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Abstract

In this manuscript we consider the problem of relating functional connectivity measure-
ments viewed as statistical distributions to outcomes. We demonstrate the utility of using
the distribution of connectivity on a study of resting state functional magnetic resonance
imaging association with an intervention. Specifically, we consider 47 primary progres-
sive aphasia (PPA) patients with various levels of language abilities. These patients were
randomly assigned to two treatment arms, tDCS (transcranial direct-current stimulation
and language therapy) vs sham (language therapy only), in a clinical trial. We propose
a novel approach to analyze the effect of direct stimulation on functional connectivity.
We estimate the density of correlations among the regions of interest (ROIs) and study
the difference in the density post-intervention between treatment arms. We discover that
it is the tail of the density, rather than the mean or lower order moments of the distri-
bution, that demonstrates a significant impact in the classification. This approach has
several benefits. Among them, it drastically reduces the number of multiple comparisons
compared to edge-wise analysis. In addition, it allows for the investigation of the impact
of functional connectivity on the outcomes where the connectivity is not geometrically
localized.

Keywords: Functional Connectivity, Density Regression, Random Graph

1. Introduction1

The study of resting state brain connectivity via functional magnetic resonance imag-2

ing (fMRI) involves the investigation of correlations between cortical seeds, regions or3

voxels (henceforth referred to as foci). Friston, in particular, defined functional connec-4

tivity as the correlations, over time, between spatially distinct brain regions [1]. Nearly all5

inter-subject investigations of connectivity have focused on localized correlations. That is,6

they consider correlations between foci treated consistently across subjects. Mathemati-7

cally, this can be described as saying that the methods are not invariant to subject-specific8

relabeling of the foci. In fact, for most methods, such as pairwise regressions on corre-9

lations across subjects or decomposition methods, shuffling foci labels within subjects is10

a form of null distribution. Furthermore, this lack of invariance applies regardless of the11

degree of granularity of the analysis (seed, region, voxel ...) [1, 2, 3]. The methods and12

choice of granularity all center the focus on geographic consistency of correlations across13
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groups of similar subjects. A notable exception is some variations of graph theory based14

methods, where graphical summaries may not be localized across subjects in the sense of15

being invariant to subject-specic foci labels [4, 5].16

In this manuscript, we consider the distribution of resting state correlations and how17

these correlations vary between treatment arms. This form of density regression has sev-18

eral benefits. A primary one is the relaxation of the consistent localization assumption19

across subjects. Specifically, localization analyses makes the, often unchallenged, as-20

sumption that pairs of foci represent the same correlated functional specialization across21

exchangeable subjects. This assumption is grounded in the neurological theory of func-22

tional specialization dating back to the foundational works of Broca and Weirnicke [6, 7].23

However, it is clear that in specific applications and biological settings, the neural geog-24

raphy of functional specialization can vary. As an extreme example, subjects with brain25

damage in their youth often have the neuroplasticity that remaps a function to atypical26

areas [8].27

There are existing studies that focus on utilizing the distribution of resting state28

correlations. For example, Petersen [9] considers the distribution of correlations between29

a seed voxel and all other voxels within a region of interest (ROI), to summarise the state30

of such ROI. Also, Scheinost [10] further considered such distributions across all pairs of31

voxels. This work derived a degree function from the connection density as a summary32

of the connectivity of each voxel. As a result, the study continues to focus on localized33

effects, where the use of the connectivity density is mainly to achieve a more informative34

localized summary of brain connectivity.35

Our study is motivated by a resting-state fMRI study of primary progressive aphasia36

(PPA) patients, where it is feasible to relax the geometric localization assumption.In the37

study, the patients were randomly assigned into two treatment groups, tDCS (transcranial38

direct-current stimulation [11] + language therapy) and sham (language therapy only).39

In the tDCS group, the stimulation target, the left inferior frontal gyrus (IFG), is less40

likely to satisfy the across-subject localization assumption due to spatial normalization41

and brain functional specialization. In addition, the stimulation electrode patches were42

big, 5× 5 = 25 cm2, thus, the stimulation areas were extended beyond the left IFG. This43

may induces additional variation across subjects, and thus may result in violations of44

localization assumptions. Here, we propose a novel approach to represent the effect of45

stimulation on functional connectivity. By ignoring the spacial heterogeneity, we directly46

study the change on the distribution of correlation between the regions of interest (ROIs)47

and therefore the approach has the potential to be highly robust to spatial registration.48

