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Abstract 
HiChIP and PLAC-seq are emerging technologies for studying genome-wide long-range chromatin interactions mediated 
by protein of interest, enabling more sensitive and cost-efficient interrogation of protein-centric chromatin conformation. 
However, due to the unbalanced read distribution introduced by protein immunoprecipitation, existing reproducibility 
measures developed for Hi-C data are not appropriate for the analysis of HiChIP and PLAC-seq data. 
       Here, we present HPRep, a stratified and weighted correlation metric derived from normalized contact counts, to 
quantify reproducibility in HiChIP and PLAC-seq data. We applied HPRep to multiple real datasets and demonstrate that 
HPRep outperforms existing reproducibility measures developed for Hi-C data. Specifically, we applied HPRep to 
H3K4me3 PLAC-seq data from mouse embryonic stem cells and mouse brain tissues, as well as H3K27ac HiChIP data 
from human lymphoblastoid cell line GM12878 and leukemia cell line K562, showing that HPRep can more clearly sepa-
rate among pseudo-replicates, real replicates, and non-replicates. Furthermore, in an H3K4me3 PLAC-seq dataset con-
sisting of 11 samples from four human brain cell types, HPRep demonstrates expected clustering of data which could not 
be achieved by existing methods developed for Hi-C data, highlighting the need of a reproducibility metric tailored to 
HiChIP and PLAC-seq data. 
 
Supplementary data are available. 
 
Software available at https://github.com/yunliUNC/HPRep. 
 
Contact: yunli@med.unc.edu 

 
 

1 Introduction  
Chromatin spatial organization plays a critical role in genome structure 
and transcriptional regulation (Li et al., 2018; Schmitt et al., 2016; 
Schoenfelder and Fraser, 2019). During the last decade, great strides 
have been made in the mapping of long-range chromatin interactions, 
thanks to the rapid development of chromatin conformation capture (3C) 
based technologies. Among them, Hi-C enables genome-wide measure 

of chromatin spatial organization and has been widely used in practice. 
To ensure scientific rigor, various methods have been developed to as-
sess the reproducibility of Hi-C data (Yang et al., 2017; Ursu et al., 
2017; Yan et al., 2017; Sauria et al., 2017; Yardimici et al., 2019). For 
example, HiCRep (Yang et al., 2017) first performs 2D smoothing to 
reduce the stochastic noise resulting from the sparsity of Hi-C data, and 
then quantifies reproducibility by calculating a stratified correlation, 
which is a weighted average of correlation coefficients between contact  
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Figure 1. Cartoon illustration of HPRep. Step 1 involves first identifying anchors (i.e., 1D ChIP peak sites) and then extracting all interactions between these anchors and bins within a 

specified genomic distance from the anchors. This is followed by a one-dimensional smoothing procedure. Stratification by distance is performed in step 2 such that the elements of vector 

𝑎! represent interactions that are equidistant from their respective anchors, 𝑘 bins apart. In the final step, the Pearson correlation coefficients are calculated between 𝑎!	from one sample 

and the analogous vector (𝑏!) from the other sample for all 𝑘, and these Pearson correlation coefficients are combined in a weighted average to yield the final reproducibility metric.
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frequencies across specific one-dimensional (1D) genomic distance 
bands. HiC-Spector (Yan et al., 2017) adopts a different approach, trans-
forming symmetric Hi-C contact matrices to their corresponding Lapla-
cian matrices and then calculating similarity as the average of the dis-
tances between normalized eigenvectors. Similar to HiCRep, Ge-
nomeDISCO (Ursu et al., 2017) relies on data smoothing, which is per-
formed over a range of steps of the random walk to determine an optimal 
separation between biological replicates and non-replicates as measured 
by area under the precision-recall curve. The reproducibility measure is a 
function of distances between two contact matrices smoothed using this 
optimized number of steps. QuASAR-Rep (Sauria et al., 2017) deter-
mines a local correlation matrix by comparing observed interaction 
counts to background signal-distance values within a 100-bin range. This 
local correlation matrix is transformed by element-wise multiplication 
with a matrix of scaled interaction counts and the reproducibility be-
tween two samples is defined as the Pearson correlation coefficient be-
tween the corresponding transformed matrices.   

