expression across the 83 
different studies.  We make the resource available to the community via the EoRNA database 84 
web site (https://ics.hutton.ac.uk/eorna/index.html) to simplify and accelerate exploration of the 85 
abundance of target transcripts from individual or groups of genes. The numerical TPM data 86 
can be downloaded for further expression analysis or for meta-analysis of barley RNA-seq 87 
datasets to support investigations into transcriptional responses among tissues/organs or as a 88 
result of different interventions, allowing the identification of genes and transcripts commonly 89 
expressed across multiple studies (23, 24,  25, 26).  Intuitive transcript abundance plots 90 
graphically illustrate tissue and condition specific gene expression and alternative splicing.  91 

 92 

Methods 93 

Selected RNA-seq datasets and data processing. 94 
A total of 22 publicly available RNA-seq datasets consisting of 843 samples including replicates 95 
were downloaded from NCBI - Sequence Read Archive database 96 
(https://www.ncbi.nlm.nih.gov/sra/) to quantify against the barley RTD (BaRTv1.0) 97 
(Supplementary Table S1). All datasets were produced using Illumina platforms and were 98 
selected with mostly >90 bp and paired-end reads with a quality of q >=20. All raw data were 99 
processed using Trimmomatic-0.30 (27) using default settings to preserve a minimum Phred 100 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.24.395749doi: bioRxiv preprint 

https://ics.hutton.ac.uk/barleyrtd/index.html
https://ics.hutton.ac.uk/eorna/index.html
https://www.ncbi.nlm.nih.gov/sra/
https://doi.org/10.1101/2020.11.24.395749
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

score of Q20 over 60 bp. One of the samples (NOD1) was over-represented with respect to read 101 
numbers due to a repeat run being necessary and was therefore subsampled to 60 million reads. 102 
Read quality checks before and after trimming were performed using FastQC (fastqc_v0.11.5) 103 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  104 
 105 
Generation of the EoRNA database 106 
A database and website front-end were constructed to allow easy access to BaRTv1.0 transcripts 107 
and expression analyses using the LAMP configuration (Linux, Apache, mySQL, and Perl). 108 
Additional annotation was added to the transcripts by homology searching against the predicted 109 
peptides from rice (rice pseudo-peptides v 6.0; (28)) and from Arabidopsis thaliana (TAIR 110 
pseudo-peptides v 10, The Arabidopsis Information Resource) using BLASTX at an e-value 111 
cutoff of less than 1e-50 (29). The website https://ics.hutton.ac.uk/eorna/index.html allows 112 
users to interrogate data through an entry point via three methods: (i) a BLAST search of the 113 
reference barley assembly or the predicted transcripts; (ii) a keyword search of the derived rice 114 
and Arabidopsis thaliana BLAST annotation, and; (iii) a direct string search using the transcript, 115 
gene, or contig identifiers. To distinguish this set of predicted genes and transcripts from 116 
previously published ‘MLOC_’ and HORVU identifiers, genes were prefixed as ‘BART1_0-117 
u00000’ for the unpadded or ‘BART1_0-p00000’ for the padded QUASI version, with 118 
BART1_0-p00000.000 representing the individual transcript number. The RNA-seq TPM 119 
values are shown in interactive stacked bar plots produced with plotly R libraries 120 
(https://plotly.com/r/) and the TPM values are also available as a text file for each gene. The 121 
exon structures of the transcripts for each gene are shown in graphical form, and links to the 122 
transcripts themselves provides access to the transcript sequences in FASTA format. Each 123 
transcript has also been compared to the published set of predicted genes (HORVUs) to provide 124 
backwards compatibility. 125 
 126 
GO annotation 127 
Transcript sequences were translated to protein sequences using TransDecoder 128 
(https://github.com/TransDecoder/TransDecoder/wiki). Gene Ontology (GO) annotation was 129 
then determined by running all 60,444 genes in BaRTv1.0 through Protein ANNotation with Z-130 
score (PANNZER) (30. Koskinen et al., 2015).  GO annotations were based on predicted 131 
proteins with ORF >100 amino acids and orthologues found in the Uniprot database. Output 132 
annotations were placed in a lookup table with text descriptions about protein functionality. 133 

