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Abstract:
Gliomas  are  brain  tumors  characterized  by  highly  variable  growth  patterns.  Magnetic  resonance
imaging (MRI) is the cornerstone of glioma diagnosis and management planning.  However, glioma
features on MRI do not directly correlate with tumor cell distribution. Additionally, there is evidence
that glioma tumor characteristics and prognosis are sex-dependent. Magnetic resonance elastography
(MRE) is an imaging technique that allows interrogation of tissue stiffness in-vivo and has found utility
in the imaging of several cancers. We investigate the relationship between MRI features, MRE features,
and growth parameters derived from an established mathematical model of glioma proliferation and
invasion. Results suggest that both the relationship between tumor volume and tumor stiffness as well
as the relationship between the parameters derived from the mathematical model and tumor stiffness
are sex-dependent. These findings lend evidence to a growing body of knowledge about the clinical
importance of sex in the context of cancer diagnosis, prognosis and treatment.

Abbreviations:
HGG = high grade gliomas, T1Gd = T1-weighted gadolinium contrasted, T2-FLAIR = T2 weighted fluid
attenuated  inversion  recovery,  ROI  =  region  of  interest,  CC  =  contralateral  control,  CE  =  contrast
enhancing,  MRI  =  magnetic  resonance  imaging;  MRE  =  magnetic  resonance  elastography;  MNO =
Mathematical Neuro-Oncology Lab; PNT = Precision Neurotherapeutics Innovation Program, D = tumor

diffusiveness, ⍴ = tumor proliferation, D/⍴ = tumor invasiveness
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Introduction:

Gliomas are primary brain tumors characterized by a diverse range of growth patterns and an ability to
invade  surrounding  healthy  tissue.  Patients  diagnosed with  glioblastoma (GBM),  the highest-grade

glioma,  have  a median survival  of  only  14.6  months  with aggressive  standard  of  care  treatment 1.
Magnetic  resonance  imaging  (MRI)  is  the  main  imaging  modality  for  visualizing  gliomas,  including
identifying  suspected  abnormalities,  planning  targeted  treatments,  and  evaluating  treatment

response2. While MRI provides non-invasive images with excellent soft-tissue contrast, it is non-specific
in terms of the full extent of tumor cell invasion. Instead, the abnormalities seen on standard MRI
sequences are more reflective of the environmental changes the tumor cells cause rather than the

tumor cells themselves3. The clinical interpretation of these images (Figure 1) has traditionally been
that the primary tumor cell mass is represented by an abnormality on the gadolinium-enhanced T1-
weighted (T1Gd) image and that  the surrounding T2-weighted-Fluid-Attenuated Inversion Recovery
(T2-FLAIR) abnormality is mostly edema with a small amount of invading tumor cells. Practically, this
means surgeons target the T1Gd for resection, and radiation and chemotherapy are used to treat the

surrounding areas. However, while gliomas are known for their extreme invasion4, there is no clinically
utilized way to determine an individual tumor’s extent of invasion into the normal appearing brain. 

Figure 1: Examples of the different modalities typically used to visualize gliomas for a single patient and an MRE image. In their typical
presentation, GBMs are hypointense on T1-weighted (T1) sequences and hyperintense on both T2-weighted (T2) sequences and T2 fluid-

attenuated inversion recovery (T2-FLAIR) sequences2 all due to a mixture of increase in swelling and extra fluid and additional tumor cells.
T1 sequences with gadolinium contrast (T1Gd) show the breakdown of the blood-brain-barrier (contrast leakage) due to the neoplastic
process within the tumor, resulting in local hyperintensity.

Swanson  et  al.  developed  a  personalized  imaging-based  estimate  of  tumor  invasion  using  a
biomathematical  model called the Proliferation-Invasion (PI)  model,  which returns parameters that

describe patient-specific net rates of untreated tumor invasion and proliferation5-9. While the model
parameters have not been histologically validated due to lack of necessary data, they have been shown

to be prognostic of therapeutic response10,11, survival12, and benefit from extent of resection13, as well

as predictive of isocitrate dehydrogenase-1 (IDH1) mutation status14 and radiation sensitivity15. Thus,
while not yet used clinically, this metric serves as a surrogate for differentiating more diffuse tumors
from more nodular tumors. The prognostic implications of these parameters have also recently been

shown to vary based on sex16-18. While more studies certainly need to be done, these previous results
together  with  the  known  biological  sex  differences  in  immune  system  responses  support  the
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hypothesis that MRI signal and underlying tumor microenvironmental changes would broadly follow a

sex-differentiated pattern16,19-21. 

