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One Sentence Summary: Expression of genes associated with type I interferons predicts 

time to rebound of HIV viraemia after stopping antiretroviral therapy. 

 

Abstract: Although certain individuals with HIV infection can stop antiretroviral therapy 

(ART) without evidence of viral load rebound, the mechanisms under-pinning ‘post-treatment 

control’ remain unclear. Twelve individuals who had received 12 months of ART from primary 

HIV infection and then undertook a TI were sampled at the time of stopping therapy. Using 

RNA-Seq we explored gene expression in CD4 T cells to look for evidence of a mechanism 

that might underpin virological rebound and lead to discovery of an associated biomarker. 

Using independent analysis tools, genes associated with the type I interferon response were 

strongly associated with a delayed time to viral rebound following TI. These are the first data 

we are aware of that link transcriptomic signatures associated with innate immunity with 

control following TI. While these results need to be confirmed in larger trials, they could help 

define a strategy for new therapies and identify new biomarkers for remission. 
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Introduction 

Unless suppressed by antiretroviral therapy (ART), HIV infection leads to persistent viremia, 

progressive loss of CD4+ T cells and eventually AIDS. However ART is not a cure for HIV 

infection, requires lifelong adherence, and has been associated with side-effects, drug 

resistance and stigma(Peluso et al., 2019). Inherent to testing novel HIV cure strategies(Dash 

et al., 2019; Davenport et al., 2019; Mendoza et al., 2018) is analytical treatment interruption 

(TI) in which ART is stopped and any delay or prevention in viral rebound is examined. 

However there is still much controversy around TIs, and how to best implement and interpret 

them(Julg et al., 2019). Identifying biomarkers which predict outcomes following TI would 

provide enormous value to both understanding mechanisms of virological remission and 

identifying new drug candidates. 

 

A rare proportion of ART-treated individuals are able to stop therapy and maintain 

undetectable viremia for months and, in some cases, years(Etemad et al., 2019; Martin et al., 

2017; Sáez-Cirión et al., 2013). Multiple studies have been attempted to elucidate the biological 

mechanisms underlying these outcomes, and numerous clinical factors and molecular 

biomarkers which correlate with time to rebound have been proposed (Conway et al., 2019; 

Hurst et al., 2015; Krebs & Ananworanich, 2016; Martin et al., 2017; Sharaf et al., 2018; Stöhr 

et al., 2013; Williams et al., 2014). However, the host factors that affect the responsiveness of 

T cells have not been thoroughly characterised (Hyrcza et al., 2007), especially at a 

transcriptome level, possibly due to small cohort sizes and the availability of samples at key 

timepoints. Additionally, many gene expression studies have employed microarray 

technology(Lee et al., 2019; L.-L. Zhang et al., 2017) which may be associated with limitations 

compared with more recent RNA-Seq approaches(Zhao et al., 2014).  
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SPARTAC (Short Pulse Antiretroviral Treatment at HIV-1 Seroconversion)(Fidler et al., 2013) 

was one of the largest randomized clinical trials to study different durations of ART 

administered to participants with Primary HIV Infection (PHI) and the impact on disease 

progression. Previous analyses revealed that although the majority of participants experienced 

HIV viral rebound shortly after stopping ART (i.e <4 weeks post TI), some maintained 

undetectable viraemia to the end of the study (>500 days after TI). We studied participants who 

received 12 months of ART started in primary HIV infection (PHI), and analysed CD4+ T cell 

mRNA at the time of TI. Our aim was to identify genes or gene-sets expressed by CD4+ T 

cells that might associate with longer periods of remission after TI. Our results could be 

integrated into personalised diagnostic algorithms, to inform therapeutic strategies towards 

HIV cure and to better understand the mechanism of HIV latency and remission. 

 

Results  

Clustering of participants based on clinical response. 