Recently, HiChIP (Mumbach et al., 2016) and PLAC-seq (Fang et 
al., 2016) technologies (hereafter collectively referred to as HP for brevi-
ty) have been developed to study protein-mediated long-range chromatin 
interactions at much reduced cost and greatly enhanced resolution rela-
tive to Hi-C. While the chromatin immunoprecipitation (ChIP) step 
involved in HP technologies allows for the cost and resolution benefits, it 
also introduces additional layers of systematic biases which make analy-
sis methods developed for Hi-C data potentially unsuitable for HP data. 
To date, no method is available for quantifying reproducibility of HP 
data.  

To fill in this gap, we propose a novel method, HPRep, to measure 
the similarity or reproducibility between two HP datasets. HPRep is 
motivated by HiCRep (Yang et al., 2017), the previously described 
method developed for quantifying reproducibility of Hi-C data. Similar 
to HiCRep, HPRep leverages the dependence of chromatin contact fre-
quency on 1D genomic distance; however, in contrast, HPRep models 
different ChIP enrichment levels (Supplementary Text S1), which con-
tributes to the systematic biases specific to HP data, and also incorpo-
rates an unbalanced data matrix that addresses the targeted structure of 
HP data in comparison to Hi-C data.  

2 Methods 
Currently available methods to quantify reproducibility in Hi-C datasets, 
such as HiCRep, HiC-Spector, GenomeDISCO, and QuASAR-Rep 
(systematically evaluated in Yardimci et al., 2019), all involve derivation 
of a similarity metric between two contact frequency matrices. The input 
Hi-C data consists of n × n symmetric matrices of non-negative integers, 
where each row/column represents one genomic locus (i.e., bin) and n is 
the total number of bins. The (𝑖, 𝑗) element of such a matrix represents 
the number of paired-end reads spanning between bin i and bin j.  

These existing methods are conceptually inappropriate for HP data 
due to the unbalanced read distribution due to ChIP enrichment that is 
introduced in the HP experiments. In addition, while Hi-C data consist of 
interactions among all bin pairs, HP data is restricted to bin pairs where 
at least one bin overlaps a binding region of the protein of interest. Such 
overlapping bins are referred to as the anchor bins, and two HP datasets 
may have different sets of anchor bins. We further define bin pairs con-
sisting of two anchor bins as the “AND” pairs, and those consisting of 
only one anchor bin are defined as the “XOR” pairs. In contrast, the 

“NOT” pairs, for which neither bin is an anchor bin, are not meaningful 
due to the nature of HP technologies and therefore are not used in HP 
data analysis (Juric et al., 2019). 

The data structure in HPRep is an 𝑁 ×𝑚 matrix (Supplementary 
Text S2), where N represents the number of anchor bins and m = 2 * 
1Mb/resolution, where resolution refers to the bin size (1Mb is set as the 
default but can be modified by the user). The (𝑖, 𝑗) th element represents 
the normalized contact frequency between anchor 𝑖  and the bin 𝑗  bin 
widths away from the anchor, 𝑗 ∈ {−𝑚/2,… , −1, 1, … ,𝑚/2}. The num-
ber of anchor bins, 𝑁, is the cardinality of the union set of anchor bins 
for all datasets in the study. Normalization is performed via a two-step 
procedure: 1) Raw counts are adjusted for the biases introduced by effec-
tive fragment length, GC content, mappability, and ChIP efficiency by 
fitting a positive Poisson regression model, following the approach de-
tailed in the MAPS method (Juric et al., 2019). Separate models are fit to 
the AND and XOR pairs since the AND pairs are expected to have sig-
nificantly higher contact frequencies due to double ChIP enrichment. 2) 
Using the fitted models, the data are normalized by taking the log2 value 
of (1 + observed / expected counts). Further details in Supplementary 
Text S1. 