In following section 2, we will introduce the experimental design and our approach.49

Results both for simulation and real data will be shown in section 3. And section 450

contains an overall discussion about the paper.51

2. Material and Methods52

2.1. Experimental Design53

The data analyzed in this study were part of a larger crossover study on aphasia54

treatment using tDCS. All of the analyzed subjects had at least two years of progressive55

language deficit and no history of any other neurological condition that may have affected56

their language ability. Subjects had atrophy predominantly in the left hemisphere. Sub-57

jects were diagnosed via neuropsychological testing, language testing, MRI and clinical58

assessment according to consensus criteria [12]. The study was approved by the Johns59
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Hopkins Hospital Institutional review board and all subjects provided informed consent60

to participate in the study.61

A total of 50 right handed, native English speaking patients had a pre-intervention62

scan (scan1), 48 had a post-intervention scan (scan2). One patient was deleted from63

the analysis because of missing values in the connectivity matrix. Among the remaining64

47 post-intervention scanned patients, 25 had transcranial direct-current stimulation +65

language therapy and the remaining 22 patients had only language therapy. Several base-66

line covariates were recorded including: gender, disease onset (years), age at the start of67

therapy and language severity. These patients were diagnosed with three variant types,68

including the logopenic, the nonfluent, and the semantic, based on brain functions com-69

promised, which reflects brain areas that show initial atrophy. Patients with Logopenic70

variant PPA (lvPPA) present with word-finding difficulties and disproportionately im-71

paired sentence repetition. Patients with nonfluent variant PPA (nfvPPA) present with72

difficulty producing grammatical sentences and/or motor speech impairment (apraxia73

of speech). Finally, patients with semantic variant PPA (svPPA) present with fluent74

speech, but impaired word comprehension. See Table 1 for a summary of demographic75

and clinical information on the participants.76

Combined (n = 47) tDCS (n = 25) Sham (n = 22) P-value

Sex 22F, 25M 11F, 14M 11F, 11M 0.773

PPA variant 15L, 23N, 9S 9L, 12N, 4S 6L, 11N, 5S 0.801

Age 67.3 (6.8) 65.8 (8.1) 69.1 (5.0) 0.146

Year post onset 4.2 (2.8) 4.3 (3.2) 4.0 (2.3) 0.722

Language severity 1.7 (0.8) 1.7 (0.9) 1.8 (0.8) 0.719

Total severity 6.3 (4.5) 5.7 (3.9) 7.0 (5.2) 0.597

Table 1: Patient demographics. For age, years post onset, severity, values
shown are mean (standard deviation). P-values are from the Welch two sam-
ple t-tests for continuous outcomes and Fisher’s exact test for categorical out-
comes. Language severity is based on the language subset from the FTD-CDR
scale. Total severity refers to the sum of boxes, including language and behav-
ior as added in [13].

2.2. Data Preprocessing77

MRI scans were obtained at the Kennedy Krieger Institute at Johns Hopkins Uni-78

versity, using a 3 T Philips Achieva MRI scanner equipped with a 32-channel head coil.79

Resting-state fMRI (rsfMRI) data were acquired for approximately 9 min (210 time-point80

acquisitions) post-intervention. We used a 2D EPI sequence with SENSE partial-parallel81

imaging acceleration to obtain an in-plane resolution of 3.3 × 3.3 mm2 (64 × 64 voxels;82

TR/TE = 2500/30 ms; flip angle = 75◦; SENSE acceleration factor = 2; SPIR for fat83

suppression, 3 mm slice thickness). The data were co-registered with structural scans84

into the same anatomical space. Structural scans, acquired axially with a scan time of85

6 min (150 slices), used a T1-weighted MPRAGE sequence with 3D inversion recovery,86

magnetization-prepared rapid gradient, isotropic with a resolution of 1 × 1 × 1 mm3
87
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(FOV = 224 × 224 mm2; TR/TE = 8.1/3.7 ms; flip angle = 8◦; SENSE acceleration88

factor = 2).89

Using MRICloud, a cloud-platform for automated image parcellation approach (atlas-90

based analysis (ABA)), the MPRAGE scan was parcelled into 283 structures [14]. In91

detail, each participant’s high resolution MPRAGE was segmented by using a multi-atlas92

fusion label algorithm (MALF) and large deformation diffeomorphic metric mapping,93

