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Summary 

As obligatory parasites, plant viruses alter host cellular metabolism. There is a lack of 

information on the variability of virus-induced metabolic responses among genetically diverse 

plants in a natural context with daily changing conditions. To decipher the metabolic 

landscape of plant-virus interactions in a natural setting, one hundred and thirty-two and 

twenty-six accessions of Arabidopsis thaliana were inoculated with Turnip mosaic virus 

(TuMV), in two field experiments over 2 years. The accessions were phenotyped for viral 

accumulation, above-ground biomass, targeted and untargeted metabolic profiles. The 

accessions revealed quantitative response to the virus, from susceptibility to resistance. 

Susceptible accessions accumulate primary and secondary metabolites upon infection, at the 

cost of hindered growth. Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) 

revealed that the primary metabolites sucrose, glucose and glutamate discriminate susceptible 

and resistant accessions. Twenty-one metabolic signatures were found to significantly 

accumulate in resistant accessions whereas they maintained their growth at the same level as 

mock-inoculated plants without biomass penalty.  

Metabolic content was demonstrated to discriminate and to be highly predictive of the 

susceptibility of inoculated Arabidopsis. The PLS coefficient estimated in the training data set 

reveals, after cross-validation, a correlation of 0.61 between predicted and true viral 

accumulation. This study is the first to describe the metabolic landscape of plant-virus 

interactions in a natural setting and its predictive link to susceptibility. It reveals that, in this 

undomesticated species and in ecologically realistic conditions, growth and resistance are in a 

permanent conversation and provides new insights on plant-virus interactions. 

 

 

Introduction  

Plant health is of primary importance to improve and secure food supply for an increasing 

human population. Plant viruses represent the major taxonomic group of emergent pathogens 

of plants (Anderson et al., 2004), and viral infection is one of the most alarming biotic threats 

due to the impact of climate change on the spatial and temporal distribution of vectors and 

viruses (Bebber et al., 2013; Jones, 2016). Compared to other plant pathogens, viruses are 

particularly unpredictable and difficult to combat. In this context, an understanding of the 

response of plants to viral infection has great importance in sustainable agricultural solutions.  
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The genus Potyvirus, to which the Turnip mosaic virus (TuMV) belongs, is one of the 

largest genera among plant viruses, causing considerable economic damage in vegetable and 

fruit crops worldwide (Adams et al., 2011). The completion of the viral multiplication and 

movement cycle results from a complex interplay between virus- and host-encoded factors 

that can have profound impacts on plant fitness. To invade plants, those obligatory parasites 

have developed tactics to reroute host cellular functions and components for their own 

benefits. Whatever the outcome of the interaction – compatibility, leading to disease, or 

incompatibility, leading to resistance – massive reprogramming of metabolism is observed. 

Indeed, as viruses perturb and exploit the host’s carbon (Stare et al., 2015) and nitrogen 

(Fernandez-Calvino et al., 2014) metabolism to make their own compounds, demand for 

energy within the plant increases to sustain viral multiplication, systemic spread and defense 

responses (Biemelt & Sonnewald, 2006).   

To date, viral impacts on plant metabolism have been mainly studied in experiments 

conducted in controlled conditions and on a limited diversity of host genotypes (typically a 

few genotypes). In these conditions, respiration (Shalitin et al., 2002), photosynthetic 

efficiency (Kangasjärvi et al., 2012) and carbon partitioning (Fernandez-Calvino et al., 2014) 

were shown to be modified. For example, in a susceptible interaction between tobacco and 

Potato virus Y (PVY), both an increase of soluble carbohydrates and a decrease of 

photosynthesis were observed 4 days after inoculation (dai) (Handford and Carr, 2007). These 

observations were confirmed by the demonstration that potato leaves exhibit a decrease in 

sugar levels one day after PVY infection, with a subsequent increase in both inoculated and 

systemic leaves a few days later (Stare et al., 2015; Kogovsek et al., 2016). Similarly, 

inoculation of susceptible hosts with Cucumber mosaic virus (CMV) results in a localized 

reduction in starch accumulation as a consequence of altered carbohydrate metabolism at viral 

infection sites (Tecsi et al., 1996; Shalitin et al., 2002), although starch accumulates to high 

levels in systemically infected leaves (Handford & Carr, 2007). Increases in free amino acid 

content have also been demonstrated in terms of total or individual amino acids, as well as in 

polyamines, in a variety of systems (reviewed in Llave, 2016; Pilar Lopez-Gresa et al., 2012; 

Fernandez-Calvino et al., 2014). Viruses interfere with fatty acids, structural components of 

intracellular membranes in which replication can take place (Heaton & Randall, 2011). They 

also exploit transport systems in order to invade cells in systemic tissues away from the initial 

site of infection. This is achieved through an interaction between viral proteins and 

components of the long distance transport machinery like phloem proteins (Wang, 2015). 

Like primary metabolism, secondary metabolism is strongly impacted due to its participation 
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in multiple defense signaling cascades (Piasecka et al., 2015). Numerous compounds, 

including hormones, are involved in defense (Verma et al., 2016; Palukaitis et al., 2017). 

Among them, glucosinolates and phytoalexins play significant roles in defense against a range 

of pathogens (Kliebenstein, 2004).  

In a compatible interaction, the outcome of viral colonization can include symptoms 

such as stunting, chlorosis or necrosis depending on the pathosystem. Incompatible 

interactions trigger plant resistance and defense signaling that involve the action of 

antimicrobial components and specific defense proteins (Piasecka et al., 2015). These defense 

responses are now widely acknowledged to involve a trade-off in model plants, with the cost 

of resistance generating a negative impact on plant fitness (Tian et al, 2003; Denance et al., 

2013; Neilson et al., 2013; Huot et al., 2014; Lozano-Duran & Zipfel, 2015; Karasov et al., 

2017; Albrecht & Argueso, 2017). Similarly, in crop plants, high levels of resistance are often 

associated with yield penalties (Bergelson & Purrington 1996; Brown, 2002).  