Similar to HiCRep (Yang et al., 2017), the distance metric used by 
HPRep is a weighted Pearson correlation coefficient that is stratified by 
distance. Note in Figure 1 that these strata are the pairs of columns of 
the previously described data matrix which are equal-distant from the 
center. Due to the sparsity of HP data, especially for long-range chroma-
tin interactions, the normalized count values are smoothed. The smooth-
ing procedure used is a 1D arithmetic mean of values within a window of 
𝑑 bins away along the same row (Supplementary Text S3 for optimiza-
tion procedure). Each of the 𝑚/2 correlations is weighted based on the 
variation of the smoothed values at that distance such that the weights 
sum to one. Therefore, the resultant metric is restricted to [-1, 1] and has 
a similar interpretation as a standard Pearson correlation coefficient.  

Let 𝑎!  and 𝑏!	be two vectors of length 2𝑁 from samples 𝑎 and 𝑏 
respectively, whose elements are normalized contact counts, where 𝑁 
represents the number of anchor bins in the union set of anchor bins from 
all samples in the study, and 𝑘 indexes bins that are ±𝑘 units away. Let 
𝑎!′ and 𝑏!′ be the resulting vectors of length 𝑁! ≤ 2𝑁	after removing 
any elements that are 0 in identical positions in both two vectors. The 
weight for stratum 𝑘, 𝑤!, is defined as 

 
where 𝐾 is the total number of strata, which is analogous to the weights 
used in HiCRep (Yang et al., 2017). The numerator of 𝑤!  is the product 
of strata size and the standard deviations of 𝑎!′ and 𝑏!′, while the de-
nominator is the sum of the numerators over all strata. Consequently, the 
weights are restricted to [0, 1] and sum to 1, where larger and more 
variable strata carry more weight than smaller and less variable strata.   

3 Results 

3.1 Mouse H3K4me3 PLAC-seq data 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

To evaluate the performance of HPRep, we first analyzed published 
H3K4me3 PLAC-seq datasets from mouse embryonic stem cells 
(mESCs) (Juric et al. 2019) and mouse brain tissues (Yamada et al. 
2019), both consisting of two samples, by applying HPRep at 10Kb 
resolution. Samples from the same cell type or tissue were labeled as 
biological replicates while those cross cell type or tissue were labeled 
non-replicates, yielding two pairs of biological replicates and four pairs 
of non-replicates. Pseudo replicates were generated by pooling the two 
samples of the same cell type or tissue together, and then partitioning the 
pooled contact frequency in each bin pair randomly via Binomial (p = 
0.5) sampling. 

 
Figure 2. HPRep in mouse PLAC-seq data. Metrics obtained applying HPRep to 

PLAC-seq data from mESC and mouse brain (mb) tissues. Pseudo replicates generated 

from pooling two mESC samples followed by random sampling. Cross sample results 

represent mean of four pairings. Results are presented as the mean value over 19 autoso-

mal chromosomes with error bar representing ± 1 standard deviation. 

 

We would expect that pseudo replicates are most similar, followed 
by biological replicates, and that non-replicates are least similar. Indeed, 
this expected pattern is observed using HPRep (Figure 2), with results 
also exhibiting highly consistent patterns across chromosomes (Supple-
mentary Figure 1). The higher metric for replicate mESC samples rela-
tive to mouse brain samples is due to the higher sampling depth of the 
former. 

 
Figure 3. Comparison of methods, in mouse PLAC-seq datasets. HPRep compared to 

Hi-C specific methods HiC-Spector and HiCRep as well as Pearson correlation. 1: All 

methods using bin pairs in the AND and XOR sets. 2 Methods other than HPRep using all 

bin pairs in the AND, XOR and NOT sets. PLAC-seq dataset consisted of two mESC and 

two mouse brain replicates. 

 

We next compared HPRep with alternative methods, specifically 
two Hi-C reproducibility methods: HiCRep (Yang et al., 2017) and HiC-
Spector (Yan et al., 2017) as well as a naïve Pearson correlation (Sup-
plementary Text S4). Since the Hi-C specific methods are designed using 
𝑛 × 𝑛 symmetric contact matrices as the standard input, for these com-
parisons, in addition to restricting to bin pairs in the AND and XOR sets, 
we generated a “pseudo Hi-C” dataset from a HP dataset by also using 
all bin pairs (including the AND, XOR and NOT sets). The naïve Pear-
son correlation consisted simply of converting the entire upper triangular 
Hi-C contact matrices for each sample to single vectors and calculating 
the Pearson correlation coefficient between them. The methods were 
performed separately on all 19 autosomal chromosomes and the resulting 
metrics were reported as the arithmetic mean. The HiCRep and HiC-
Spector methods were applied with the default parameters. The results 
are displayed in Figure 3. 