 134 

Data Records 135 

BaRTv1.0 and BaRTv1.0 – QUASI are available as .fasta and .GFF files and can be downloaded 136 
from https://ics.hutton.ac.uk/barleyrtd-new/downloads.html. An additional version of the RTD 137 
is available in the Zenodo repository (http://doi.org/10.5281/zenodo.3360434).  138 
The results matrix containing all the TPM values across all 843 samples for all 177,240 139 
BaRTv1.0 transcripts can be downloaded directly along with the metadata file from 140 
https://ics.hutton.ac.uk/eorna/download.html. An additional version of the results matrix and 141 
metadata file is available in the Zenodo repository (http://doi.org/10.5281/zenodo.4286079). To 142 
develop the plots and create the transcript abundance values (TPMs) publicly available 143 
sequences from the Sequence Read Archive (SRA) or European Nucleotide Archive (ENA) 144 
were used (accession numbers: PRJEB13621; PRJEB18276; PRJNA324116; PRJEB12540; 145 
PRJEB8748; PRJNA275710; PRJNA430281; PRJNA378582; PRJNA378723; PRJNA439267; 146 
PRJNA396950; PRJDB4754; PRJNA428086; PRJEB21740; PRJEB25969; PRJNA378334; 147 
PRJNA315041; PRJNA294716; PRJEB14349; PRJEB32063; PRJEB19243; PRJNA558196. 148 
Metadata on these datasets can be found in Supplementary Tables 1 and 2. 149 
 150 
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Technical Validation 151 