Beyond the biological changes tumors cause, they are also known to result in different mechanical

properties22-27. In the context of the invasive margin of GBMs, it is highly possible that the stiffness of
the tissue may be indicative of the different types of abnormalities shown on MRI: swelling due to
migrating  tumor  cells,  activated  immune  cells,  extra  fluid,  and  all  possible  combinations  of  these

phenomena. Magnetic resonance elastography (MRE) was first described in 1995 by Muthupillai et al.28

and has emerged as a technique for non-invasively measuring the mechanical properties of tissue. MRE
involves inducing shear waves throughout the tissue of interest and measuring the displacement of the

tissue within  an MRI  scanner22.  MRE has  been used to characterize  various  tissues  including liver,

skeletal muscle, myocardium, breast and brain25. In brain, MRE has found several applications including

characterizing the effect age29, sex30, and dementia31 on regional stiffness. In a recent study, Pepin et al.

used MRE to demonstrate that gliomas are softer than normal unaffected brain tissue32. They further
demonstrated that tumors of higher grade were softer than lower grade and that tumors with an IDH1
mutation were stiffer than those with wild-type IDH1. These results are consistent with previous MRE

studies of  glioma stiffness on MRE24,  but  somewhat surprisingly in the opposite direction of  other

studies  focusing  on  extracellular  matrix  stiffness  of  breast33,34 and  glioma23 tumors.  However,  the
nature of tumor cell invasion in GBMs and the known swelling in the tumor area may help explain
these results. This also highlights that the underlying mechanisms connecting cellular biology to gross
tumor mechanics and kinetics remain an area of active investigation. 

In this paper, we leverage a glioma patient dataset where the patients have received MRE imaging and
the PI model to estimated personalized tumor kinetics parameters. We aim to first investigate whether
tissue stiffness measured by MRE is indicative of invasive spread and second whether the invasive
patterns on MRI/MRE are sex-specific. We first consider how MRI abnormality size, another possible
surrogate for invasion, correlates with MRE. We then look at how the imaging-based invasion estimate
from the PI model corresponds with MRE values. 

Methods:

Patient Cohort 

The patient cohort in this study was previously reported by Pepin et al.32 As previously described,
preoperative patients suspected of a brain tumor were recruited to the study if they were at least 18
years of age and had an imageable abnormality of at least 2 cm diameter. Enrolled patients had a
scheduled date  for  surgical  resection between April  2014  and  December  2016.  While  the  original

cohort in Pepin et al.32 included 18 patients, for this study 10 were excluded due to not having a full set
of standard MRIs available (discussed later in methods subsection Imaging Derived Invasion Metric, D/

⍴). Thus, the included patient cohort consisted of 8 glioma patients (4F,4M) (1 grade II, 3 grade III, and

4 grade IV tumors), 4 of which had IDH1 mutated tumors32. Glioma diagnosis, grade and molecular
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markers  (1p/19q  codeletion  and  IDH1-R132H  mutations)  were  determined  based  on  clinical
histopathological assessment of surgical biopsies.

MRI Protocols 
We retrospectively  analyzed  clinical  MRI  and  research  MRE images  from the  MRE glioma patient

cohort32. Details of the MRI sequence acquisition and region of interest (ROI) generation are outlined in

Pepin et al.32 and we will briefly review the methods here. The standard anatomic imaging protocol
consisted of a T1-weighted inversion recovery echo-spoiled gradient-echo (TR/TE = 6.3/2.8 ms; TI = 400
ms; flip angle = 11°). For the MRE acquisition, a custom passive driver beneath the patient’s head was
used to induce shear waves at 60 Hz. During the shear wave motion, the patient was imaged with a
spin-echo echo planar imaging (SE-EPI) MRE pulse sequence that synchronized the motion-encoding

gradients to the shear waves (TR/TE = 3600/62 ms). Stiffness was computed as previously described 32.
Tissue was assumed to be linear, isotropic, locally homogeneous, and viscoelastic, and the complex
shear modulus was computed from the measured displacement fields using 3D direct inversion. The
final result was a quantitative map of the tissue shear modulus, from which the sheer stiffness was
derived by computing the median magnitude of the complex shear modulus over regions of interest
(ROIs). 