LDDMM [15, 16, 17]. This highly accurate diffeomorphic algorithm, associated with94

multiple atlases, minimizes the mapping inaccuracies due to atrophy or local shape de-95

formations. All analyses were performed in native space. To control for relative regional96

atrophy, volumes for each ROI were normalized by the total intracerebral volume (total97

brain tissue without myelencephalon and cerebrospinal fluid). The resting-state fMRI was98

also processed in MRICloud and analyzed in a seed-by-seed manner. The image process-99

ing was described in our previous publication [18] including routines imported from the100

SPM connectivity toolbox for coregistration, motion, and slice timing correction; phys-101

iological nuisance correction using CompCor [19]; and motion and intensity TR outlier102

rejection using “ART” (https://www.nitrc.org/projects/artifact_detect/). The103

MRICloud pipeline follows well established steps for rsfMRI processing: after exclusion of104

“outlier” TRs, detected by ART routine (parameters: 2 standard deviations for motion105

and 4 standard deviations for intensity, more severe than the default of 9), the movement106

matrix combined with the physiological nuisance matrix is used in the deconvolution re-107

gression for the remaining TRs. These two steps for motion correction (outlier rejection108

and regression of motion parameters) ensure the minimization of the motion effect. The109

parcels resultants from the high resolution T1 segmentation were brought to the resting110

state dynamics by co-registration. Time-courses of 78 cortical and deep gray matter ROIs111

were extracted and the correlations among them were calculated.112

2.3. Density regression113

We propose to quantify the effect of possibly non-localized stimulation on functional114

connectivity through a density regression. We make the assumption that the connectivity115

matrix Ci of patient i is the adjacency matrix of a random weighted graph, for i =116

1, . . . , n, and n is the number of subjects. For all pairs of elements in the set {(s, t; i) | s <117

t ≤ N}, where N is the number of nodes in the graph, we have:118

Ci(s, t)
ind∼ fi, (1)

where fi is a density function. We refer to this density as the connectivity density of119

subject i. The process of proceeding from fMRI scans to the connectivity density is120

outlined in Figure 1. We estimate connectivity matrix from temporal correlation of121

BOLD signals between regions of interest (ROIs) after parcellation. And then estimate122

the connectivity density. In practice, one can use the vectorized elements in the upper123

triangular portion of the connectivity matrix to estimate the density using smoothing124

splines [20], which performs a maximum likelihood estimation on the spline coefficients125

for estimating the logarithm of the density function under a smoothness penalty. We126

choose this approach as it directly returns the splines, which are both mathematically127

and practically convenient, especially for performing a functional regression. In addition,128

it sets a boundary of the support for the estimated density, which is beneficial to our case129

as correlation coefficients are bounded between −1 and 1. Kernel density estimators [21]130

are also implemented as a comparison.131
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Figure 1: From MRI scan to connectivity density

Our proposal is to use fi to characterize Ci and subsequently study the relationship132

between fi and variables of interest. In the tDCS study, the variable of interest is the133

treatment status. Since the {fi} are (infinite dimensional) functional data, we employ134

functional data analysis tools [22, 23, 24]. Logically, one would model that treatment135

status predicts connectivity. However, treating complex data as covariates is often more136

convenient than treating them as the outcomes. Therefore, we adopt the ideas in case-137

control inverse regression [25, 26], and predict whether a subject is in the treatment arm138

using the connectivity density and the baseline covariates as predictors. Let Ai denote139

the treatment assignment with Ai = 1 for tDCS and Ai = 0 for sham, and Xi ∈ Rq
140

denote the q-dimensional covariate vector with the first element one for the intercept.141

The linear model considered is the following:142

logit{P (Ai = 1|Xi, fi)} = X>i β +

∫
T (fi)g, (2)

where T is a given operator from L2 to L2 aiming to capture a specific characteristic of the143

density functions. The function g is a coefficient function, and β ∈ Rq is the coefficient144

vector of the covariates, both to be estimated.145

Various choices of T and the shape of g have different interpretations on the resulting146

model. For example, setting T (f) = f , the identity function, the linear predictor is147 ∫
T (fi)g = E[g(Zi)], where E[·] is the expectation of a random variable and Zi is an148

random variable drawn from fi. With a sufficiently flexible choice of g, mode (2) covers a149

broad range of possible model fits. However, many of them may not focus on tail behavior,150

where effects would likely occur. For example, if g is a polynomial, the model considers151

the moments of the density (mean, variance, skewness, etc.) as a predictor. However,152

it offers no benefit over the direct usage of the moment estimates of the connectivities.153