While extremely informative, these studies performed under controlled optimal 

conditions reduce environmental effects and increase the likelihood of finding strong 

relationships between metabolite levels variations (Fernandez et al., 2016). Thereby, it 

obscures the complexity and the variability of metabolic responses among genetically diverse 

plants in a natural context where they have to face multiple stresses. Even in main crop 

species, large-scale metabolic profiling of large field-grown populations of genetically diverse 

accessions remains rare (Schauer et al., 2006; Obata et al., 2015; Melandri et al., 2019).  

In Arabidopsis thaliana, metabolite profiling of large populations of natural accessions 

or inbred lines has allowed the identification of descriptor sets of metabolites that are 

predictive of biomass (Meyer et al., 2007; Sulpice et al., 2010; Steinfath et al., 2010) and 

physiological traits such as freezing tolerance (Korn et al., 2010) and herbivore resistance 

(Züst et al., 2012). But, none of these studies addressed the growth and metabolic response to 

biotic stress in a changing environment. 

Here, following the modern standards of ecological genomics (Bergelson & Roux, 

2010), we aimed at improving our understanding of the virus-induced reprogramming of 

metabolism through deciphering variation in the metabolic landscape of the natural 

Arabidopsis thaliana/Turnip mosaic virus (TuMV) pathosystem in growth conditions close to 

environmental reality. To do so, we set up two experiments in the field and explored targeted 

and untargeted metabolic profiles on 132 and 26 accessions, in 2014 and 2015 respectively.  

These accessions spanned quantitative responses ranging from high susceptibility to full 

resistance. This work aimed to (i) decipher the trade-offs among responses to TuMV, 
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metabolism and growth in field conditions in a large set of Arabidopsis accessions, (ii) 

characterize the metabolic disturbances for a large set of accessions, and (iii) identify 

discriminant metabolic biomarkers of susceptibility/resistance to viruses in A. thaliana. 

 

Material and Method 

Plant Material 

A worldwide collection of natural accessions of Arabidopsis thaliana were used in our 

experiments (Horton et al., 2012). One hundred thirty-two accessions were challenged with 

TuMV during the first field experiment in 2014 as described in Rubio et al. (2019) and then a 

subset of 26 accessions were selected for a second field experiment in 2015. This subset was 

selected based on their OD value following TuMV inoculation (see description of 

“Quantification of viral accumulation”) (listed in Table S1) to represent extreme phenotypes 

from highly susceptible to resistant. To prevent misidentifying accessions as resistant due to 

inefficient mechanical inoculation, only accessions presenting a resistance phenotype in all 

common garden experiments were selected as resistant accessions (Rubio et al. 2019).  

 

Virus Material 

Turnip mosaic virus isolate UK1 (Jenner & Walsh, 1996) was routinely propagated by 

mechanical inoculations on turnip plants Brassica rapa L. ssp rapa NA FR 490001 provided 

by the BraCySol germplasm center (Ploudaniel, France). To prepare the inoculum, three-week 

old turnip plants were mechanically inoculated. Symptoms appeared two weeks later. Young 

symptomatic leaves of five-week-old turnip were then collected to produce the inoculum. 

 

Experimental Design and Growth conditions 

Two common garden experiments were conducted in 2014 (N=132 A. thaliana accessions) 

and 2015 (N=26 accessions). Each experiment was organized in a randomized complete block 

design (RCBD). In 2014, the experiment contained three blocks with one replicate per 

accession per block whereas the experiment performed in 2015 contained four blocks with 

four replicates per accession per block. As described in Rubio et al. (2019), seedling trays of 

40 wells were used. Seeds were sown on 24 March 2014 and 23 March 2015 in professional 

horticultural soil (106Scope, PletrAcom, Arles, France) under a cold-frame glasshouse 

without additional light or heating to ensure homogeneity of germination. At three weeks of 

age, plants were acclimatized under an opened tunnel before their transfer to the common 

garden. Plants were inoculated during the acclimation step just before their transfer. Soil of 
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the common garden had been tilled so that seedling trays could be slightly buried. Because the 

bottoms of the wells were pierced, roots were able to reach the soil. Climate data were 

recorded over the duration of each experiment (Figure S1, A and B). The analysis of climatic 

data across the three growing environments (cold frame greenhouse, then tunnel, then field) 

revealed no significant difference between years 2014 and 2015 (Figure S1, C, D and E) for 

temperatures, rainfall and PAR (photosynthetically active radiation). 

 

 

TuMV inoculation procedure and harvest 

One gram of fresh turnip leaves was ground in three volumes of disodium phosphate 

(Na2HPO4.12H2O) 30mM and 0.2 % diethyldithiocarbamic acid (DIECA). The inoculum was 

clarified through 10 min centrifugation at 13,000 g. Supernatant was recovered and 

maintained at 4°C until Arabidopsis’ inoculation, which was performed when plants were 4 

weeks old and at a 8-10 leaf stage, corresponding to 1.09, 1.10 Boyes stage (Boyes et al., 

2001). Four young expanded leaves of each plant were mechanically inoculated with 20µL of 

inoculum with carborandum added on each leaf. Ten minutes after inoculation, plants were 

rinsed with water. Mock treatments, in which plants were treated exactly as inoculated plants 

except for the absence of the virus, were also included. The viral concentration of the TuMV 

inoculum was quantified after inoculation by quantitative PCR (Rubio et al., 2019). There 

were no significant differences between the viral concentrations of the inocula used in the 

2014 (0.073 ng/µL) and 2015 (0.103 ng/µL) common garden experiments (Wilcoxon test, p-

value = 0.0636).  

According to previous experiments by Rubio et al. (2019), samples were collected 13 

days after inoculation (dpi) at the very beginning of the onset of the first symptoms. The 

harvest was done in the morning, at the same time for each year of experiment. All rosette 

leaves above the inoculated leaves (systemic leaves) were collected in vials from Zinsser 

Analytic® (Eschborn, Germany). Samples were deep-frozen, ground and stored at -80°C. 