BaRTv1.0 database and expression plots. 152 
The BaRTv1.0 reference transcript dataset consists of 60,444 genes and 177,240 transcripts 153 
mapped to the cv. Morex pseudomolecules. To access the barley reference transcript dataset a 154 
public database and website front-end were constructed to allow researchers to download the 155 
reference transcript dataset and interrogate the data via a BLAST search, keyword search or 156 
string search using the BaRT or HORVU gene/transcript identifiers 157 
(https://ics.hutton.ac.uk/barleyrtd/index.html) (19). The transcripts are arranged as gene models 158 
and viewed through GBrowse. Transcript sequences are given in FASTA format and 159 
homologies of the longest transcripts are compared to Arabidopsis, Rice and Brachypodium. 160 
Until now, Salmon calculated TPM values for each gene across 16 different 161 
tissues/developmental stages in both graphic and tabular formats is presented. Since the initial 162 
publication, the BaRTV1.0 database has continued to evolve and we have established Gene 163 
Ontology (GO) annotation for 26,794 genes using Protein ANNotation with Z-score 164 
(PANNZER) (30. Koskinen et al., 2015) with text descriptions about protein functionality and 165 
provided a lookup table for download.  166 
 167 
EoRNA database - Quantification of multiple RNA-seq samples and expression plots. 168 
Establishing BaRTv1.0 has facilitated the precise quantification of RNA transcript abundance 169 
from any barley short-read RNA-seq dataset.  We used BaRTv1.0 to quantify transcript 170 
abundance and diversity observed in a collection of 22 Illumina short-read RNA-seq 171 
experiments, 18 of which were obtained from the short-read archive (SRA) and the remainder 172 
produced in-house.  Each RNA-seq experiment was given a label that contained the letter E 173 
(referring to external datasets) followed by a number or the letter I (internal datasets) followed 174 
by a number. The datasets contained a total of 843 samples and 3,762 Gbp of expressed 175 
sequences.  They come from both barley landraces and cultivars, an array of organs and tissues 176 
at different developmental stages, and plants/seedlings grown under a range of biotic and abiotic 177 
stresses (Supplementary Table S1 and S2).  Most RNA-seq datasets consisted of paired-end 178 
reads (90 - 150 bp in length) and were produced using Illumina HiSeq 2000, 2500, 4000 or 179 
HiSeq X instruments. Exceptions were the dataset from Golden Promise anthers and meiocytes, 180 
which contained over 2 billion paired end 35-76 bp reads. The raw RNA-seq data from all 181 
samples was trimmed and adapters removed using Trimmomatic and quality controlled using 182 
FastQC. TPM values were calculated individually for all 843 RNA-seq samples using Salmon 183 
(version Salmon-0.8.2) using BaRTv1.0-QUASI, a ‘padded’ version of BaRTv1.0 which has 184 
been shown to improve transcript quantification, as the reference transcript dataset (19. 185 
Rapazote-Flores et al., 2019). As BaRTv1.0 was assembled using the cv. Morex reference 186 
genome, we first assessed the mapping rates from all samples, including those from other 187 
genotypes. The Morex samples showed an average mapping rate of 94.39% (SD 8.18%) while 188 
the remaining samples, which consisted of 60 different barley genotypes showed a slightly 189 
reduced mapping rate of 92.32% (SD 4.93%) (Supplementary Table 3).  190 
Salmon estimates the relative abundance of different transcript isoforms in the form of 191 
transcripts per million (TPM), a commonly used normalization method computed using the 192 
library size, number of reads and the effective length of the transcript. (20, 21). The EoRNA 193 
data provides an opportunity to examine the effect of the normalisation procedure across many 194 
diverse samples. Regression analyses was used to explore the raw read counts and different 195 
versions of normalised counts by library size and effective length of the transcript. Good 196 
normalisation procedures will remove most of the dependency on these variables such that the 197 
output of regression analysis represented by the R-square value (which measures the percentage 198 
of variation accounted for) can be used to compare different normalisations. Here, an R-square 199 
value closer to zero indicates effective normalisation. For efficient calculation, we first reduced 200 
the number of transcripts by selecting those which had non-zero values in at least 80% of the 201 
samples. This left 32739 transcripts over the 843 samples and gave 27,598,977 values to study 202 
how different normalisation approaches accounted for variation between experiments. 203 
Regression analysis was used first to explore the relationship between raw read counts by library 204 
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size and length of the transcript, which gave an adjusted R-squared value of 1.28% indicating 205 
low predictive value within the dataset. Transposing variables to a log-scale increased the R-206 
square to 10.68%, which suggested a far stronger predictive value on this scale and shows that 207 
a large amount of variation in the raw counts can be removed by log-transforming. Replacing 208 
the log counts with normalised data using Salmon’s effective transcript length, which corrects 209 
for transcript length bias (20), reduced the adjusted R-square value to 0.09%. This compared to 210 
normalisation by RPKM (Reads Per Kilobase per Million and normalizes the raw read count by 211 
transcript length and sequencing depth) (adjusted R-square of 0.57%) or TPMs calculated by 212 
transcript length alone (adjusted R-square of 0.62%). In summary, the normalised TPM outputs 213 
from Salmon using an effective transcript length reduced variability such that most of the 214 
dependency on library size and transcript length was removed (Supplementary data 1; 215 
Supplementary Table 4).  216 
The normalised output TPM values from Salmon were collated and plotted using plotly R 217 
libraries (https://plotly.com/r/) to allow quick subjective and interactive comparisons in 218 
transcript abundance levels between the samples. The TPM values for each gene/plot are also 219 
given as a text file for download. We chose to plot the graphs as the TPM values without log 220 
scaling, to show the additive changes between the samples and replicates.   221 
 222 
Expression plot utility 223 
Stacked bar graph plots display the TPM values calculated by Salmon for all 60,444 genes in 224 
the database for all 843 samples, representing over 50 million plot points. The x-axis displays 225 
the 843 samples versus the y-axis which displays transcript abundance in each sample as TPM 226 
values (Figure 1). Each individual sample bar graph stacks the TPM values contributed by each 227 
gene transcript to permit simple visualisation of the differences in transcript abundances 228 
between different samples and helps identify the predominant transcript(s) for that gene. Each 229 
plot may be scanned interactively to activate a label that gives information on the RNA-seq 230 
experiment, sample run number, tissue and treatment for that sample (from the metadata table, 231 
Supplementary Table 2). Users can zoom in to focus on individual experiment and sample plots. 232 
Without processing the data or assigning any statistical significance to the graphs, the results 233 
presented allow the researcher to determine whether their gene(s) of interest are expressed in 234 
the different experiments and among samples within an experiment. Large changes in TPM 235 
abundances were observed between the samples for many genes. For example, BaRT1_u-31819 236 
showed altered gene expression in the root meristematic zone compared to the root elongation 237 
and maturation zones in the E1 dataset, which is further supported by expression in the root 238 
tissue in the I1 dataset (Figure 1).  239 
 240 

