4 Kamil S. Jaron ${ }^{1,2,3, ~ a, ~ D a r r e n ~ J . ~ P a r k e r ~}{ }^{1,2, a}$, Yoann Anselmetti ${ }^{4,5, a}$, Patrick Tran Van ${ }^{1,}$
$5{ }^{2}$, Jens Bast ${ }^{1,6}$, Zoé Dumas ${ }^{1}$, Emeric Figuet ${ }^{4}$, Clémentine M. François ${ }^{4,7}$, Keith
6 Hayward ${ }^{1,2}$, Victor Rossier ${ }^{1,2}$, Paul Simion ${ }^{4,8}$, Marc Robinson-Rechavi ${ }^{1,2, b}$, Nicolas
7 Galtier ${ }^{4, \mathrm{~b}}$, Tanja Schwander ${ }^{1, \mathrm{~b}}$
8
$9{ }^{1}$ Department of Ecology and Evolution, University of Lausanne, Lausanne,
10 Switzerland;
$11{ }^{2}$ Swiss Institute of Bioinformatics, Lausanne, Switzerland;
$12{ }^{3}$ Institute of Evolutionary Biology, School of Biological Sciences, University of
13 Edinburgh, Edinburgh, EH9 3FL
$14{ }^{4}$ ISEM - Institut des Sciences de l'Evolution, Montpellier, France;
$15{ }^{5}$ Current address: CoBIUS lab, Department of Computer Science, University of
16 Sherbrooke, Sherbrooke, Canada;
$17{ }^{6}$ Current address: Institute for Zoology, University of Cologne, Köln, Germany;
$18{ }^{7}$ Current address: Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023
19 LEHNA, F-69622, Villeurbanne, France;
$20{ }^{8}$ Current address: Université de Namur, LEGE, URBE, Namur, 5000, Belgium

Abstract

The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex affects genome evolution remains poorly understood. We generated de novo reference genomes for five independently evolved parthenogenetic species in the stick insect genus Timema and their closest sexual relatives. Using these references in combination with population genomic data, we show that parthenogenesis results in an extreme reduction of heterozygosity, and often leads to genetically uniform populations. We also find evidence for less effective positive selection in parthenogenetic species, supporting the view that sex is ubiquitous in natural populations because it facilitates fast rates of adaptation. Contrary to studies of non-recombining genome portions in sexual species, genomes of parthenogenetic species do not accumulate transposable elements (TEs), likely because successful parthenogens derive from sexual ancestors with inactive TEs. Because we are able to conduct replicated comparisons across five species pairs, our study reveals, for the first time, how animal genomes evolve in the absence of sex in natural populations, providing empirical support for the negative consequences of parthenogenetic reproduction as predicted by theory.

Introduction

Sex: What is it good for? The reason why most eukaryotes take a complicated detour to reproduction, when more straightforward options are available, remains a central and largely unanswered question in evolutionary biology (1, 2). Animal species in which parthenogenetic reproduction is the sole form of replication typically occur at the tips of phylogenies and only a few of them have succeeded as well as their sexually reproducing relatives (3). In other words, most parthenogenetic lineages may eventually be destined for extinction. These incipient evolutionary failures, however, are invaluable as by understanding their fate something may be learned about the adaptive value of sex.

Parthenogenesis is thought to be favored in the short term because it generates a transmission advantage $(4,5)$, as well as the advantage of assured reproduction when mates are scarce $(6,7)$. The short-term benefits of parthenogenesis, however, are believed to come along with long-term costs. For example, the physical linkage between loci it entails can generate interferences that decrease the efficacy of natural selection (e.g. (8-10), reviewed in (11)). This is expected to translate into reduced rates of adaptation and increased accumulation of mildly deleterious mutations, which may potentially drive the extinction of parthenogenetic lineages.

In addition to these predicted effects on adaptation and mutation accumulation, parthenogenesis is expected to drive major aspects of genome evolution. A classical prediction is that heterozygosity (i.e., intra-individual polymorphism) increases over time in the absence of recombination, as the two haploid genomes diverge independently of each other, generating the so-called "Meselson Effect" (12, 13). Parthenogenesis can also affect the dynamics of transposable elements (TEs), resulting in either increased or decreased genomic TE loads (14-16). Finally, some forms of parthenogenesis might facilitate the generation and maintenance of structural variants, which in sexuals are counter-selected due to the constraints of properly pairing homologous chromosomes during meiosis (17).

We tested these predictions by comparing the genomes of five independently derived parthenogenetic stick insect species in the genus Timema with their close sexual relatives (Figure 1). These replicate comparisons allowed us to solve the key problem in understanding the consequences of parthenogenesis for genome evolution: separating the consequences of parthenogenesis from lineage specific effects (17). Timema are wingless, plant-feeding insects endemic to western North America. Parthenogenetic species in this genus are diploid and of non-hybrid origin (18) and ecologically similar to their sexual relatives. Previous research, based on a small number of microsatellite markers, has suggested that oogenesis in parthenogenetic Timema is functionally mitotic, as no loss of heterozygosity between females and their offspring was detected (18).