 

Quantification of viral accumulation 

Viral accumulation was estimated for each individual plant using 100 mg of A. thaliana 

powder in a semi-quantitative double antibody sandwich assay (DAS-ELISA) with a 

commercial anti-potyvirus monoclonal antibody kit (Agdia-Biofords, Evry, France). The 

reaction of the substrate (p-nitrophenyl phosphate) was followed at 405 nm. Optical densities 

(OD) were calculated by removing the mean OD value from the healthy A. thaliana Col-0 
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control and normalized using a Col-0 positive control deposited on each ELISA plate. As 

determined from the ODs of the A. thaliana Col-0 positive controls, and in order to avoid 

overflow, the 15 min measurements were retained. For each accession, we classified its 

degree of resistance or susceptibility based on the average of the ODs obtained across 

replicates (Table S1). Resistant accessions do not accumulate virus and present an OD equal 

or lower than the mean of the OD of the healthy A. thaliana Col-0 control (OD=0.088 SD 

0.01063). Susceptible accessions have an OD value that exceeds the healthy A. thaliana Col-0 

control. The category to which each accession belongs is listed in Table S1, along with its OD 

values. Mock-inoculated plants were confirmed to be potyvirus-free. 

 

Sample processing 

Three biological replicates were prepared in 2014 and four biological replicates were prepared 

in 2015. In 2015, a biological replicate was composed by pooling up to four plants after a 

successful infection as measured by DAS ELISA. Aliquots of about 17 mg of fresh powder 

were weighted in 1.1-mL Micronic tubes and used in the targeted metabolite analysis. 

Samples were then lyophilized and aboveground dry mass determined with an analysis 

balance. Aliquots of about 10 mg were weighed in 1.1-mL Micronic tubes and used in the 

untargeted metabolite analysis.  

 

Targeted Metabolite analysis 

Metabolites were extracted in a final volume of 650µL, twice with 80 % (v/v) ethanol – 

HEPES/KOH 10mM (pH6) and once with 50 % (v/v) ethanol – HEPES/KOH 10mM (ph6) 

(Geigenberger et al., 1996). Chlorophyll content was determined immediately after the 

extraction (Arnon, 1949). Glucose, fructose, sucrose (Stitt & Quick, 1989) malate, fumarate 

(Nunes-Nesi et al., 2007), glutamate (Zhang et al., 2015) and amino acids (Bantan-Polak et 

al., 2001) were determined in the supernatant. Starch (Hendriks et al., 2003) and protein 

(Bradford, 1976) contents were determined on the pellet resuspended in 100 mM NaOH. 

Analyses were performed in 96-well microplates using Starlet pipetting robots (Hamilton), 

and absorbance was read in MP96 microplate readers (SAFAS). Data treatments. Metabolite 

data were normalized by dividing each measure by the value of a biological standard sample 

corresponding to a non-inoculated A. thaliana Col-0 sample harvested at the same time as the 

other samples. The final concentration of each metabolite is the average of the replicates of 

each accession. Statistical analysis. All principal component analysis (PCA), parametric and 

nonparametric statistical tests were performed using R version 3.4.0. Statistical significance 
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was set at P < 0.05. Partial Least Square regression (PLS) and Orthogonal Partial Least-

Squares regression and discriminant analysis (OPLS-DA) were performed using the R 

packages mixOmics (Rohart et al., 2017) and PLS (Wehrens & Mevik, 2007).  

 

Untargeted Metabolic analysis  

Untargeted metabolite measurements were conducted on the subset of 26 accessions in the 

common garden experiment in 2015. Extraction was realized using a Starlet pipetting robot 

(Hamilton) with an extraction buffer composed of 80 % (v/v) ethanol and 0.1 % (v/v) formic 

acid, using methyl vanillate as an internal standard (50µg/mL). All samples extracted were 

filtrated through a Multiscreen Solvinert 96-well filter plate (Merck Millipore). Quality 

control (QC). 25 µL of each sample were mixed together to generate a pooled quality control 

sample (QC). QC samples were analyzed every 10 injections to monitor and correct changes 

in the instrument response. Solvent blank samples (80% ethanol in water – 0.1 % formic acid) 

were also analyzed in-between the other samples. Liquid chromatography. Liquid 

chromatography was performed on a Dionex UHPLC Ultimate 3000 (Thermo Scientific, MA, 

USA). Chromatographic separation was carried out in reverse-phase mode on a Gemini C18 

column (2 x 150 mm; 3µm, Phenomenex, CA, USA) equipped with a Gemini C18 guard 

column (2 x 4 mm, Phenomenex, CA, USA). The mobile phase was composed of milliQ 

water with 0.1% formic acid (solvent A) and 100% Acetonitrile (solvent B) for a total run 

time of 18 min. The flow rate was 0.3 mL.min-1 and the column was heated to 30°C. The 

autosampler temperature was maintained at 4°C and the injection volume was 5 µL. Mass 

spectrometry. The UHPLC system was coupled with a LTQ-Orbitrap Elite mass 

spectrometer (Thermo Scientific, MA, USA). A heated electrospray interface was used and 

analyses were performed in positive mode. Acquisition was performed in full scan mode with 

a resolution of 240 000 FWHM in the scan range of m/z 50-1000. Data were recorded using 

Xcalibur software (Thermo Scientific, MA, USA) and extracted with XCMS. Data 

processing and statistical analysis. Data were converted to mzXML file format. Peak 

picking and alignment were performed using XCMS in R (Smith et al., 2006). XCMS-

parameters were optimized as described by Patti and collaborators (Patti et al., 2012). XCMS-

data processing results in a data matrix which contains peak intensities that are a unique 

combination of retention-time and median m/z ratio. To exclude system-peaks (impurities in 

the measurement-system, visible in blanks) as well as poorly detected metabolic features, 

filter steps were performed based on QCs and blanks as described in TextS1. Statistical 

analysis was done in R version 3.4.0 and also using the web application BioStatFlow version 
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2.7.7. Thus, OPLS-DA were performed using the 505 features of the untargeted metabolic 

analysis combined with the 10 primary metabolites assayed by targeted methods.  

 

Results  

Susceptible accessions accumulate primary metabolites upon infection, at the cost of 

hindered growth, whereas resistant accessions grow with limited changes  

The experiment conducted in 2014 showed that twenty genotypes out of one hundred and 

thirty inoculated were considered fully resistant as no virus was detected (Rubio et al., 2019; 

Table S1). The remaining accessions fell within a range of susceptibility, from the least 

susceptible (OD > 0.088 healthy A. thaliana Col-0 control OD; Table S1) to the most 

susceptible (OD=0.896; Table S1).  