 241 
Figure 1. Variable expression between RNA-seq samples. The plot represents transcript 242 
abundances as transcripts per million (TPM) across 843 samples for BaRT1_0-u31919 243 
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(similarity to a small nuclear ribonucleoprotein family protein). Different colours represent 244 
different transcripts for that gene. Scanning over the plot gives a label describing cultivar, tissue, 245 
experimental condition (if available), replicate number and the short-read archive sequencing 246 
read number.   247 
 248 
Tissue specific expression 249 
The experimental panel of 22 RNA-seq datasets were from a broad range of cultivars, tissues, 250 
organs and biotic and abiotic conditions. The interactive plots enable the user to quickly identify 251 
potential candidate genes that show a high degree of tissue specificity. For example, BART1_0-252 
u49225 (with similarity to a UDP-Glycosyltransferase superfamily protein) was specifically 253 
and highly expressed to over 1,000 TPM in developing grain 15 days post anthesis (I1) and in 254 
developing barley spikes that contain developing grain (E20). Expression was segregating in 255 
hulless barley grain in recombinant inbred lines that were used to assess glucan content (E10). 256 
(Figure 2A).  BART1_0-u14427 was highly abundant only in tissues subjected to low 257 
temperature stress (E2 and I2) (Figure 2B) and BART1_0-u50915 is one of a number of barley 258 
Pathogenesis-related 1 protein genes that was induced to over 10,000 TPM in response to 259 
Cochliobolus sativus (E19) and Fusarium graminearum (E20) (Figure 2C). 260 
 261 

  262 
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Figure 2. Tissue and condition specific expression. A. BART1_0-u49225 specific expression in 263 
developing grain tissue used in experimental RNA-seq datasets E10, E20 and I1. B. BART1_0-264 
u14427 specific expression in low temperature stress RNA-seq datasets E2 and I2. C. 265 
BART1_0-u50915 specific expression in response to pathogen RNA-seq datasets E19 and E20. 266 
 267 
Confirmatory expression 268 
Interactive plots may be used to investigate the expression of genes that have been previously 269 
studied in a limited number of tissues/cultivars or using a different expression platform and 270 
consequently expands expression analysis across the range of tissues that are currently in 271 
EoRNA.  For example, we previously described the expression of INTERMEDIUM-C 272 
(BART1_0-u26546; HORVU4Hr1G007040), a modifier of lateral spikelet fertility in barley 273 
and an ortholog of the maize domestication gene TEOSINTE BRANCHED 1.  Microarray 274 
analysis of 15 tissues showed that transcript abundance was low with greatest expression in the 275 
developing inflorescence (31). The RNA-seq panel here confirmed low abundances for this 276 
gene across all the samples (<7.5 TPM), with greatest expression in shoot apices (E7); apical 277 
meristems (E13) and developing spikes at the awn primordium stage (E14) (Figure 3).  278 
  279 