All methods except for naïve Pearson correlation yielded results 
consistent with what we expected, namely higher similarity for the bio-
logical replicates and lower similarity for the non-replicates. The similar-
ity or reproducibility values for the biological replicates were similar 
among these three methods, which is expected for HPRep and HiCRep, 
since both methods are based on stratified Pearson correlation, but is 
noteworthy for HiC-Spector since it is based on a rather different meth-
od, and is restricted to [0, 1] as opposed to [-1, 1]. The difference among 
these methods, with the exclusion of HiC-Spector when including the 
NOT set, manifests largely in values for non-replicates, with HPRep 
yielding much smaller values relative to the others, although in each case 
the four non-replicate pair results were very consistent. Interestingly, the 
naïve Pearson correlation fails with the mouse brain sample, yielding a 
reproducibility score nearly identical to those of the non-replicates 
whereas the result from mESC replicates is consistent with the other 
three methods. This failure is obviated in HiCRep and HPRep, the other 
Pearson based methods. For example, for biological replicates, HPRep 
yields a mean reproducibility metric of 0.92 compared to a mean value 
of 0.25 for non-replicates. For the experiments using bin pairs in the 
AND, XOR and NOT sets, the mean reproducibility metrics comparing 
replicates and notn-replicates are 0.80 vs. 0.51, 0.99 vs. 0.73, and 0.88 vs. 
0.76 for HiC-Spector, HiCRep, and Pearson correlation coefficients, 
respectively. 

3.2 Human HiChIP data 
In addition, we applied HPRep to measure the reproducibility of 
H3K27ac HiChIP data from GM12878 cells (two biological replicates) 
and K562 cells (three biological replicates) at 10Kb resolution (Mum-
bach et al., 2017) resulting in 4 pairs of biological replicates (1 pair from 
GM12878, 3 pairs from K562) and 6 pairs of non-replicates (Figure 4). 
We anticipated a priori that differences between replicates and non-
replicates would be more pronounced in this human dataset than the 
previous mouse H3K4me3 PLAC-seq dataset due to the greater dissimi-
larity in H3K27ac anchor bins between GM12878 cells and K562 cells. 
Specifically, the GM12878 and K562 cell lines contain 31,980 and 
26,963 H3K27ac 10Kb anchor bins genome-wide (autosomal) respec-
tively, with only 14,304 shared (Jaccard index 0.32). By contrast, mESC 
and mouse brain have 28,903 and 21,778 H3K4me3 10Kb anchor bins, 
with 17,722 overlapping, (Jaccard index 0.54) which is not expected 
since active promoters are largely shared across tissues and cell lines. 
For this human dataset, different methods were performed individually 
on all 22 autosomal chromosomes and the resulting metrics were aver-
aged across chromosomes. 
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Figure 4. Comparison of methods in HiChIP datasets from human blood cell lines. 

HPRep compared to Hi-C specific methods HiC-Spector and HiCRep as well as Pearson 

correlation. 1 All methods using bin pairs in the AND and XOR sets. 2 Methods other than 

HPRep using all bin pairs in the AND, XOR and NOT sets. HiChIP dataset consisted of 

two GM12878 replicates and three K562 replicates. 

 
The results from the human HiChIP data are consistent with those 

from mouse PLAC-seq data: the biological replicates yield high similari-
ty (close to 1) while the non-replicates yield uniformly lower similarity. 
While all autosomal chromosomes were used in these analyses and re-
sults were largely consistent across them using HPRep, HiCRep, and 
Pearson correlation coefficients, results were quite inconsistent using 
HiC-Spector (Supplementary Figure 2). Specifically, HiC-Spector used 
20 eigenvectors in the computation of a reproducibility metric, yet for 
several chromosomes convergence fails so fewer eigenvectors are used 
which yields erratic results (Supplementary Table 1). Again, HPRep 
results in the lowest metrics for the non-replicates which are all close to 
zero, highlighting the influence on anchor bin identity in this method. 