Thus, it will not be discussed further, though it does demonstrate a special case of the154

approach.155

As for the choice of T , using T (f) = log(f) is similar to the use of the identity156

function. It loses the expected value interpretation , while instead, performs regression157

on the space of densities with Aitchison geometry [27]. Thus, it may better detect the158

influence of the tail behavior on the outcome.159

Another choice is the quantile mapping, Tq(f) = F−1, where F is the cumulative160

distribution function associated with the density f . With a sufficient number of foci, this161

approach is approximately equivalent to using the empirical quantiles of the connectivity162

data as the regressors. Our proposed approach is quite similar to this. However, we163

further propose to weight the quantiles via density quantile. Specifically, we set Tldq(f) =164

log ◦f ◦ F−1 = − log [(dF−1/dt)−1] where ◦ is the function composition operator. The165

latter equality is easy to derive by taking derivatives via the chain rule to the identity166

function, F ◦ F−1. Note that the density quantile f ◦ F−1 can be regarded as a quantile167
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synchronized version of density function, and therefore is more sensitive to the changing168

tails. And the further logarithm transform maps density quantile to a Hilbert space,169

which is essential to linear models. This idea has been explored before as a potentially170

preferable method for utilizing quantiles as regressors. Specifically, it is equivalent to the171

Hilbert space mapping, suggested by Petersen and Müller [9].172

2.4. Reversing the predictor/response relationship173

It is typical in regression models to consider the hypothetically functionally antecedent174

variable as a predictor, independent or exogenous variable, rather than an outcome, de-175

pendent or endogenous variable. A counterexample is in outcome dependent sampling,176

such as in retrospective studies. We utilize the same strategy of reversing the typical pre-177

dictor / response relationship, as is more convenient for modeling with high dimensional178

and complex quantities (such as brain connectivity) as the predictor. In the tDCS study,179

we model treatment assignment as the outcome using a logit model with the connectiv-180

ity density and other covariates as the independent variables. This avoids the need to181

construct probability distributions on the connectivity densities themselves.182

To elaborate, using Bayes’ rule and the fact of a randomization design, P (Ai = 1) =
P (Ai = 0) = 0.5, for any function g and transformation T , we have:

Odds(Ai = 1|Xi, 〈T (fi), g〉) =
P (〈T (fi), g〉|Ai = 1,Xi)

P (〈T (fi), g〉|Ai = 0,Xi)
.,

where 〈·, ·〉 is any inner product of two functions. In our application we consider logit183

models on P (Ai = 1|Xi, T (fi)), which depends on fi only though the form 〈T (fi), g〉. As184

the above relationship shows, our treatment assignment outcome model, P (Ai|Xi, T (fi)),185

is consistent with any connectivity outcome model, P (〈T (fi), g〉|Ai,Xi), where the like-186

lihood ratio comparing treated to controls is approximately log linear with our linear187

separable density model given in Equation 2.188

2.5. Estimation of the coefficient function189

To estimate the coefficient function, g in model (2) , we perform a functional principal190

components analysis (fPCA) [28]. This reduces the dimension of the functional regressor191

using a set of data-derived basis. In this approach, one calculates the PCA decompo-192

sition of the functions, {fi}, using the Karhunen/Loève transformation [29], where the193

covariance function is smoothed [30] and selects the leading principal components that194

explain over 99% of the variation as the basis functions. Notice that, the version of fPCA195

utilized here does not honor possible density implied constraints of the T (fi). General-196

ized cross validation (GCV) is commonly used to choose the smoothing parameters [for197

detailed discussion, see Section 4.5.4 of 31]. Confidence bands are derived using a Bayes198

approach. [32, 33, 24].199

2.6. Comparison200

To illustrate the benefit of conducting a delocalized analysis, a simulation study based201

on the fMRI data collected in the tDCS study is conducted. We consider an extreme202

example that demonstrates an example where non-localized brain stimulation decreases203

statistical power, or even makes it impossible to identify ROI pairs with a significant204