  280 
Figure 3. Abundance levels of INTERMEDIUM-C (HvTB1) (BART1_0-u26546) across the 22 281 
RNA-seq experiments. E7 – Photoperiod response RNA-seq dataset from shoot apex; E13 - Six 282 
Rowed - VRS3 RNA-seq dataset from apical meristems; E14 - Floret development RNA-seq 283 
dataset from developing spikes at awn primordium stage. Abundances given in Transcripts per 284 
million (TPM). The bottom Panel shows zoomed-in regional views. 285 
 286 
Segregation expression 287 
The RNA-seq datasets consist of several experiments that contain mutant lines targeted to 288 
specific genes, recombinant inbred lines (RILs) and near isogenic lines (NILs). The expression 289 
of genes found at quantitative trait loci, or through genome-wide association studies show 290 
changes in gene expression at these loci between the parents and in the population. The seed 291 
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longevity experiment (E17) illustrated gene expression changes in RILs and NILs from the 292 
landraces L94 (short-lived seeds) and Cebada capa (long-lived seeds). QTL analysis identified 293 
three QTLs on 1H (SLQ1.1 to 1.3) and a single QTL on 2H (SLQ2). Gene expression analysis 294 
identified differentially expressed genes positioned within the SLQ1 and 2 regions (32). Using 295 
the interactive plots confirmed the barley population expression pattern of these differentially 296 
expressed genes. The plots show changes among the parental types retained in the recombinant 297 
inbred and near isogenic lines (Figure 4).  For example, BART1_0-u01011(MLOC_61374) is 298 
positioned within SLQ1.1 and showed low expression in Cebada capa and the NILs at SLQ1.1 299 
(Figure 4A) and BART1_0-u15865 (MLOC_73587) showed expression in Cebada capa that 300 
was absent in L94 and found expressed in SLQ2 NILs Figure 4B). The transcript abundances 301 
of these genes were shown in the context of the remaining 21 RNA-seq experiments tested.  302 
 303 

  304 
Figure 4. Abundance levels of differentially expressed genes at quantitative trait loci. Detailed 305 
abundances (TPM) are shown for a seed longevity experiment (E17) between parents (L94 and 306 
Cebada capa), recombinant inbred lines (RIL114) and near isogenic lines to the L94 parent and 307 
showing variation at QTLs SLQ1 and SLQ1-3. A. BART1_0-u01011(MLOC_61374) is located 308 
at SLQ1.1 and B. BART1_0-u15865 (MLOC_73587) is located at SLQ2. 309 
 310 
Gene targeted mutations 311 
Unless a mutation either specifically impacts sequences governing the expression of a target 312 
gene, or removes all or part of a gene by deletion, then the outcome of a mutation on observed 313 
transcript abundance may vary substantially, resulting in loss, reduced, maintained or increased 314 
transcript levels. The interactive plots allow researchers to observe rapidly and intuitively the 315 
effect of a mutation on the expression of a target gene and, based on the experimental design, 316 
the possible trans-acting effects on the expression of other genes. For example, experiment E19 317 
consists of a series of disease resistance tests on cv. Morex and a gamma irradiation induced 318 
Morex mutant (14-40) selected for its susceptibility to spot blotch (Bipolaris sorokiniana). The 319 
expression of BART1_0-u18601; HORVU3Hr1G019920 (glycine-rich protein) and BART1_0-320 
u41161; HORVU5Hr1G120850 (similarity to a long- chain-fatty-acid—CoA ligase 1) were 321 
knocked out in the mutant, which is clearly observed in the interactive plots (33) (Figure 5). 322 
 323 
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 324 