3.3 Human PLAC-seq data 
We next applied HPRep to a more complex H3K4me3 PLAC-seq dataset 
at 5Kb resolution, consisting of 11 samples from four brain cell types in 
human fetal brain obtained via fluorescence-activated cell sorting (Song 
et al. 2020): 3 samples from neurons (N), 3 samples from interneurons 
(IN), 2 samples from radial glial (RG), and 3 samples from intermediate 
progenitor cells (IPC). These samples have varying sequencing depths 
(detailed in Supplementary Table 2 of Song et al. 2020), with number of 
cis reads ranging from 47.5 million for RG2 (the second replicate of RG) 
to 390 million for RG1 (first replicate of RG). The anchor bins are de-
fined as the union of 1D H3K4me3 peaks from all 4 cell types. In Figure 
5a, reproducibility obtained by HiCRep shows no differentiation be-
tween inter- and intra-cells types. In contrast, HPRep shows a clear pat-
tern of higher similarity for replicates from the same cell type compared 
to those from different cell types.  
a                                                           b 

Figure. 5. Comparison of HPRep and HiCRep in human brain PLAC-seq datasets. 

HPRep compared to HiCRep. HiChIP dataset consisted of 3 neuron, 3 interneuron, 2 

radial glial, and 3 intermediate progenitor cell samples. Red color signifies results indicat-

ing stronger correlation. 

 
Focusing on bin pairs in the AND and XOR sets highlights the ef-

fect of normalizing ChIP enrichment level. Figure 6 is analogous to 5a 
excluding bin pairs in the NOT set. The cell type clustering is more in 
line with the known truth, however, still has misspecifications according 
to the dendrogram: neuron, interneuron, and IPC cells are correctly 
grouped, but radial glial cells are misclassified into two groups. 

 Recent studies have shown that HiCRep is sensitive to sequencing 
depth (Yardimici et al., 2019). To evaluate the robustness of HPrep with 
respective to different sequencing depths, we performed down-sampling 
to the original PLAC-seq data from 4 human brain cell types. This was 
performed by sampling from a multinomial distribution with n equal to 
the original count multiplied by a down-sampling factor and count prob-
abilities set to match the distribution in the original data (Supplementary 
Text S5).   

 
Figure. 6. HiCRep excluding NOT pairs in human neural PLAC-seq datasets. 

HiCRep. HiChIP dataset consisted of three neuron, 3 interneuron, 2 radial glial, and 3 

intermediate progenitor cell samples excluding interactions where neither bin overlapped 

with an anchor. Red color signifies results indicating stronger correlation. 

 
The first down-sampling was performed such that all samples 

matched the depth of the sample (RG2) which had the lowest sequencing 
depth. Note the identical color scales for Figures 5b and Figure 7, but 
the decrease in metric values for many pairwise comparisons for samples 
of the same cell type such as the interneuron cells. In order to quantify 
this reduced discernibility between samples, we utilized the silhouette 
procedure (Rousseeuw 1987), treating reproducibility score as a distance 
metric and reporting the average of the 11 silhouette values, one for each 
sample (Supplementary Text S6). We obtain 0.717 and 0.685 for the 
original experiment and down-sampled results respectively, where 
smaller numbers indicate worse clustering performance. 
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Figure. 7. Performance of HPRep in down-sampled human neural PLAC-seq data. 

HPRep results obtained after down-sampling all eleven samples to read depth of the 

lowest sample. 

 

Subsequent down-sampling was performed uniformly across all 
samples such that total counts were reduced to 80%, 60%, 40%, and 20% 
of their original values following the same sampling protocol as de-
scribed above. As expected, in Figure 8 we observe decreased discerni-
bility among samples from different cell types, most strikingly with IPC 
and RG where the within sample HPRep reproducibility metric dropped 
to as low as 0.26 and 0.43, respectively. Applying the modified silhou-
ette procedure described above to these four down-sampled datasets, we 
obtained a silhouette score of 0.700, 0.678, 0.634, and 0.518 for down-
sampling to 80%, 60%, 40%, and 20% respectively.  
    a         b 

     

 c           d 

Figure. 8. Down-sampling uniformly across all samples in human neural PLAC-seq 

datasets. HPRep results obtained after down-sampling each sample to by specified factor. 

a) 80% of original depth of each sample, b) 60% of original depth, c) 40% of original 

depth, d) 20% of original depth. Note that the diagonal is now gray to remove it from the 

scaling in order to better highlight difference. 