Aboveground dry biomass was measured on mock-inoculated and TuMV-inoculated 

plants. Aboveground dry biomass was significantly lower for the 110 inoculated susceptible 

accessions compared to those susceptible accessions when treated only with a mock solution 

(Wilcoxon-Mann Whitney test, p.value=0.039; Figure 1A), indicating that infection led to a 

decrease in the growth of susceptible plants. There was no significant difference between the 

aboveground dry biomass of the 20 resistant inoculated accessions compared to their mock-

inoculated counterparts (Wilcoxon-Mann Whitney test, p.value=0.1274, Figure 1A). This 

result was confirmed for the 18 susceptible and 8 resistant accessions included among the 132 

(Table S1) accessions used in the 2015 field experiment (Figure 1B; Wilcoxon-Mann 

Whitney test, p.value=3.44 E-8 of susceptible accessions; p.value=0.1040 for resistant 

accessions). Spearman correlations confirmed that viral accumulation was negatively 

correlated with dry aboveground biomass in both years (Table S2 A and B). 

Ten key metabolic traits were measured for each accession in each of the years. In 

mock-inoculated samples, a significant positive correlation was found between malate, 

fumarate, starch, glucose, fructose, sucrose and aboveground dry biomass whereas a negative 

significant correlation was found between amino acids, proteins, glutamate and aboveground 

dry biomass (Table S2 B). 

In neither year was the chlorophyll content in TuMV-inoculated susceptible accessions 

significantly reduced, confirming that sampling occurred prior to macroscopic symptoms of 

chlorosis (Figure 2A and 2B). In 2014, the 110 susceptible inoculated accessions accumulated 

significant larger amounts of glutamate and fructose compared to both resistant inoculated 

accessions and mock-inoculated accessions (Figure 2A). Similarly, in 2015, the 18 TuMV-

inoculated susceptible accessions exhibited a significant accumulation of 8 out of 10 primary 
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metabolites (i.e. amino acids, glutamate, malate, fumarate, starch, glucose, fructose and 

sucrose), when compared to either the 8 resistant inoculated accessions or the set of mock 

inoculated controls (Figure 2B). These results were supported by significant positive 

correlations between viral accumulation expressed as OD and eight out of ten primary 

metabolites content - amino acids, proteins, glutamate, fumarate, starch, glucose, fructose and 

sucrose (Table S2 A and B) but significantly negative correlations between the metabolites 

content and the above ground biomass (Table S2B). In addition to maintaining their growth, 

the inoculated resistant accessions exhibited similar amounts of primary metabolites relative 

to those observed for mock-inoculated controls.  

 

Metabolic content discriminates inoculated A. thaliana susceptible and resistant 

accessions 

Targeted metabolism analysis performed on 132 genotypes in 2014 and 26 genotypes in 2015 

does not distinguish between susceptible and resistant genotypes when mock- inoculated 

(Figure 3 IA and IIA). The broad, non-targeted analysis conducted by UHPLC-LTQ Orbitrap 

on the set of 26 genotypes in 2015 also fails to distinguish between susceptible and resistant 

genotypes when mock-inoculated (Figure 4A).  

The composition of metabolites differed between TuMV-inoculated plants (Figure 3 IB and 

IIB) and mock-inoculated plants (Figure 3 IA and IIA). Given that the vast majority of 

metabolic change occurred in susceptible plants, this response leads to a clear differentiation 

of metabolic content between susceptible and resistant accessions that have been inoculated 

with TuMV in both years (Figure 3 IB and IIB; Figure S2). The first two axes of the PCA 

explained 45.88% and 63.14% of the overall variance of the metabolic profiles in inoculated 

samples in 2014 and 2015 respectively. In 2015, the first axis of the PCA, in particular, 

discriminates between susceptible and resistant accessions (54.31% of the explained variance) 

even though these accessions are indistinguishable in terms of metabolic composition when 

mock-inoculated (Figure 3 IA and IIA). 

To analyze the pattern of infection and its relationship to a larger set of metabolites, 

including secondary metabolites, we conducted an untargeted metabolic analysis by UHPLC-

LTQ Orbitrap on the set of 26 accessions showing a contrasting response to TuMV in the 

2015 field experiment. This analysis captured a total of 505 workable metabolic signatures 

(m/z), corresponding primarily to non-polar secondary metabolites. As previously observed 

with targeted primary metabolism, there was no difference between susceptible and resistant 

accessions when mock-inoculated (Figure 4A). In contrast, when inoculated with TuMV, 
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principal component analysis on the metabolic variables clearly separated two groups of 

accessions according to their susceptibility to the TuMV (Figure 4B).  

 

The identification of metabolic predictors reveals 21 metabolic signatures significantly 

accumulated in resistant accessions 

An Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was then 

performed to maximize the variation between the two groups of accessions and determine the 

most significant variables contributing to this variation, i.e. VIPs (Variable Importance in the 

Projection). OPLS-DA analysis was carried out using the primary and secondary metabolite 

data. The quality of the model was validated by the Q² parameter (goodness-of-prediction 

parameter) with a value of 0.846, thereby showing high predictive capabilities (Figure S3).  

The OPLS-DA analysis performed between the mock- and TuMV-inoculated samples 

revealed 63 common discriminant metabolic variables (Table S3), most of which (58/63) 

accumulated in TuMV-inoculated samples and particularly in susceptible accessions (54/58; 

Table S3). It is worth noting that four VIPs (433;700, 361;491, 512;491 and 64;395) are 

significantly found in resistant accessions. 