 325 
 326 
Figure 5. Expression knockout in a mutant background. The pattern of transcript abundances of 327 
two genes (BART1_0-u18601 and BART1_0-u4116) is shown across all the samples and given 328 
in Transcripts per million (TPM). Detailed transcript abundances are shown for the E19 RNA-329 
seq dataset - RNA-seq of Hordeum vulgare inoculated with Cochliobolus sativus. The gaps 330 
arrowed between the expression in the wild type cv. Morex are multiple samples derived from 331 
the barley cv. Morex mutant 14-40, which shows disruption of expression.  332 
 333 
 334 
Transcript variation between cultivars. 335 
To create the BaRTv1.0 RTD, transcripts from multiple datasets from a range of tissues, 336 
treatments and cultivars were mapped to cv. Morex pseudomolecules to maximise read 337 
coverage support for genes and splice junctions (19). BaRTv1.0 is, therefore, a predominantly 338 
cv. Morex RTD. Nevertheless, transcripts that contain indels in other cultivars will be found in 339 
BaRTv1.0. Salmon quantifications of the 843 individual samples was able to identify and 340 
quantify cultivar specific transcripts. BaRT1_u-06868 showed a selection of different 341 
transcripts due to genotype differences. Alignment with genomic sequence and the most highly 342 
abundant transcripts shows a small run of 4 GCAG repeats in one genotype compared to a run 343 
of 3 GCAG repeats in a different genotype. These genotype specific variant transcripts were 344 
observed across the range of cultivars used in the RNA-seq experiments.  For example, the 345 
experimental dataset E1 shows two different cultivars cvs. Clipper and Sahara with two 346 
different main transcript variants, which is the result of the 4bp indel. Clipper shows use of the 347 
transcripts .001 and .002 while Sahara uses transcripts .005 and .006 (Figure 6). The 348 
transcriptome assemblies and quantifications using BaRTv1.0 shows that cultivar specific 349 
transcripts can be easily distinguished. 350 
 351 
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  352 
Figure 6. Transcripts that represent allelic variants across barley cultivars. BaRT1_u-06868 353 
shows transcripts .001 (blue) and .002 (orange in the cv. Clipper, while cv. Sahara shows 354 
transcripts .005 (purple) and .006 (brown). Sequence alignment between transcripts .001 and 355 
.005 shows the 4bp deletion in cv. Sahara found in transcript 005. 356 
 357 
Alternative splice site switching 358 
 Selection of alternative splice sites results in the formation of multiple alternative 359 
transcripts. The proportions of alternative transcripts may change in different tissues or as the 360 
result of a changing environment. Many of these changes require detailed analysis to determine 361 
significant changes in the amounts and proportions of the alternative transcripts. Nevertheless, 362 
the stacked bar graphs allow large changes in the abundance of alternative transcripts to be 363 
detected between samples. For example, BaRT1_u-00022 was expressed across all tissues but 364 
in some samples an alternative transcript, BaRT1_u-00022.001, shown in blue, predominated 365 
over BaRT1_u-00022.003 shown in green (Figure 7A). The difference between the two 366 
transcripts was an alternative intron in the 3’UTR, which was retained in transcript .001 and 367 
spliced out in transcript .003. Comparison with the meta-data (Supplementary table 2) showed 368 
tissue specific abundance of transcript .001 in grain/caryopsis and germinating grain 369 
(coleoptiles) in the experimental datasets E8, E10, E17, I1 and I2. Comparison across the 370 
different experiments and replicates supports both the tissue and cultivar specific variation. For 371 
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example, the alternative .001 transcript was also observed in Golden Promise in datasets E11 372 
and I6. The plots also illustrate dynamic changes in alternative splicing in different tissues or 373 
because of different stresses. For example, BaRT1_u-40919, which has similarity to a cold 374 
inducible Zinc finger-containing glycine-rich RNA-binding protein, shows switching of 375 
transcript .001 to .005 during cold stress, which is the result of the selection of an alternative 376 
intron (I2) (Figure 7B). In both these cases, the reading frame of the protein is unaffected but 377 
extends the length of the 3’UTR in the transcripts where the intron is retained. These examples 378 
highlight transcript variation because of genotypic differences and dynamic alternative splicing 379 
as a result of tissue/organ specific splicing or changing environmental conditions.   380 
 381 

  382 
Figure 7. Alternative transcripts across the RNA-seq experiments. Different colours on the 383 
stacked bar graph indicate different gene transcripts produced through alternative splicing. 384 
Expression levels given in TPM – transcripts per million. A. BaRT1_u-00022 shows two main 385 
transcripts in blue (.001) and green (.003). B. BaRT1_u-40919 shows transcript switching in 386 
the cold response experimental set I2. Alternative splicing leads to switching from transcript 387 
.001 (blue) to .005 (purple in the cold. Gene models for each gene are presented and the position 388 
of the retained intron (IR) shown. 389 