effect when implementing a localization method. However, using connectivity densities205

retains the relevant information.206
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In the simulation, consider a brain connectivity map with 20 regions, R1 . . . R20, a207

transcranial stimulation that randomly “stimulates” region Ri with equal probability208

across i. After stimulation, the correlations of Ri with all other regions are flipped, with209

the remaining region pairs unchanged. The mean and variance of the stimualted data are210

constant across stimulation, mimicking the actual tDCS data. Thus, the stimulation does211

not impact the first two moments of connectivity and has a very weak localized effect by212

randomly stimulating different spaces. However, stimulating any region has a consistent213

impact to connectivity density. This simulation is, of course, an extreme caricature of a214

non-localized effects in real data.215

We sampled 100 pre-stimulation maps from the pre-intervention scans and then sim-216

ulated 100 post-stimulating maps according to above mechanism. Then, we tested the217

significance of edgewise testing, the LASSO and density regression, with different trans-218

formations. We performed 500 such simulations. For completeness, we also considered219

these methods when there was no change from before to after stimulation and when the220

stimulation was localized at a particular region. In the real tDCS data, the density meth-221

ods are compared with regressing connectivity matrix by comparing edges associated with222

the estimated connectivity from pairs of foci.223

The edgewise regression approach considers the following model:224

logit{P (Ai = 1|Xi, fi)} = X>i β + Ci(s, t)αst, (3)

where s > t. The second competing approach considered was a regression model with225

high-dimensional predictors:226

logit{P (Ai = 1|Xi, fi)} = X>i β + Cf>
i α, (4)

where Cf
i is the vectorization of the upper triangular portion of Ci. A LASSO regular-227

ization was imposed and high-dimensional inferences were drawn following the procedure228

introduced by Dezeure et al.[34] We refer to this model as the LASSO model.229

3. Results230

3.1. Simulation231

Figure 2 shows example connectivity maps and fitted functional regressors from an232

example simulation, one where stimulation was present and one where it was absent.233

We report the rate of positive findings for all methods. Results are shown in Table 2.234

Localization methods do not find significant region pairs in the non-localized simulations.235

However, the density method detects the stimulation impact on the connectivity densities.236

Bonferroni FDR BY T0 Tl Tldq
Non-Localized 0.03 0.03 0.004 1.00 1.00 1.00

Localized 1.00 1.00 1.00 1.00 1.00 1.00

No-Stimulation 0.01 0.01 0.00 0.05 0.07 0.04

Table 2: This table shows the rate of positive findings over 500 simulations.
T0, Tl, Tldq are the identity, logarithm and log density-quantile transformations
described in section 2.3. Bonferroni, FDR [35] and BY [36] refer to multiplicity
correction procedures. LASSO testing, were implemented by the pacakge hdi
[37].
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(a) (b)

(c) (d)

Figure 2: Example simulation results, where (a) and (b) show simulated pre-
and post-stimulation connectivity maps. Image (c) shows the regression coef-
ficient function and its 95% confidence interval when there’s stimulation. The
regression model uses the log density quantile function. Image (d) shows the
same curve when there’s no stimulation.
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3.2. Analysis of the tDCS data using edgewise testing & LASSO237

For the tDCS data, we also tested the significance of edgewise regression [models (3),238

(4)] and a joint model of the upper-triangular component of Ci. No foci-pair was identified239

as significant in either regression model, at Type I error rate levels of 0.05 or 0.1. Of note,240

previous localization work on related data [38], yields significant findings. However, the241

total number of regions were restricted, thus dramatically reducing multiplicity concerns.242

In this analysis, 78 regions were used, resulting in a more stringent correction factor. In243

addition, a more restrictive inclusion criteria in [38] led to a different study population.244