We identified 18 SPARTAC participants who had received 12 months of ART commenced 

during PHI, and who had viable samples of PBMCs taken at the point of TI. Clustering analysis 

of RNA expression revealed distinct groups based on ethnicity and gender (See Table 1 and 

Supplementary Figure S1), which might have contributed to the clinical outcomes. Therefore, 

to avoid potential confounding effects, we excluded six individuals resulting in a study group 

comprising twelve women, all from South Africa. ‘Days to viral load rebound after TI’ was 

used to define clinical phenotypes and structure the comparative analysis (Table 1).  
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Table 1: Participant Demographics 

 Original Cohort Final Cohort 
Sex Female  

(n=14) 
Male 
(n=4) 

Female 
(n=12; 100%) 

Rebound Early (<100 days to rebound) 5 
(35.70%) 

2 (50%) 4 (33.3%) 

Intermediate  
(>100 & <500days to rebound) 

4 
(28.50%) 

2 (50%) 3 (25%) 

Late (> 500 days to rebound) 5 
(35.70%) 

0 5 (41.6%) 

Country Europe 1 (7.10%) 4 (100%) 0 
Africa 13 

(92.80%) 
0% 12 (100%) 

 

Based on observations in SPARTAC and other cohorts(Colby et al., 2018, 2020; Etemad et al., 

2019; Stöhr et al., 2013) we defined ‘early’ rebounders following TI (<100 days) as 

representing normal progressors, ‘intermediates’ (100-500 days) as representing a phenotype 

reflecting transient remission, and ‘late’ rebounders (>500 days) to be more characteristic of 

elite or ‘sustained’ controllers. As these cut-offs (i.e 100 and 500 days) have not been 

previously ratified - and there might be some overlap between them - we tested their validity 

by dividing the dataset based on these phenotypes in two different ways. First, we grouped the 

‘intermediates’ and ‘lates’ together as Post-Treatment Controllers (PTC) (i.e all rebound >100 

days) and compared these with the Progressors (<100 days). Next, we grouped the ‘early’ and 

‘intermediate’ groups (i.e all rebound <500 days) into a group of non-sustained controllers 

(non-SC) and compared these with the sustained controllers (SC; >500 days). (Table S1). For 

this dataset, grouping the “intermediates” with either “early” or “late” rebounders helps 

identify genes associated with the more extreme phenotypes (i.e early or late rebounders) and 

improves the sample sizes for comparison, but at the potential risk of increasing variability and 

noise. 
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Differential Gene Expression and Gene Set Enrichment Analysis shows a strong association 

of type I interferon pathways with sustained control of viremia 

Differential Gene Expression (DGE) analysis was performed to identify genes that were 

differentially expressed when comparing clinical groups. Genes with a reported adjusted p-

value (padj) <0.05 and log(2) fold change >1 were considered as significantly differentially 

expressed. DGE was performed to compare the three clinical phenotypes: Late vs Early, Late 

vs Intermediate and Intermediate vs Early (Supplementary Figure S2c,d,e), and 1, 49 and 4 

genes, respectively, were found to be differentially expressed in the three groups. It is likely 

that due to increased diversity of the signal in the extreme groups (i.e Early and Late), the small 

patient numbers and the stringency of the parameters, DGE was only able to return a few 

significant genes. When combining the patients into the larger groups, DGE identified four 

genes that were differentially expressed between non-SC versus SC (i.e rebound < vs > 500 

days), and five genes between Progressors and PTCs (i.e rebound <vs > 100 days) 

(Supplementary Figure S2a,b). However, in view of these limitations we turned to alternative 

approaches. 