 390 
Discussion  391 
Comprehensive reference transcript datasets are required for rapid, accurate quantification of 392 
gene expression using RNA-seq. Quantification at the transcript level further allows robust and 393 
routine analysis of alternative splicing (34, 35, 36). Here we used the barley reference transcript 394 
dataset, BaRTv1.0, to demonstrate the value and utility of a barley RTD for gene expression 395 
studies and AS analysis. We used BaRTv1.0 to quantify transcripts in 22 RNA-seq datasets, 396 
covering multiple genotypes, tissues and different abiotic and biotic stress conditions. 397 
BaRTv1.0 was assembled against the cv. Morex genome, but in this analysis we used RNA-seq 398 
data from a wide-range of cultivars and lines and found that mapping rates in all cultivars 399 
remained high (94.39% in cv. Morex compared to 92.32% in the other cultivars). We found 400 
expression and alternative splicing abundances varied between cultivars, tissues/organs and 401 
between environmental changes and stresses.  The data is presented in a single accessible 402 
database that gives visual and numerical access to expression data for barley genes across all 403 
the tested barley samples (https://ics.hutton.ac.uk/eorna/index.html).  404 
The importance of comparing between sample sets allows researchers to answer how their gene 405 
of interest is expressed in other tissues or under what condition. RNA-seq expression results are 406 
displayed in graphical form, simply as TPM values directly from the outputs of Salmon, without 407 
considering batch differences that may occur between samples, among experimental studies and 408 
does not assign statistical significances. We recognise that to include statistical analysis and 409 
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thereby define significant DE or DAS would require complete control over experimental design, 410 
sample preparation and sequencing analysis. These interactive plots, therefore, simply permit 411 
rapid visual assessment of expression levels of selected genes of interest. TPM values are 412 
accessible and allow users to perform their own DE and DAS analysis, such as found in the 3D 413 
RNA-seq interactive graphical user interface (37) or by comparing multiple RNA-seq datasets 414 
by meta-analysis methods (23, 24, 25, 26). The results will enable the construction of 415 
transcript/co-expression/regulatory networks and support the development of proteomic 416 
resources for barley.  417 
We did not carry out validation experiments using alternative methods, such as RT-PCR, as we 418 
do not have access to all the RNA samples used to produce the RNA-seq data. However, 419 
multiple RNA-seq samples consisted of similar tissues or conditions that showed similar gene 420 
expression responses. This was particularly noticeable in the genes that showed tissue or 421 
condition specific expression, such as those from developing grain tissue, low temperature 422 
stress and in response to pathogens (Figure 2).  In addition, we have previously performed RT-423 
PCR alternative splicing validation experiments on 5 of the tissues in the I1 RNA-seq 424 
experiment and found a strong correlation (r2=0.83) with the alternatively spliced transcript 425 
proportions of RNA-seq, supporting the ability of the RNA-seq data to accurately detect 426 
changes in AS (19). 427 
Output expression values such as TPM from RNA-seq experiments are under continuous 428 
discussion and development and may be affected by sequencing protocols and experimental 429 
conditions (38). Here, TPM values were calculated using Salmon to allow transcript abundances 430 
to be compared between samples. To check that the TPM values were representative as 431 
expression values, we determined variability across all the samples using linear regression 432 
analyses and found that the output from Salmon showed the lowest variability and therefore 433 
provided the best normalisation across all the samples. Some of the downloaded RNA-seq 434 
datasets revealed experimental samples that had extremely low or high read depths and poor 435 
mapping rates that after normalisation suggested abnormally high TPM values. These were not 436 
included in our analyses (data not shown). 437 
We have given examples of genes that clearly illustrate the wide utility offered by access to 438 
datasets from multiple RNA-seq experiments. The plots identified genes that were uniquely 439 
expressed in a cultivar, tissue or condition specific manner. Considering the range of samples 440 