3.3. Analysis of the tDCS data using the density regression245

In this section, we present the analysis results of the tDCS study using the density246

regression (Model (2)) with different transformations (T ). The fitted coefficient function,247

g, and its 95% confidence interval are presented in Figure 3. Functional linear regression248

was performed using the refund R-package with default parameter of smoothed covari-249

ance fPCA, which chooses the number of components that explains over 99% of the data250

variation.251

Regressing on the density after applying the log-density quantile transform yields252

the highest number of significant signals, which reaches its maximum around the 85th
253

percentile. This potentially indicates that stimulation has a consistent tail effect which254

is more likely to be aligned by quantile, rather than absolute value. Since the estimated255

coefficient function is significantly non-zero only in the positive tail this suggests that the256

tDCS group had higher connection densities in the tail than the sham group. That is,257

connectivity among the most connected regions was higher in the tDCS group.258

A likelihood ratio test was performed to compare logistic regression with only baseline259

variables and our log-quantile model including both the baseline variables and the log260

density quantile term. The resulting p-value was 0.0052, indicating a statistically signif-261

icant gain of information from connectivity density at the 0.05 benchmark type I error262

rate.263

3.4. Induced Connectivity264

Consider the best model using the log density quantile transform, Tldq. We have

logit{P (Ai = 1|Xi, fi)} = X>i β +

∫ 1

0

log[fi ◦ F−1i (q)]g(q)dq.

Notice that for the connectivity matrix, Ci, we have Fi{Ci} ∼ U(0, 1), a uniform distri-
bution on [0, 1] via the probability integral transform. Let Qi(s, t) = Fi{Ci(s, t)}. Then
it follows that:∫ 1

0

log[fi{F−1i (q)}]g(q)dq = E[g(Qi) log fi{F−1i (Qi)}]

� 2

N(N − 1)

∑
t>s

g{Qi(s, t)} log fi[F
−1
i {Qi(s, t)}].

Therefore, for this subject, one can assign g{Qi(s, t)} log fi[F
−1
i {Qi(s, t)}] as the effect265

size for region pair (s, t). Averaging this effect across all patients yields an importance266

metric for every region pair in the model. We call this stimulation induced connectiv-267

ity, since it describes how influential the correlation of each region pair is in predicting268

stimulation status. The induced connectivity matrix is shown in Figure 4 together with269
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(a) original density (b) log transform

(c) log quantile transform

d

(d) log quantile transform with KDE estimated density

Figure 3: Model results on the tDCS experiment. The black solid line is
the fitted coefficient function, g, with the black dashed line referencing the
associated 95% confidence interval. Densities were estimate from smoothing
splines implemented in the fda R-package with 19 degrees of freedom for the
spline basis. A kernel density estimator (KDE,Figure 3d) is also computed
and compared with smoothing spline (Panel 3c) method. Contrasting 3c and
3d shows that the density estimation technique did not impact results.
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(a) (b)

Figure 4: Figure 4a shows the induced connectivity described in section 3.4.
IFG regions (which were applied tDCS) are noted in the red box. And figure
4b shows some region pairs with most consistent contribution, measured by
the frequency of having top 5% absolute effect size across all patients. Again,
IFG regions were the ones applied tDCS

a summary of effect agreement across subjects, where for each patient, region pairs are270

selected with top 5% absolute effect size. And the frequency of each region pair being271

selected is calculated.272

This technique, of course, returns to a discussion of localized effects. However, by273

investigating this measure one can ascertain the degree of localization consistency across274

subjects - an impossibility with pure localization analysis.275

4. Discussion276

In this manuscript, a new framework for analysing functional connectivity was pro-277

posed. Functional data analysis of log quantile connectivity densities investigates possible278

non-localized effects associated with subject level variables. A sizable byproduct of this279

style of analysis is the general elimination of multiplicity considerations. This is of great280

importance in connectivity analysis, where the number of comparisons grows at a rate281

of the square of the number of foci being considered. In the data application, we find282

associations with stimulation and connectivity density. In contrast, edgewise methods283

fail to find any results purely because of the multiplicity issue. This is partially due to a284

wide search of all possible region pairs from the parcellation. Of course, one could also285

reduce multiplicity concerns by restricting attention to regions associated with a priori286

hypotheses of interest, as was done in [38]. In contrast, investigating connection densi-287

ties is an omnibus approach that benefits from a reduction in the number of tests over288

exploratory edge-wise aprpoaches, a robustness to non-localized effects and a robustness289

to the inclusion of unnecessary foci. These benefits come at the expense of the loss of290

power and interpretability over analyese considring only a small set of tightly specified291

edge-wise hypotheses.292

An interesting direction to pursue with connectivity density methods is to consider293

robustness to spatial registration [39]. The connectivity density should be largely in-294

variant to registration. In contrast, localization methods heavily rely on both accurate295
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registration and accurate biological functional localization across subjects. Therefore,296

density regression could be performed after affine registration typically done prior to the297