 

We identified functionally linked ‘gene sets’ which can offer a more comprehensive insight 

than single genes into the mechanisms underpinning a phenotype. Gene Set Enrichment 

Analysis (GSEA) was performed on all genes ranked by DESeq2 Wald statistics (with the 

Wald test being applied to each gene), for each group of phenotypes. For the non-SC vs SC 

(i.e. rebound < vs > 500 days) analysis the gene set representing interferon signaling pathways 

was clearly enriched in the SC phenotype (Figure 1a). The PTC phenotype (rebound > 100 

days) was associated with 51 gene sets and the most statistically significant enriched biological 

processes were related to immunoregulation, platelet activation and interferon alpha and beta 

signaling (Figure 1b). DGE and GSEA were also performed on the samples comparing the 
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distinct phenotypes (Early, Intermediate and Late), and also showed interferon alpha and beta 

signaling to be enriched in the late rebounders (Supplementary Figure S3), however, as noted 

above, due to small sample sizes we were not able to take these analyses further. 

 

Figure 1:  Pathway enrichment according to clinical phenotype using DESeq2 with GSEA 

and Rank Prod with ReactomePA 

a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b.  
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c. 
 
 
 
 
 
 
 
 
 
 
 
d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2:  Pathway enrichment according to clinical phenotype using DESeq2 with GSEA 
and Rank Prod with ReactomePA Top five up- and down-regulated pathways and GSEA 
pre-ranked enrichment plots for pathways (FDR<0.25) for SC versus non-SC phenotypes (a) 
and PTC versus Progressors (b). The range of Normalised Enrichment Scores (NES) shown on 
the left. Bar-plots presen plots presenting ReactomePA pathway enrichment for SC versus 
nonSC (c) and PTC versus Progressors (d). 
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To validate the results presented above, a non-parametric approach, RankProd, was employed 

as an alternative method for DGE followed by pathway enrichment with ReactomePA. This 

analysis also showed enrichment of type I Interferon pathways for the SC phenotype and for 

Platelet and Fc-gamma receptor (FCGR) activation pathways for PTCs compared to 

Progressors (Figure 1c-d), consistent with the GSEA.  

 

Weighted Gene Co-expression Network Analysis (WGCNA) identifies modules associated 

with rebound phenotypes and time to rebound 

For an alternative interrogation of the transcriptomics data, Weighted Gene Co-expression 

Network Analysis (WGCNA) was employed to identify gene co-expression modules that relate 

to the clinical features of interest and inform on pathway enrichment. Aside from the different 

phenotype groups (SC versus non-SC and PTC versus Progressors), Time to Rebound was also 

used as a clinical trait of interest, as it offered the opportunity to explore the genetic correlations 

without having to make an a priori decision on sample grouping. WGCNA constructs a 

weighted network that represents the interaction patterns among genes, by emphasizing the 

strong gene-gene correlations at the expense of the weak ones in order to reduce noise. Here, 

the co-expression network was built using the expression data of a total of 4457 out of 28395 

genes, that were retained after filtering for low variability. All pairwise correlations were 

calculated by raising the correlation values to the power of β=18, for which the scale-free 

topology fit index was 0.8 (Figure 2a). WGCNA then clustered all genes with similar co-

expression patterns into modules, conventionally denoted by colour names (Figure S4). The 

modules were then associated with three external sample traits, namely SC (rebound >500 

days), PTC (rebound >100 days) and ‘Days to Rebound’ as a continuous variable.  
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Four modules were positively correlated with the traits of interest. ‘PaleTurquoise’ (labelled as 

Module 1 in Figure 2b) was correlated with both Time to Rebound (cor=0.64, p=0.02) and the 

SC phenotype (cor=0.62, p=0.03). ‘Salmon’ (Module 2; cor=0.58, p<0.05) and ‘Yellow’ 

(Module 3; cor=0.63, p=0.03) correlated with the SC phenotype. ‘Grey60’ (Module 4) was 

found to be associated with the PTC phenotype (cor=0.65, p=0.02) (Figure 2b). A significantly 

high correlation of Module Membership (MM) and Gene Significance (GS) is reported for 

these modules showing that the genes that are significantly associated with the respective traits 

are also important elements of each module (Figure 2c-g). 