To examine which metabolic variables strongly contribute to the OPLS-DA model in 

TuMV-inoculated susceptible and resistant accessions, variables were ranked according to 

their VIP values (Table 1). This ranking confirmed the major role of some primary 

metabolites, including sucrose, glucose, fructose, glutamate, amino acids and fumarate, in the 

response of susceptible accessions. Of the 140 VIP values identified by OPLS-DA, 119 

accumulated to higher levels in susceptible accessions and 21, among which the 4 VIPs (VIP 

433;700, VIP 361;491, VIP 512;491 and VIP 64;395) are found, accumulated to higher levels 

in resistant accessions (Table 1). The fold change susceptible/resistant reached up to 45 times 

whereas the fold change resistant/susceptible reached up to 244 times. It is very interesting to 

highlight two VIPs, VIP 324;184 and VIP 433;482 that are significantly accumulated in 

resistant accessions when inoculated with a fold-change of 106.8 and 244, respectively, 

compared to the susceptible accessions. 

 A complementary analysis on the dataset obtained with the 26 accessions to test 

whether viral accumulation can be predicted from metabolic data, Partial Least Square (PLS) 

analysis was performed on the optical density values corresponding to the viral accumulation 

measured by DAS ELISA for each accession (Figure 5). The PLS coefficient estimated in the 

training data set reveals, after cross-validation, a correlation of 0.61 between predicted and 

true viral accumulation, confirming the high predictive power of metabolic composition for 
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TuMV susceptibility. Among the best 50 VIP-PLS values, 44 were found common to the VIP 

values obtained with the OPLS-DA analysis (Table S4). In both analyses, the primary 

metabolites sucrose, glucose and glutamate were found to discriminate susceptible and 

resistant accessions, ranking among the best VIP values (Table S4). Six common VIPs (VIP 

394;108, VIP 351;184, VIP 324;184, VIP 280;184, VIP 432;184 and VIP 86;184) detected by 

the 2 analyses are found accumulated more significantly in resistant accessions. 

 

Discussion 

In this study, we characterized the metabolic response of A. thaliana to its natural viral 

pathogen, Turnip mosaic virus (TuMV). This study is unusual in studying the metabolic 

response of a wide variety of accessions to an important naturally occurring virus on A. 

thaliana (Pagan et al., 2010) and its close relative, A. halleri (Kamitani et al., 2016; 2018), in 

natural settings. Moreover, in order to mimic ecological reality, this study was conducted for 

two consecutive years in semi-field conditions, in which plants are subjected to daily and 

complex environmental changes. It has been shown that the responses of plants to multiple 

stresses are sometimes very different than those observed under single stress conditions 

(Rasmussen et al., 2013). In field and natural environments experiments, quality and intensity 

of light, temperature, humidity and many other environmental factors typically vary daily and 

seasonally, suggesting that plants grown under controlled conditions probably express only a 

fraction of their responses potential. In natural populations of A. halleri in central Japan, 

Honjo et al. (2020) and Nagano et al. (2019) have shown through transcriptomic analysis 

performed over 2 seasons that TuMV infections produces distinct defence mechanisms 

according to the season. This provides strong arguments for studying plants under realistic 

field conditions (Jänkänpää et al., 2012; Annunziata et al., 2017).  

In neither year of the study could we distinguish the metabolic profile of TuMV-

susceptible and TuMV-resistant accessions grown in the absence of TuMV. This suggest that 

there are no constitutive metabolic patterns associated with resistance or susceptibility. 

Nevertheless, these mock-inoculated samples provided an opportunity to describe elements of 

primary metabolism in A. thaliana under common garden field conditions. We found that dry 

biomass was significantly correlated with fumarate concentrations. Fumarate can accumulate 

to high levels in A. thaliana relative to other plant species, suggesting that it likely constitutes 

a significant fraction of the fixed carbon in A. thaliana rosette leaves (Araújo et al., 2011). 

Indeed, the amount of carbon stored in fumarate is similar to that accumulated in starch 

(Araújo et al., 2011). This is perhaps not surprising because fast-growing plant species such 
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as A. thaliana contain significantly higher concentrations of organic acids, such as fumarate, 

compared to slow-growing plants (Chia et al., 2000; Araújo et al., 2011), especially under 

high light intensity conditions such as in our field experiments (Chia et al., 2000). We also 

found that dry biomass was correlated to glucose. Both fumarate and glucose reached high 

levels in fast growing accessions, 23 mM and 19 mM respectively, suggesting that they might 

be involved in turgor dynamics and thus growth by cellular expansion (Fricke, 2017). In 

contrast, we detected a negative correlation between dry biomass and protein. Although 

speculative, this might follow from the fact that lower protein synthesis contributes to 

increased efficiency of carbon use, because protein synthesis is a costly process (Sajitz-

Hermstein & Nikoloski, 2010; Kafri et al., 2015). This negative relationship is in agreement 

with previous observations among a collection of A. thaliana accessions grown under 

greenhouse/ growth chamber and in controlled conditions (Sulpice et al., 2013). 

 Upon viral infection in the field, susceptible accessions were clearly distinguished 

from the resistant ones by the accumulation of primary metabolites observed in each of the 

two years of study. Eight out of ten primary metabolic traits, amino acids, glutamate, malate, 

fumarate, starch, glucose, fructose and sucrose, were strongly associated with viral 

accumulation. Previous efforts to describe the massive reprogramming of the plant primary 

metabolism that takes place in response to pathogens has focused on fungi and bacteria (Rojas 

et al., 2014). Here, we add to the limited literature on plant responses to viral infection, which 

is restricted to controlled laboratory conditions. For example, in a study of the primary 

metabolic response of Arabidopsis to Tobacco rattle virus (TRV), Fernandez-Calvino and 

collaborators (Fernandez-Calvino et al., 2014) showed that the susceptible Col-0 accession 

significantly accumulated sucrose at 8 days’ post inoculation. Amino acids were also globally 

accumulated in infected plants compared to mock plants whereas neither starch nor fumarate 

were accumulated in infected plants. Differences in the virus species, the number of 

accessions observed and the fact that theirs was a laboratory experiment could explain these 

different results. Second, in a controlled multi-stress experiment (including TuMV, drought 

and heat), accumulation of soluble sugars was again observed in Col-0 plants (Prasch and 

Sonnewald, 2013). The strong metabolic disturbances generated in susceptible plants by 

TuMV infection suggests that the viral infection stimulated the accumulation of major 

primary metabolites, probably as a result of an imbalance between photosynthesis and growth, 

which is known to favor oxidative stress (Foyer and Shigeoka, 2011). Susceptible accessions 

were also found to accumulate a large number of secondary compounds. This result contrasts 

with that obtained by Likic et al. (2014). In their study conducted under controlled conditions 
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on susceptible Col-0 infected with Cucumber mosaic virus (CMVsat), Likic et al. (2014) 

showed that the concentration of some flavonoid compounds such as kaempferol in the upper 

leaves of all infected plants was significantly lower than that of control plants. In our study, in 

addition to the fact that such an accumulation was apparently ineffective, the synthesis of 

secondary compounds is expensive in energy and, even if somewhat controlled 

(Sirikantaramas et al., 2007), accumulation could have toxic effects. 