MRE Image Segmentation 
Tumor  ROIs:  ROIs  were  manually  drawn  by  an  experienced  reader  using  the  anatomic  imaging
sequences (T1, T2, post-contrast T1, etc.) for reference. 

Contralateral Control (CC): For each subject, the grouped tumor ROI was reflected to the contralateral
hemisphere to identify a personalized control region. 

MRE: An average brain tissue stiffness value (magnitude of the complex shear modulus (|G*|) in units
of kPa) was calculated for each tumor and contralateral control ROI as previously described32.

Imaging Derived Invasion Metric, D/⍴
The MRI-based PI model is a partial differential equation, which quantifies the spatial and temporal
growth  of  tumor  cells  per  unit  volume.  The  model  is  written  mathematically  as

c t=∇⋅ (D∇ c )+ρc (1−c /K )  where ct is the rate of change of tumor cell density in time,  D is the net
rate of invasion (mm2/yr), ρ is the net rate of proliferation (/yr), and K is the cell carrying capacity of
the tissue (cells/mm3), which is considered a fixed constant based on an average 10 μm diameter cell.
The tumor invasion profile is defined as the ratio of the invasion and proliferation rates, D/ρ. Large

values of  D/⍴ imply diffuse disease, small values of  D/⍴ imply nodular disease. This model has been

used to quantify growth rates for individual GBM patients using MRI data38,39.

Standard clinical MRIs (T1Gd, FLAIR/T2) for each subject were segmented to determine their tumor’s

diffusion (D) and proliferation (⍴) values using the PI model8. However, 10 patients were excluded from

the original MRE cohort published in Pepin et al.32 because we did not have access to at least one T2 or

FLAIR image and a T1Gd image taken on the same date, which is required for computing D/⍴ values.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.21.352724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.21.352724


Segmentation was completed using an in-house semi-automated software. Each tumor was measured

on  T1Gd and T2-FLAIR images, then verified by a second observer. D/⍴ was calculated using the PI

model5,8. 

Statistical Analysis
Student’s t-test was used to test for differences in tumor cell densities based on radiologically defined
regions and sex. Pearson’s linear regression was used to analyze correlative relationships between ROI
stiffness, CC stiffness, necrotic volume, T1Gd volume, contrast enhancing (CE) volume, FLAIR volume,

D/⍴, and patient age. One-way ANOVAs and t-tests were used to compare ROI stiffness, CC stiffness,

the difference in tumor and contralateral control stiffness, and D/⍴ stratified by sex, tumor grade, and
IDH1 mutation status. A p-value of < .05 was considered statistically significant. All calculations were
performed in GraphPad PRISM 8 (San Diego, CA). 

Results:

Tumor Size and Stiffness 
To investigate the relationship between tumor size and stiffness, we utilized ROIs from the FLAIR image
as  available,  and  T2  ROIs  were  used when they  were  not  (N=2  of  8).  Using  linear  correlation  to
compare radiographic volumes with measured MRE stiffness values in both the ROI and CC regions,
negative trends were observed, though none reached significance (p=0.13 and p=0.07 respectively)
(Figure 2). While not statistically significant, R2 values were higher for correlations between CC stiffness
and both volumes than between ROI stiffness and both volumes.

Tumor Size and Stiffness Accounting for Sex
Examining  this  data  stratified  by  sex,  separate  significant  correlations  were  found  between  the
FLAIR/T2 volumes and ROI stiffness for both sexes (p=0.01 for males, and p<0.01 for females), with
females exhibiting a stronger negative slope (-1.7e-5 vs -2.4e-6) (Figure 3). No other relationships were
found to be significant. 

D/⍴ and stiffness in MRE Patient Cohort 

Regression analysis (Figure 4, left) showed no significant relationship between D/⍴ and the stiffness
calculated in either the CC or ROI (p=0.2673, p=0.2552 respectively). When repeating this analysis in

sex-stratified subcohorts (Figure 4, middle), D/⍴ did show a significant relationship with stiffness in the
ROI region for males (p<0.001) and trended towards significance for females (p=0.057). No significant

relationship was found for either sex between D/⍴ and stiffness in the CC region (Figure 4, right). 
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Figure  2:  A.  Linear  correlation  between  T1Gd  volume and  ROI  stiffness  (R 2=0.34,  p=0.13)  and  CC  stiffness  (R2=0.45,  p=0.07).  
B. Linear correlation between FLAIR/T2 volumes and ROI stiffness (R2=0.37, p=0.11) and CC stiffness (R2=0.45, p=0.07).