 

Functional Enrichment of WGCNA modules associated with SC phenotype and Days to 

Rebound indicates Interferon Type I pathway involvement 

The modules obtained from WGCNA were then uploaded on STRING for downstream 

enrichment analysis (Figure 3a-b). To be consistent with the GSEA analysis, the Reactome 

database was used to report the enrichment. The Module 1 genes (PaleTurquoise) showed an 

enrichment (p<0.05) in the Interferon Type I pathway (Figure 3c). Based on the GS and MM 

scores, 17 genes in Module 1 were identified as hub genes. Genes in modules 2 and 3 that 

correlated with the SC phenotype were shown to have non-significant enrichment values (0.06 

and 0.3, respectively), indicating that these identified random proteins are not well connected. 

Module 4 (Grey60) that was associated with the PTC phenotype showed an enrichment 

(p<0.01) in platelet activation and degranulation (Figure 3d).  
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Figure 3: Network topology analysis and module identification using WGCNA  

 

a. 
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b. 
  

Module 1 

Module 2 

Module 4 

Module 3 
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c.  d.  

e.  f.  

g.   

Figure 4: Network topology analysis and module identification using WGCNA a. Network 
topology analysis for different soft thresholding powers. b. Heatmap plot of module-trait 
correlation and its statistical significance in parenthesis. The table is colour-coded based on 
direction and intensity of correlation, which is shown in red boxes. c-g: Scatterplots of gene 
significance (GS) for trait of interest versus module membership (MM): paleturquoise (days to 
rebound) (c); paleturquoise (SC phenotype) (d); salmon (SC phenotype) (e); yellow (SC 
phenotype) (f); grey60 (PTC phenotype) (g). 
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Figure 5: Gene Network and Pathway Enrichment Visualisation of selected WGCNA 
modules.  
a.                                                                 b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c.                                                                    

d. 
 
 
 
 
 
a-b.  
 
 
 
 
 
Figure 6: Gene Network and Pathway Enrichment Visualisation of selected WGCNA 
modules. Visualisation of the Protein-Protein Interaction network of genes within the 
PaleTurquoise (a) and the Grey60 (b) modules, generated by STRING. c-d. Top pathways 
enrichment bar plots for PaleTurquoise (c) and Grey60 (d) hub genes. 
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Risk score calculation based on the expression of two genes can potentially predict time to 

rebound 

As a next step, we looked to see if any of the individual genes identified in the WGCNA results 

were more closely linked to progression, potentially leading to a signature that might predict 

longer post-TI viral suppression. Univariable analysis showed that the expression of 5 out of 

17 hub genes contained in Module 1, namely ISG15, TRIM25, IFIT3, IFI6 and XAF1, was 

associated with a protective Hazard Ratio (HR) for early rebound <1 (Table 2).  

 

Table 2. Univariable Cox Regression for Individual Protective Genes.  

Gene HR 95%CI p-value 
ISG15 0.11 0.02-0.66 0.01 
IFIT3 0.088 0.00-0.89 0.04 
TRIM25 0.021 0.00-0.75 0.03 
IFI6 0.074 0.00-0.84 0.02 
XAF1 0.19 0.04-0.90 0.03 

HR= Hazard Ratio; 95% CI = 95% Confidence Intervals 

 
Interestingly, all five are interferon stimulated genes. A multivariable Cox Regression analysis 

with LASSO was performed using the five significant genes and only TRIM25 and ISG15 were 

retained (Figure 4a). A Risk Score (RS) was calculated for all participants using the expression 

of these two genes and their LASSO coefficients (Table S2) were classified as either low or 

high relative to the mean RS. Kaplan Meier analysis showed that a lower RS with higher 

expression of both ISG15 and TRIM25 was found to be significantly associated with longer 

suppression post-TI, compared to participants with a high RS (P<0.001) (Figure 4b).  
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Figure 7: The expression of ISG15 and TRIM25 predict risk of earlier viral rebound. 
 