Under the field conditions used in our experiments, inoculated resistant accessions were able 

to grow at the same rate as controls. As biomass is considered as appropriate proxy for fitness 

under many circumstances (Younginger et al., 2017), it seems to indicate that resistance was 

achieved with no penalties on measured traits. Maintenance of biomass in relation to 

moderate symptom development was also observed by Kamitani et al. (2016; 2018) in wild 

populations of A. halleri naturally infected by TuMV. Unlike susceptible accessions, resistant 

accessions accumulate a limited number of metabolites in response to the virus, but in much 

higher quantities than can be observed in susceptible accessions. This contrasts with a study 

conducted under controlled conditions on the metabolic response of tomato to Tomato yellow 

leaf curl virus (TYLCV) which found that the defense response of resistant lines is effective 

through the accumulation of many secondary metabolites (Sade et al., 2015).  

In a previous study by Rubio et al., (2019) the genetic architecture of quantitative 

response of A. thaliana to TuMV in a field environment was reported. The genetic 

architecture of this interaction reveals at least 10 genomic regions involved in the interaction. 

One of them overlaps with the gene AT5G18170 that encodes a subunit of a glutamate 

dehydrogenase, which integrates carbon and nitrogen metabolism (Terce-Laforgue et al., 

2013), thereby implicating a link between metabolism and response to virus. The high 

predictive power of metabolic composition for TuMV susceptibility when infected might 

enable this composition to serve as a biomarker (Fernandez et al., 2016), as has been done for 

resistance to Fusarium graminearum in wheat (Cuperlovic-Culf et al., 2016) and for 

susceptibility to esca disease in grape (Felgueiras et al., 2010).  

The complex molecular network underlying the balance between growth and 

immunity has been described (Chandran et al., 2014; Huot et al., 2014; Lozano-Duran & 

Zipfel, 2015) mainly in terms of opposition. Recent reviews (Kliebenstein, 2016; Karasov et 

al., 2017) have emphasized, however, that in a natural context, growth and immunity are in a 

constant conversation. Our study supports this alternative model and highlights new results on 

Arabidopsis/virus interaction. In particular, we find that susceptible accessions experience a 
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large accumulation of primary and secondary metabolites with a reduction of growth whereas 

resistant accessions appear capable of continued growth with a targeted metabolic response. 

Some compounds as VIP 324;184 and VIP 433;482, that presented high fold-change in 

resistant accessions compared to susceptible ones are of particular interest. It would be of 

great interest to characterize these secondary compounds and their biosynthetic pathways, and 

then to test their involvement in resistance by using pharmacological and/or genetic 

approaches. It is worth mentioning that anti-phage secondary metabolites molecules, able to 

block phage replication, have recently been found in Streptomyces (Kronheim et al., 2018). 

This would allow for better understanding the complexity of the underlying mechanisms 

involved in plants’ responses to viruses in the field and to propose new resilient ideotypes 

(Sulpice et al., 2020). 
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Table 1 List of the Variable Importance in the Projection (VIPs) identify by OPLS-DA 

analysis performed on TuMV-inoculated resistant and susceptible twenty-six accessions in 

2015. For each VIP, comparisons between resistant (R) and susceptible (S) accessions were 

done. The fold change was calculated for each VIP. Primary metabolites are light-grey 

highlighted. Metabolites that accumulate significantly more in resistant accessions are at the 

bottom of the table. 

 

 

VIP OPLS-DA1   VIP values m/z2 rt3 

Resistant vs Susceptible 

metabolic contents 

Fold 

change  

Sucrose 2.2126449 NA NA S > R ***
4
 2.89 

303;463 1.9733637 303.133385 463.27 S > R *** 3.69 

356;452 1.9579956 356.120178 452.352 S > R *** 2.17 

219;311 1.9395195 219.101071 311.134 S > R *** 4.81 

533;392 1.9257616 533.154889 391.765 S > R *** 4.98 

332;430 1.8980522 332.131528 430.481 S > R *** 3.78 

116;100 1.8668978 116.070147 100.163 S > R *** 6.05 

205;242 1.8374938 205.096695 242.121 S > R *** 2.51 

103;242 1.7986954 103.041077 242.089 S > R *** 2.86 

302;506 1.7961978 302.101728 506.314 S > R *** 5.76 

255;544 1.7691068 255.112248 543.799 S > R  *** 9.96 

221;216 1.7482809 221.091514 215.744 S > R *** 3.13 

385;210 1.7379538 385.105549 210.083 S > R *** 45.77 

Glucose 1.7341573 NA NA S > R *** 2.49 

175;402 1.7128412 175.147752 401.831 S > R *** 3.77 

903;319 1.7101545 903.276945 318.889 S > R *** 8.48 

503;391 1.6946581 503.190232 391.457 S > R *** 2.51 

343;345 1.6930327 343.116792 345.319 S > R *** 2.08 

Fructose 1.6832118 NA NA S > R *** 2.49 

474;107 1.674786 474.217815 107.298 S > R *** 2.68 

315;448 1.6735275 315.133358 447.821 S > R *** 2.39 

209;488 1.669006 209.153094 488.35 S > R *** 2.7 

209;414 1.6625752 209.153104 413.756 S > R *** 2.14 

212;284 1.6568285 211.559242 283.891 S > R *** 1.56 

543;99 1.6447422 543.132047 98.5221 S > R *** 5.84 

124;346 1.6383986 124.075207 346.354 S > R *** 1.92 

370;302 1.6097363 370.148552 301.519 S > R *** 28.49 

203;204 1.5909149 203.084422 203.918 S > R *** 8.24 

Glutamate 1.5902017 NA NA S > R *** 1.47 

430;333 1.5812953 430.169872 332.878 S > R *** 3.3 

331;329 1.5779633 331.117148 328.817 S > R *** 1.58 

226;406 1.5540098 226.106582 406.369 S > R *** 7.97 

151;359 1.548784 151.075013 359.377 S > R *** 1.78 

449;319 1.545091 449.106284 318.949 S > R *** 1.75 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.21.392688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.21.392688