more time consuming non-linear registration.298

We used functional data analysis to relate connection densities to outcomes. Func-299

tional data analysis tools [23] have grown to be quite flexible. Thus, density regression300

approaches can be relatively easily generalized to handle different settings, such as any301

typical statistical outcome model and longitudinal data. Also, density estimates may302

naturally make adjustments for missing data, in the form of missing foci, since the den-303

sity can remain the same in some contexts. This has potential broad implications for the304

study of stroke and other diseases with abnormal brain pathology. Localization methods305

are not available if the region of interest is damaged or missing. In contrast, density306

based methods are easy to apply.307

Statistically, we assumed independence between subjects and relied on the random-308

ization to invert the predictor / response relationship using logit models. This borrows309

techniques from case referent sampling from epidemiology dating back to the seminal310

work of Cornfield [40, 41]. Independence between subjects was used for inference. We311

also used density estimates for connection densities, techniques that implicitly require312

sampling assumptions for theoretical convergence. However, we contend that connectiv-313

ity densities are intrinsically of interest, and therefore no appeals to super-population314

inference and sampling assumptions are needed for estimation. This is analogous to spa-315

tial group ICA, where productive estimates are obtained via independence assumptions316

on voxels over space, without a true sampling or super-population model for inference317

[42]. An interesting future direction of research would investigate dependencies between318

foci correlations.319

Our recommended approach uses log quantile densities as the functional predictor,320

rather than the density, distribution function or quantile function directly [9]. This321

approach has convenient theoretical properties, but also the practical benefit of focusing322

attention on tail behavior, where effects are most likely to be seen. Utilizing the quantile323

density also creates robustness to irrelevant foci pairs being included in the analysis.324

Our simulations and data results focus on settings that highlight the benefits of an325

omnibus density regression approach. In the simulations, we investigated a non-localized326

caricature of typical effects. Similarly, in our data analysis, we performed no filtering of327

regions prior to analysis (thus magnifying multiple comparison concerns). It was shown in328

the simulation, that functional density regression approaches can find real non-localized329

effects, whereas, as expected, edgewise methods do not find any. It should be emphasized330

that the performance of the density regression approach is invariant to the distribution331

of effects across subjects, whereas edgewise approaches become viable as the degree of332

localization increases.333

In addition, the flexibility of the approach finds tail effects in the real data, even334

though there are a great deal of irrelevant connections (i.e. unnecessarily included region335

pairs) being studied. Edgewise and other regression approaches are highly sensitive to336

unnecessary null connections being included in the analysis. A benefit of the data being337

considered is the likely existence of an effect related to the stimulation. However, we338

emphasize that a single omnibus approach does not represent a full analysis of the data.339

We recommend this approach as a global analysis to be performed prior to edgewise340

or other localization methods. This mirrors the classic ANOVA (analysis of variance)341

approach of performing an overall F test before investigating pairs of explanatory factor342

levels. It would most useful in exploratory model building where foci selection is not343
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restrictive. In cases of tightly coupled statistical hypotheses involving relatively few344

regions or foci, density regression would not be needed or particularly helpful.345

This methodology raise many avenues for future research. For example, one the idea346

of non-localized effects in dynamic connectivity [43] via stochastic processes of connectiv-347

ity densities (by time). In addition, there are multiple alternatives for densities estimated348

from correlation of each region pair for contralateral regions. Here, it should be acknowl-349

edged that there is strong homotopic correlations from symmetric regions. One should350

then deal with multivariate densities estimated from pairs of correlations. This same logic351

could be applied to geographically close regions and for instances with longitudinal scans.352

The connectivity density of spectral information [44], like leading principal component353

scores, should also be studied to potentially extract relevant brain graph properties.354

Finally, there’s the role that connecvity density methods could play in fMRI analysis355

of subjects with missing brain tissue, such as studies of stroke or surgical interventions.356

Connectivity density methods may be resilient to the missing data impact of differential357

brain structure in a way that localization methods are not. In fact, it is interesting358

to conjecture what localization methods even mean in these settings where a subset of359

subjects are missing areas of localization. In contrast, density methods may provide a360

more robust and well defined methodology. It is worthy of note that components of graph361

methodology [45, 45, 46] often considers summary metrics that do not require or assume362

localization. Density regression can be considered a subset of weighted graph metric363

analysis.364
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