a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 8: The expression of ISG15 and TRIM25 predict risk of earlier viral rebound. a. 
Estimation of λ and coefficient penalisation for gene selection with LASSO. Two of the five 
genes are selected as correlating with a lower risk of early rebound. Negative coefficient 
indicates the effect is protective. b. Kaplan-Meier curve of gene expression-based Risk Score 
(RS), predicting the likelihood of early and late post-TI rebound. Blue and red lines represent 
low and high-risk score respectively and ‘+’ marks represent the censored samples. 
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Discussion  

The majority of HIV positive individuals tend to rebound quickly after stopping ART, although 

it is evident that for a few some degree of virological remission is established. Understanding 

the mechanisms of post-treatment control through the identification of biomarkers that would 

help stratify patients into viral rebound risk groups would be invaluable for clinical decision 

making. Molecular studies constitute a powerful tool for identifying signatures that determine 

different response phenotypes. High-throughput RNA sequencing and subsequent 

bioinformatics analysis render an excellent opportunity to characterise the host immune profile 

of ART responders and provide a mechanism for identifying biomarkers that predict control 

post-ART cessation. 

 

Our aim was to gain a deeper understanding of how host gene expression affected the duration 

of post-TI viral control using samples collected during the SPARTAC trial. This cohort offered 

a unique opportunity to study samples from participants with PHI that have been followed-up 

for an average of 4 years post-TI(Fidler et al., 2013). The samples used in this study were 

collected at the day of TI. To minimise the noise caused by averaging the expression of 

different cell types, only CD4+ T cells were selected and sequenced. This was because based 

CD4+ T cells comprise the majority of the HIV reservoir, and therefore any variability in 

transcriptional activity might impact the likelihood of proviral expression and rebound 

viraemia, and also related to the significance of the CD4+ T-cell response in the control of 

HIV(Frater et al., 2014). In addition, we restricted our analyses to women from Africa to 

exclude potential confounding factors from sex or ethnicity. 

 

The results of DGE/GSEA revealed a distinct transcriptomic difference in those who controlled 

for over 500 days (i.e. between the SC phenotype and the non-SC phenotype), which was 
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associated with the Type I Interferon Pathway (IFN-I). IFN-I pathways comprise a family of 

cytokines playing a dual role in the regulation of the innate immune response in 

infection(McNab et al., 2015). While continuous exposure to IFN-I inflicts chronic immune 

activation and subsequent exhaustion of T-cells and progression to AIDS, studies on SIV 

models illustrate the benefit of IFN-I administration at the early stage of infection in inhibiting 

viral replication(Deeks et al., 2017; Sandler et al., 2014; Van der Sluis et al., 2020). Similarly, 

HIV develops strategies to evade IFN-I and to inhibit the functionality of the proteins regulated 

by IFN-I (Fenton-May et al., 2013), suggestive of a fundamental role of this pathway in 

viraemic control. Additionally, the presence of less fit, adapted viruses - well described for T 

cell immune escape(Roberts et al., 2015; Zimbwa et al., 2007) - could also contribute to the 

difference in IFN-I response observed in this study(Adland et al., 2020; Cohn et al., 2018; Iyer 

et al., 2017). By defining post-treatment control (‘PTC’) participants as those that rebounded 

more than 100 days after TI(Etemad et al., 2019), we identified an enrichment of platelet 

activation pathways as well as IFN-I. The strong statistical association with platelet activation 

is intriguing and possibly consistent with reports that release of chemokines by activated 

platelets can function as an extra barrier at the early stages of HIV infection(Solomon Tsegaye 

et al., 2013). However, further investigation is required to determine the role of platelets in the 

defense against HIV.  