26 

 

757;319 1.5374453 757.217144 319.13 S > R *** 1.69 

270;587 1.5342534 270.133029 587.091 S > R  *** 43.68 

315;370 1.5236406 315.133322 370.476 S > R *** 3.93 

162;402 1.5107457 162.054596 402.281 S > R *** 1.9 

221;230 1.5031416 221.120712 230.244 S > R *** 1.74 

394;517 1.4896806 394.204469 517.072 S > R *** 17.28 

302;407 1.4864035 302.101313 406.697 S > R *** 7.16 

482;101 1.4749114 482.107244 101.274 S > R *** 1.79 

Amino Acids 1.4618098 NA NA S > R *** 1.88 

355;306 1.4506109 355.101534 306.288 S > R *** 3.29 

191;416 1.4478404 191.142656 416.467 S > R *** 2.49 

193;324 1.4445315 193.125245 323.817 S > R *** 1.46 

149;360 1.4367383 149.095721 360.18 S > R *** 1.66 

642;445 1.43456 642.253866 445.078 S > R *** 2 

321;760 1.4189617 321.114081 760.442 S > R *** 3.7 

182;466 1.4146411 182.080769 465.796 S > R *** 4.21 

305;210 1.408059 305.086054 210.166 S > R *** 2.24 

348;319 1.3963139 348.2736 318.945 S > R *** 3.61 

164;496 1.3753555 164.070296 496.307 S > R *** 2.22 

165;424 1.3719233 165.127004 424.14 S > R *** 1.54 

317;464 1.3699949 317.101381 463.65 S > R *** 1.25 

191;363 1.3599054 191.069895 362.643 S > R *** 2.76 

219;486 1.3401209 219.101009 486.477 S > R *** 2.7 

105;700 1.3304992 105.06927 700.287 S > R *** 1.59 

367;358 1.3232566 367.10133 358.491 S > R *** 1.69 

201;344 1.3189902 201.054173 343.832 S > R *** 1.71 

189;325 1.3123658 189.127006 324.754 S > R *** 1.74 

146;242 1.3107417 146.059816 241.843 S > R *** 2.31 

133;296 1.3066147 133.06438 295.68 S > R *** 2.65 

179;604 1.3057044 179.106264 603.961 S > R *** 1.64 

374;322 1.3047581 374.143633 321.703 S > R *** 1.77 

373;453 1.2900149 373.127302 452.6 S > R *** 1.81 

302;382 1.2818991 302.041251 381.707 S > R *** 1.54 

161;442 1.2743927 161.095747 441.797 S > R *** 1.79 

164;375 1.2688136 164.070227 375.012 S > R *** 2.95 

109;359 1.2670868 109.064191 359.34 S > R *** 1.92 

386;278 1.2559975 386.219789 277.549 S > R *** 3.48 

391;774 1.2553695 391.244577 774.477 S > R *** 2.29 

409;491 1.2512226 409.168874 490.545 S > R *** 27.12 

291;259 1.2414233 291.180846 259.063 S > R *** 4.78 

192;462 1.2266011 192.041337 462.37 S > R *** 1.27 

107;370 1.218738 107.084913 370.001 S > R *** 1.39 

420;276 1.2167175 419.694896 275.797 S > R *** 1.77 

193;373 1.1889052 193.085573 373.266 S > R *** 2.04 

379;402 1.1794454 379.094921 402.311 S > R *** 2.88 

181;464 1.1755653 181.085582 463.916 S > R *** 1.42 

181;328 1.1704302 181.085601 327.894 S > R *** 1.68 

80;395 1.1675747 80.0488023 395.289 S > R *** 1.57 
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373;344 1.1603378 373.127271 343.531 S > R *** 1.54 