 

4 Discussion 
 
Quantification of data reproducibility is critical to ensure scientific rigor, 
yet methods tailored for HiChIP and PLAC-seq data are still lacking. 
Here, we propose HPRep, the first model-based approach to account for 
ChIP enrichment in measuring HP data reproducibility. Given the lack of 
HP specific tools, we compare HPRep to existing methods designed for 
Hi-C data, specifically HiCRep and HiC-Spector. Additionally, since our 
method, similar to HiCRep, relies on a weighted average of Pearson 

correlation coefficients, we also compare HPRep to the naïve Pearson 
correlation coefficient. 

Our HPRep method, improving on existing Hi-C specific methods, 
is tailored to HP data for the measurement of reproducibility in two 
fundamental ways. First, HPRep is designed around the specific structure 
of HP data: while Hi-C data consists of contact frequencies among all 
bin pairs, HP data focuses on bin pairs where at least one bin overlaps 
with a ChIP-seq peak for a protein of interest. This is different from the 
standard 𝑛 × 𝑛 symmetric Hi-C contract matrix. We focus on the data 
matrix on anchor bins, regions that overlap with ChIP-seq peaks, and 
pairs between bins within a specified window of these anchors as illus-
trated in Figure 1. 

Second, HPRep fits a positive Poisson regression model to normal-
ize HP-specific ChIP enrichment and uses the residuals as the normal-
ized contact frequencies. It also analyzes bin pairs in the AND and XOR 
sets separately, effectively accounting for ChIP enrichment for the two 
different types of bin pairs. 

Our results from mouse H3K4me3 PLAC-seq data demonstrated 
very low variability in metrics between chromosomes (Figure 1), which 
is consistent with HiCRep (Supplementary Figure 3). In addition, we 
also compared HPRep with other existing methods using human 
H3K27ac HiChIP data from GM12878 and K562 cells, as well as 
H3K4me3 PLAC-seq data from 4 human brain cell types. Oure results 
demonstrated the superior performance of HPRep, in terms of accurate 
clustering of samples from the human brain cell types which was not 
achievable using HiCRep, although better clustering accuracy was ob-
served when excluding bi pairs in the NOT set. 

Future work involves exploring the potential of using this method 
to determine minimum per sample sequencing depth or maximum allow-
able (if any) differential depth across samples for accurate quantification 
of HP data reproducibility. We show that sample differentiation and 
expected clustering are robust to down-sampling, but rigorous analysis 
needs to be performed in order to demonstrate practical use, as more 
high-depth HP data become available from more tissues, cell lines or cell 
types. Additionally, we plan to examine the use of this general frame-
work with capture Hi-C datasets, including those targeting at a relatively 
small number of loci identified from genome-wide association studies, 
and those genome-wide promoter capture Hi-C experiments. The use of 
pre-defined anchors by these methods encourages us to believe that the 
HPRep framework will be also applicable to these capture Hi-C meth-
ods, therefore these extensions are highly warranted but are beyond the 
scope of our current HPRep work.  

In terms of computational efficiency, for the human PLAC-seq data 
consisting of 11 samples, tuning the smoothing parameter and determin-
ing all 55 pairwise reproducibility metrics for all 22 autosomal chromo-
somes took 1 hour and 5 minutes using a single core on a 2.50 GHz Intel 
processor with 4GB of RAM. One can choose to apply HPRep to one 
chromosome for almost same result. On the same data, HPRep takes 35 
minutes to perform tuning and analysis on solely chromosome 1 using 
the same single core.  

5 Conclusion 
 
Here, we present HPRep, a computationally efficient algorithm based on 
positive Poisson regression (Juric et al., 2019) and a stratified Pearson 
correlation (Yang et al., 2017). Our comprehensive benchmark analyses 
of real HP datasets demonstrate that HPRep outperforms existing Hi-C 
reproducibility measurements.   
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