 

WGCNA was then performed to determine how gene modules associate with specific clinical 

traits. For an unbiased analysis, ‘time to rebound’ was included with the SC and PTC 

phenotypes, to examine whether WGCNA findings corresponded with the DGE/GSEA 

analysis. The analysis identified two dominant modules of which one was associated with the 

‘Time to Rebound’ and the SC trait, and one with the PTC phenotype. The gene ontology and 

pathway analysis showed a clear module enrichment in IFN-I associated with time to rebound, 
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supporting the previous results for the phenotype traits. The majority of genes reported as hub 

genes were interferon stimulated genes (ISG), again consistent with the argument that the 

response to type I interferons is impacting rebound. A univariable Cox analysis identified five 

ISGs associated with remission in the participants (Table 2). Based on a multivariable Cox 

regression with LASSO screening of the five genes, a risk score based on the expression of 

ISG15 and TRIM25 only was developed to predict the likelihood of viral rebound. Higher 

expression of both genes was strongly protective for post-TI rebound. ISG15 has been reported 

to contribute to the inhibition of HIV virion release from infected cells(Gargan et al., 2018; 

Perng & Lenschow, 2018) and TRIM25 is an E3 ligase that positively regulates ISG15 

conjugation to pathogen proteins, in a process with reported antiviral effects called 

ISGylation(Martín-Vicente et al., 2017). Although more work is underway to characterise the 

role of this pathway, this preliminary independent identification of these two genes would be 

consistent with a role in maintaining virological remission. 

 

The small sample size on which this analysis was performed is a key limitation. In addition, 

our analysis was limited to bulk CD4+ T cells at a single timepoint, with no enrichment for 

those cells that were HIV-specific or contained proviral DNA. At this stage, the latter is not 

possible due to technological limitations. The other factor to consider is whether our choice of 

clinical phenotypes accurately discriminated between ‘post-treatment controllers’ and ‘elite 

controllers’. The latter have been well characterised(Martin et al., 2017), and more generally 

associated with effective HLA Class I-restricted T cell responses(Kiepiela et al., 2007), 

whereas it is still unclear as to which mechanisms are driving PTC. Larger studies will be 

needed to tease out these differences. However, that three independent analyses conferred the 

same statistically significant findings should be taken into consideration. Furthermore, this is 

a transcriptomic snapshot from the time of TI, and information about the expression of ISG is 
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not available for other timepoints, before and after TI. This finding of a strong type I interferon 

signal associating with delayed rebound in this small study needs to be confirmed in larger 

clinical trials incorporating TI. If these data are reproducible, they could help with the 

identification of a valuable biomarkers of remission and pathways to drug discovery for the 

HIV cure field.  

 

Materials and Methods 

Participant characteristics and trial design 

We analysed 18 SPARTAC participants who had received 48 weeks of suppressive ART 

commenced shortly after seroconversion. Participants were selected based on availability of 

viable peripheral blood mononuclear cells (PBMCs) and stratified by time to rebound. 

Participants were sampled at the time of TI, 48 weeks after commencing ART during Primary 

HIV Infection (PHI). The demographics of the participants are presented in Table 1, and 

Supplementary Table S1. Based on time to rebound, participants were classified as those who 

rebounded Early (<100 days after TI), Intermediate (100-500 days after TI) and Late (>500 

days after TI). Initial analyses revealed gene expression varied significantly dependent on 

country of origin (African vs Non-African) (Supplementary Figure S1), and so - to avoid 

confounders - participants were analysed separately according to origin. Additionally, there 

were no male participants in the Late category, and so analyses including this parameter were 

restricted to female participants.  