displayed, the unique abundances in specific samples support the potential value of these genes 441 
as expression ‘biomarkers’ for that tissue or condition. There were other uniquely expressed 442 
genes found in the interactive plots and only three were reported here to illustrate utility:- 443 
BART1_0-u49225, with similarity to a UDP-Glycosyltransferase family member, was found 444 
specifically expressed in developing grain; BART1_0-u14427, with similarity to late 445 
embryogenesis abundant (LEA) proteins was induced after 24 h at low temperature; and 446 
BART1_0-u50915, which is one of a number of barley Pathogenesis-related 1 protein genes 447 
that are established pathogen responsive genes (Figure 2). The plots also identified cis- and 448 
trans-acting induced expression (or loss of expression) of genes that segregate among near 449 
isogenic lines or mutant populations (Figure 4 and 5) and cultivar specific transcripts (Figure 450 
6). The expression characteristics may help identify, retain or exclude candidate genes from 451 
involvement in a given biological process, form the basis for the development of tissue specific 452 
reporter genes, validate observed expression QTL or explore the genomic landscape of actively 453 
expressed genes.  454 
Barley exhibits a high frequency of alternative splicing that impacts development and 455 
adaptation to the surrounding daily and seasonal environment. The plots revealed genes that 456 
change their splice site selection patterns in different tissues and organs and, in some cases, 457 
show switching in splice site selection as a response to stress (Figure 7). In addition, genotypic 458 
differences in diverse barley cultivars and landraces can lead to considerable changes in the 459 
gene expression. Single nucleotide polymorphisms or insertion/deletions at important splice 460 
sites and in splicing regulatory elements can affect the abundance of transcript isoforms and 461 
alter translational reading frames or transcript stability. An example here shows how a 4 bp 462 
deletion in cv. Sahara led to selection of two different transcripts in the BaRT RTD by cv. 463 
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Clipper. The functional impact of genetic variations on splicing diversity will impact phenotypic 464 
diversity and cultivar adaptation to local environments. 465 
BaRT is under constant incremental improvement. The next release of BaRT is being developed 466 
by incorporating new short and, importantly, long-read RNA-seq datasets. The need to capture 467 
the diversity of different transcripts from a wider range of genotypes will further lead to the 468 
development of a pan-transcriptome barley RTD to match a barley pan-genome sequence (5, 469 
39). This will ultimately result in recalculation of the TPM values. In addition, new RNA-seq 470 
experiments are constantly submitted to the sequence archives. We are currently developing a 471 
pipeline that allows automated addition of newly deposited RNA-seq datasets associated with 472 
subsequent quantification using the latest RTD and updated releases of EoRNA.  This will 473 
continually expand the utility of the interactive plots and provide straightforward and open 474 
access of RNA-seq data to researchers, adding considerable value to the stand-alone RNA-seq 475 
datasets.  In summary, the BaRT RTD is part of a unique pipeline that facilitates fast robust 476 
routine quantification of barley gene transcripts, visualised in EoRNA through interactive plots 477 
linked to gene models and metadata, ultimately leading to robust and consistent estimation of 478 
barley gene expression and alternative splicing across multiple samples. 479 
 480 

Usage Notes 481 

The expression data is most easily accessible through an intuitive and easy to use Web interface: 482 
https://ics.hutton.ac.uk/eorna/index.html.  483 

Gene and transcript sequence information and expression data can be accessed through 484 
Homology Searches, Annotation Searches or thorough BLAST nucleotide or protein sequences. 485 
Barley Pseudomolecule gene names (HORVU numbers) can be easily translated to BART 486 
identifiers. 487 

The plots showing individual gene expression across all the samples has a link under the plot to 488 
a text delimited file with all the expression (TPMs), tissue, condition, cultivar and replicate. The 489 
whole dataset describing expression of all the BaRT genes can downloaded as a single txt 490 
delimited file. This is further stored at http://doi.org/10.5281/zenodo.4286079. 491 
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