627;299 1.1556143 627.15471 299.369 S > R *** 2.8 

96;389 1.1547774 96.0801348 389.004 S > R *** 1.74 

195;453 1.1541351 195.064751 452.614 S > R *** 1.55 

79;396 1.1518191 79.0409732 395.754 S > R *** 1.52 

105;327 1.1496278 105.069244 326.898 S > R *** 1.72 

210;465 1.1465056 210.111814 464.799 S > R *** 2.44 

335;506 1.1433297 335.126504 506.441 S > R *** 3.71 

86;126 1.1144812 86.0957928 126.246 S > R *** 2.09 

396;257 1.1063852 396.185419 256.51 S > R *** 1.43 

611;354 1.1020274 611.158212 353.603 S > R *** 1.34 

178;191 1.1016652 178.089265 191.013 S > R *** 3.43 

169;496 1.1007391 169.049224 495.5 S > R *** 3.67 

162;249 1.0978873 162.054721 249.101 S > R *** 1.5 

396;348 1.0917369 396.114946 347.739 S > R *** 4.14 

103;389 1.0860577 103.053575 389.444 S > R *** 2 

521;325 1.0838985 521.201084 325.328 S > R *** 2.52 

133;126 1.0715649 133.104827 126.347 S > R ** 2.32 

209;426 1.0709285 209.15308 425.939 S > R *** 1.98 

162;357 1.0685924 162.054596 356.879 S > R *** 1.74 

201;451 1.0634552 201.054251 451.123 S > R *** 1.75 

527;460 1.0557011 527.103495 460.095 S > R *** 2.02 

Fumarate 1.0539467 NA NA S > R *** 1.38 

393;416 1.0524847 393.187545 415.816 S > R *** 1.71 

212;774 1.0524681 212.094368 774.047 S > R *** 2.76 

402;420 1.0483873 402.161979 419.597 S > R ** 1.87 

404;388 1.038078 404.227082 388.155 S > R ** 1.31 

464;367 1.0348068 464.248021 366.989 S > R *** 1.97 

225;371 1.0338844 225.147985 370.798 S > R *** 1.57 

103;284 1.0330701 103.05364 283.823 S > R *** 3.26 

227;789 1.0226386 227.163338 788.506 S > R *** 1.61 

222;216 1.0155496 221.601711 215.822 S > R ** 1.33 

367;342 1.0107207 367.153077 341.908 S > R *** 1.96 

302;463 1.0063676 302.101889 463.078 S > R *** 1.49 

309;325 1.0028313 309.115614 324.659 S > R ** 1.44 

244;325 1.0006993 244.096223 324.677 S > R ** 1.41 

351;184 2.0467196 351.006221 184.222 R > S *** 2.88 

432;184 1.8309047 431.970682 183.776 R > S *** 3.44 

137;131 1.6182679 136.930742 131.31 R > S *** 1.39 

512;491 1.5629621 512.127487 491.367 R > S *** 2.54 

394;108 1.547668 394.200084 108.419 R > S *** 1.93 

337;573 1.5096853 337.292489 572.917 R > S *** 1.64 

299;181 1.3961487 299.098193 181.363 R > S *** 22.3 

181;139 1.2934886 181.052538 138.934 R > S *** 1.94 

324;184 1.2633811 323.988853 183.797 R > S *** 106.8 

280;184 1.2289246 280.084227 183.768 R > S *** 5.9 

361;491 1.2178747 361.091906 490.564 R > S *** 2.07 

155;132 1.1408996 154.941358 131.541 R > S *** 1.33 
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433;482 1.1139622 433.112069 481.588 R > S *** 244 

433;700 1.1093528 433.240637 700.261 R > S *** 1.82 

64;395 1.0910062 63.9336655 395.047 R > S *** 3.6 

256;668 1.0892571 256.079504 667.874 R > S *** 2.12 

460;740 1.0755049 460.268938 740.005 R > S ** 1.42 

449;442 1.0685439 449.1069 442.311 R > S *** 6.17 

244;130 1.0487138 243.942484 130.167 R > S *** 1.35 

347;240 1.038776 347.159419 239.659 R > S ** 1.48 

86;184 1.0146328 86.05939 184.278 R > S *** 1.87 

 

1 When undetermined, VIP are identified through mz/rt values. VIP values are classified in 
decreasing order. 
2 mass to charge ratio 
3 retention time 
4 The significance was assessed through a Wilcoxon test at *** P < 0.001, ** 0.001 < P < 
0.01 
 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.21.392688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.21.392688


29 

 

A. 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Dry biomass for mock-inoculated and TuMV-inoculated susceptible and 
resistant accessions measured at 13 days after TuMV inoculation on (A) 130 A. 
thaliana and on (B) 26 accessions in the ‘2014’ and ‘2015’ field experiment, 
respectively. 
Statistical comparisons (Wilcoxon-Mann Whitney test) on dry biomass were performed 
between TuMV and mock-inoculated samples on both categories of accessions. 
Signif.codes: ‘*’ P < 0.05; ‘***’ P < 0.001 
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Fig. 2. Comparisons of primary metabolic content in mock-inoculated and TuMV-inoculated 
resistant and susceptible A. thaliana accessions in the two-year field experiment 
A. 130 A. thaliana accessions of ‘2014’ field experiment 
B. 26 A. thaliana accessions of ‘2015’ field experiment 

Mock-inoculated samples are represented by grey boxplot. TuMV inoculated resistant accessions 
are represented by green boxplot and susceptible accessions by pink boxplots. Statistical analyzes 
were performed on each of the 10 primary metabolites (Wilcoxon-Mann Whitney or Student test 
according to the normality of the data). For each metabolite, plots with the same letter are not 
significantly different at P = 0.05. 
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Figure 3. Principal component analysis (PCA) performed on (I) 130 A. thaliana accessions inoculated by 
TuMV and mock-inoculated in the ‘2014’ field experiment and on (II) 26 A. thaliana accessions 
inoculated by TuMV and mock-inoculated in the ‘2015’ field experiment 
 

A. PCA performed with 10 primary metabolic traits measured at 13 days on mock-inoculated A. thaliana

accessions. The two major components that together accounted for 43.55% of the variance in 2014 and 50.55% 

in 2015 have been plotted. Dry biomass (Biomass) and viral accumulation (OD_405nm) were considered as 

explanatory traits (in blue on the variable factor map). Score plot of resistant (in blue) and susceptible (in 

orange) accessions. The confidence ellipses around the centroid of individuals are represented. B. PCA 

performed with 10 primary metabolic traits measured at 13 days after TuMV inoculation The two major 

components that accounted for 45.88% of the variance in 2014 and 68.14% in 2015 have been plotted. Dry 

biomass (Biomass) and viral accumulation (OD_405nm) were considered as explanatory traits (in blue on the 

variable factor map). Score plot of resistant (in green) and susceptible (in pink) accessions. The confidence 

ellipses around the centroid of individuals are represented. AA = Amino Acids, Chla = Chlorophyll a.  
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Figure 4. Principal component analysis performed on the 505 metabolic signatures (m/z) 
measured on 26 A. thaliana accessions in the ‘2015’ field experiment 
A. PCA performed on the 505 metabolic signatures (m/z) measured by UHPLC-LTQ Orbitrap on 26 
A. thaliana mock-inoculated accessions. The two major components that together accounted for 
34.62% of the variance. Resistant and susceptible accessions are in blue and orange, respectively. B.
PCA performed on the 505 metabolic signatures (m/z) measured by UHPLC-LTQ Orbitrap on 26 A. 
thaliana TUMV-inoculated accessions. The two major components accounted for 26.05% of the 
variance. Resistant and susceptible accessions are in green and pink, respectively. 
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Figure 5. Prediction of viral accumulation by the metabolite matrix on 26 A. thaliana 
accessions in the ‘2015’ field experiment 
 
The metabolite matrix is composed by 10 primary metabolic traits and 505 metabolic 
signatures (m/z). The replicates of the 26 A. thaliana accessions are represented by the blue 
dots. The dashed linear red line represents the exact prediction.  
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