 

RNA Isolation and Sequencing 

CD4+ T cells were isolated using negative selection (Stem Cell Technologies CD4 enrichment 

kit) according to the manufacturer’s recommendations, and samples were processed in one 

batch. Total RNA was extracted using the Qiagen RNA Kit with Qiashredder columns and was 
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sent for library preparation and sequencing. Material was quantified using RiboGreen 

(Invitrogen) on the FLUOstar OPTIMA plate reader (BMG Labtech) and the size profile and 

integrity analysed on the 2200 TapeStation (Agilent, RNA ScreenTape). Input material was 

normalised to 100ng prior to library preparation. Polyadenylated transcript enrichment and 

strand specific library preparation was completed using NEBNext Ultra II mRNA kit (NEB) 

following manufacturer’s instructions. Libraries were amplified on a Tetrad (Bio-Rad) using 

in-house unique dual indexing primers(Lamble et al., 2013). Individual libraries were 

normalised using Qubit, and the size profile was analysed on the 2200 TapeStation. Individual 

libraries were normalised and pooled together accordingly. The pooled library was diluted to 

~10 nM for storage. The 10 nM library was denatured and further diluted prior to sequencing. 

Paired end sequencing was performed using an Illumina Novaseq6000 platform at 150 paired 

end mode (Illumina, San Diego, CA). 

 

Differential Gene Expression Screening and Gene Set Enrichment Analysis 

DESeq2(Love et al., 2014) was used to compute the differential gene expression (DGE) 

between phenotypes using a featurecounts table. Only genes with a DGE of adjusted p-value 

of <0.05 were considered statistically significant. Gene Set Enrichment Analysis 

(GSEA)(Mootha et al., 2003; Subramanian et al., 2005) was used to detect differences in 

biologically relevant pathways in the dataset. The datasets were pre-ranked by the DESeq2 

Wald statistic value. Permutation was set at 1000. Gene sets in the Reactome database(Jassal 

et al., 2020) were used as reference. Results satisfying a False Discovery Rate (FDR) cut off 

of <25% were considered statistically significant. Due to the small number of replicates, 

RankProd(Del Carratore et al., 2017) – an alternative nonparametric statistical method to 

identify differentially expressed genes - was also used. This method ranks the genes that 

consistently rank high as up- or downregulated in a number of experiments. The test was run 
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on data transformed with the DESeq2 variance stabilising transformation. The percentage of 

false prediction (pfp) cut off was set to 0.25. The statistically significant upregulated genes for 

each phenotype, ranked by an increasing RP score, were further analysed with the 

ClusterProfiler(Yu et al., 2012) and ReactomePA(Yu & He, 2016) R packages, for pathway 

enrichment.  

 

Co-Expression Network Construction 

Weighted Gene Co-expression Network Analysis (WGCNA)(Langfelder & Horvath, 2008; B. 

Zhang & Horvath, 2005) is an R package used for gene expression profiling and was applied 

to the identification of genes associated with  time to rebound.  After pre-processing for low 

variance filtering and outlier removal, an appropriate soft-threshold power was selected to 

promote and penalise the strong and weak gene connections, respectively. Following this, a 

signed network was created using the one-step approach, according to the package guidance. 

Genes were organised in modules, based on a common expression pattern. The expression of 

the genes in each module was summarised with an eigengene value, and a colour-label 

attributed to each to assist identification. 

 

Identification and Annotation of Important Modules and Hub genes 

Module eigengenes were correlated with the clinical traits, in order to identify the most 

biologically relevant modules. The modules that were selected for downstream analysis were 

the ones that had a significant correlation with the trait. The most connected genes (hub genes), 

which are of functional significance, were defined by their Module Membership (MM>0.8) 

and their Gene-trait Significance (GS>0.2). All selected modules were uploaded on 

STRING(Szklarczyk et al., 2019) for pathway enrichment, gene ontology annotation and PPI 

visualisation. 
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Identification of predictor genes for time to rebound 

Survival analysis was performed for the identified hub genes, using the survival(Terry, 2020) 

package on R, to assess the prognostic value of the hub genes. The first viral rebound after TI 

was used as the event of interest. A univariable Cox Proportional Hazard Regression was 

performed on each gene. Genes with a statistically significant correlation to time to rebound 

were selected for a multivariable Cox regression with LASSO after selecting an optimal 

regularization parameter λ, to penalise the variable coefficients. A Risk Score (RS) to predict 

prognosis was calculated according to the formula below, where β is the multivariate Cox 

coefficient and exp is the expression value for all significant genes. 