Figure 3: Correlation between stiffness and abnormality volumes considering sex as a variable. Females
left column, males right. T1Gd volume top row, FLAIR/T2 bottom. Separate significant correlations seen
between the FLAIR/T2 volumes and the stiffness measure. Both sexes had extremely high R 2 values (0.99
for females and 0.97 for males), but slopes of regression lines were different (-1.7e-5 for females, -2.4e-6
for males).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.21.352724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.21.352724


Discussion:

Understanding how the true underlying tumor invasion profile corresponds to radiographic imaging is
critical to providing informed clinical care. To date, such studies have been limited due to the difficulty
of  acquiring  tissue  for  histological  analysis.  MRI  imaging  is  a  proxy  measurement  of  tumors  as  it
primarily resolves contrast (T1Gd) and interstitial fluid accumulation (T2/FLAIR), which are measures of
leaky vasculature and edema, respectively. These measures may be correlated with clinical pathology
but do not necessarily relate to the local chemical and physical microenvironment within which the
tumor  cells  proliferate  and  migrate.  Pepin  et  al.  previously  demonstrated  that  glioma  stiffness
decreases with increasing WHO tumor grade and IDH1 mutant gliomas are stiffer than wild-type IDH1

gliomas32.  In  this  paper,  based  on  a  hypothesis  that  invasion  profiles  would  influence  the  tumor
stiffness, we have tried to query how MRI signatures on standard pulse sequences correlated with the
underlying mechanics and biology. 

Our main findings in comparing MRE values with imaging surrogates of invasion, tumor size and an
invasion metric based on a biomathematical model, showed that statistically significant correlations
were only present when considering patients in sex-specific subcohorts. Specifically, T2/FLAIR volume
and MRE in the ROI region was found to be significant when looking at males and females separately

but not when pooled. And similarly, the invasion metric, D/⍴, was not significantly correlated with the
MRE in the ROI region when all patients were considered together, but it was significant for males
alone and was trending towards significance for females. Admittedly, the number of patients we had
available for this study due to imaging availability does limit the strength of these results. However, the
results suggest that the connection between regions of abnormality as visualized on MRI may relate to
the different biological invasion patterns of glioma cells. 

Figure 4: Imaging-based invasion metric and MRE Measured Stiffness. Left: Correlation between D/⍴ and Stiffness was not significant

for either ROI or CC regions (p=0.27 and p=0.25 respectively).  Middle: Correlation between D/⍴ and stiffness in ROI region was
significant for males and trending toward significance for females (p<0.001 and p=0.057 respectively). Right: Correlation between D/

⍴ and stiffness in CC region showed no significance for either sex (p=0.42 M, p=0.31 F).
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Clearly, much research remains to be done. More patients need to be studied and likely the tissue will
need to be explored in greater detail to assess cellular composition beyond just the tumor cells. But
these results have possible clinical implications. One such area is in assessing drug efficacy. Interstitial
pressure is known to negatively influence drug efficacy in solid tumors and Yang et al. determined that

standard therapy is more effective in females compared to males16. Our results suggest this difference
in treatment efficacy may be due to differences in interstitial pressure, particularly the degree and
distribution  within  a  given  tumor  volume. Another  implication  has  to  do  with  the  imaging-based
invasion metric used here. It is based on a few broad assumptions that the hyperintensity on T1Gd
imaging corresponds to regions exhibiting 80% tumor cell density and above while the T2 hyperintense
regions correspond to 16% and above (1/5 the T1Gd threshold). The findings we present here suggest
that the T2 hyperintense regions may be representative of different phenomena between the sexes.
This implies that in the future, the PI model could be more accurate and meaningful if  it could be
trained in a sex-specific way, using better assumptions of how the imaging regions correlated with
tumor cell density. 

Clinical  imaging remains the primary method of monitoring gliomas and is mostly interpreted with
respect to changes in size. Increasing any understanding of how imaging features correspond to tumor
characteristics  can  drastically  influence  how  therapy  is  chosen  and  how  response  to  therapy  is
determined. Much remains to be done, but this work represents a first look at how similar imaging may
reflect different tumor invasion depending on the sex of the patient.
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