𝑅𝑆 = 	 % 𝛽!"#"

!"#"

#$%

	× 	𝑒𝑥𝑝!"#" 

All participants that did not report post-TI rebound during the follow-up period of SPARTAC 

were classified as censored. All genes with a statistically significant association with a longer 

remission were then used to calculate a prediction score for time to rebound, by multiplying 

the gene coefficient with the gene expression. 

 

Supplementary Materials 

Table S1. Detailed demographics 

Figure S1. Dendrogram showing clustering of participants from different countries based on 

gene expression. 

Figure S2. Volcano plots showing the differentially expressed genes according to patient 

clinical phenotype. 

Figure S3. GSEA analyses according to clinical phenotype 

Figure S4. Dendrogram of genes clustering into modules. 
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Supplementary Materials 

STUDY ID Sex Category Days to 
Rebound 

Country Control Category 

SIU001 Male Early 24 Italy normal 
progressors 
(Progressors) 

‘non-SC’ 
SJR002 Female Early 28 South 

Africa 
SJZ003 Female Early 28 South 

Africa 
SUN004 Female Early 28 UK 
SUU005 Male Early 28 UK 
SJA006 Female Early 29 South 

Africa 
SJS007 Female Early 29 South 

Africa 
SJV008 Female Intermediate 168 Uganda Post Treatment 

Controllers 
(PTC) 

SJK009 Female Intermediate 168 South 
Africa 

SJJ010 Female Intermediate 178 South 
Africa 

SUA011 Male Intermediate 288 UK 
SUX012 Male Intermediate 301 UK 
SJH013 Female Intermediate 420 South 

Africa 
SJL014 Female Late 503 South 

Africa 
Sustained 
Controllers 
(SC) SJC015 Female Late 542 South 

Africa 
SJE016 Female Late 1145* South 

Africa 
SJE017 Female Late 1376* South 

Africa 
SJV018 Female Late 1421* South 

Africa 
*censored at this timepoint. 

Table S 1: Detailed Demographics 
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Participant Rebound Days to 
Rebound 

Incidence Risk Score 
(RS) 

SJR002 Early 28 1 -29.88 
SJZ003 Early 28 1 -31.63 
SJA006 Early 29 1 -29.96 
SJS007 Early 29 1 -31.43 
SJE016 Late 1145 0 -31.99 
SJE017 Late 1376 0 -32.63 
SJV018 Late 1421 0 -34.68 
SJL014 Late 503 1 -31.74 
SJC015 Late 542 1 -32.99 
SJK009 Med 168 1 -30.37 
SJJ010 Med 178 1 -30.81 
SJH013 Med 420 1 -32.03 

Mean Risk Score -31.68 
 

Table S 2: Individual Risk Score per participant, based on the expression of ISG15 and TRIM25  
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Figure S 1: Dendrogram showing clustering of participants from different countries based on gene expression. 
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a.  

 

b.  

 
c.  

 

d. 

 
e. 

 

 

Figure S 2: Volcano plots showing the differentially expressed genes according to patient clinical phenotype. SC 
versus nonSC (a), PTC versus Progressors (b), Late versus Early (c), Late versus Intermediate (d) and Intermediate 
versus Early (e). Red is used for genes significantly differentially expressed. 
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a.  
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b.  

 
 
 
c.  

 
 
Figure S 3: GSEA analyses according to clinical phenotype. top 6 pathways for Late versus Early (a), Late versus 
Intermediate (b) and Intermediate versus Early(c).  
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Figure S 4: GSEA analyses according to clinical phenotype. top 6 pathways for Late versus Early (a), Late versus 
Intermediate (b) and Intermediate versus Early(c). 
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