Figure 1. Multiple, independent transitions from sexual to parthenogenetic reproduction are known in the genus Timema (19), each representing a biological replicate of parthenogenesis, and with a close sexual relative at hand for comparison A. Phylogenetic relationships of Timema species (adapted from (19, 20)). B. Species sequenced in this study. Photos taken by © Bart Zijlstra - www.bartzijlstra.com.

113 We estimated genome-wide nucleotide heterozygosity in each reference genome

De novo genomes reveal extremely low heterozygosity in

parthenogenetic stick insects

We generated ten de novo genomes of Timema stick insects, from five parthenogenetic and five sexual species (Figure 1, SM Tables 1, 2). Genomes were subjected to quality control, screened for contamination, and annotated (see Methods, SM text 1). The final reference genomes were largely haploid, spanned $75-95 \%$ of the estimated genome size (1.38 Gbp (21)), and were sufficiently complete for downstream analyses, as shown by the count of single copy orthologs conserved across insects (96\% of BUSCO genes (22) detected on average; SM Table 3). A phylogeny based on a conservative set of 3975 1:1 orthologous genes (SM Table 4) corroborated published phylogenies and molecular divergence estimates in the Timema genus (SM Figure 1). Finally, we identified 55 putative horizontal gene acquisitions from non-metazoans, and they all happened well before the evolution of parthenogenesis (SM text 2). directly from sequencing reads, using a reference-free technique (genome profiling analysis (23)). These analyses revealed extreme heterozygosity differences between the sexual and parthenogenetic species. The five sexual Timema featured nucleotide heterozygosities within the range previously observed in other sexual species (Figure 2; $(24,25)$). The heterozygosities in the parthenogenetic species were substantially lower, and in fact so low that reference-free analyses could not distinguish heterozygosity from sequencing error (SM text 3). We therefore compared heterozygosity between sexuals and parthenogens by calling SNPs in five re-sequenced individuals per species. This analysis corroborated the finding that parthenogens have extremely low ($<10^{-5}$) heterozygosity, being at least 140 times lower than that found in their sexual sister species (permutation ANOVA, reproductive mode effect $p=0.0049$; Figure 2). Screening for structural variants (indels, tandem duplications, and inversions) in sexual and parthenogenetic individuals revealed the same pattern: extensive and variable heterozygosity in

148 The unexpected finding of extremely low heterozygosity in Timema parthenogens
sexual species and homozygosity in the parthenogens (Figure 2, SM text 3). Some heterozygosity in Timema parthenogens could be present in genomic regions not represented in our assemblies, such as centromeric and telomeric regions. These regions however represent a relatively small fraction of the total genome, meaning that for most of the genome at least, Timema parthenogens are either largely or completely homozygous for all types of variants (SM text 3).

Figure 2. Extremely low heterozygosity in parthenogenetic Timema species for different types of variants. A. Nucleotide heterozygosity represented by bars indicates genome-wide estimates for the reference genomes (based on raw reads, see Methods), heterozygosity based on SNP calls in re-sequenced individuals is indicated by points and represents a conservative estimation of heterozygosity in the assembled genome portions (with error bars indicating the range of estimates across individuals) B. Heterozygous structural variants (SVs, reported as number of heterozygous SVs / number of callable sites) in re-sequenced individuals (with error bars indicating the range of estimates across individuals). Note that even though heterozygous SNPs and SVs were called using stringent parameters, it is likely that a large portion are false positives in parthenogenetic Timema (see SM text 3). raises the question of when and how heterozygosity was lost. For example, the bulk
of heterozygosity could have been lost during the transition from sexual reproduction to parthenogenesis (26). Alternatively, heterozygosity loss could be a continuous and ongoing process in the parthenogenetic lineages. To distinguish these options, we investigated the origin of the genetic variation present among different homozygous genotypes in each parthenogenetic species. We found that only $6-19 \%$ of the SNPs called in a parthenogen are at positions that are also polymorphic in the sexual relative (SM Table 5). This means that most of the variation in parthenogens likely results from mutations that appeared after the split from the sexual lineage. This implies that heterozygosity generated through new mutations is lost continuously in parthenogens, and was not suddenly lost at the inception of parthenogenesis. The most likely explanation for these findings is that parthenogenetic Timema are, in fact, not functionally mitotic but automictic. Automictic parthenogenesis frequently involves recombination and segregation, and can lead to homozygosity in most or all of the genome (27, 28). Although automixis can allow for the purging of heterozygous deleterious mutations (29), the classical predictions for the long-term costs of asexuality extend to automictic parthenogens because, as for obligate selfers, linkage among genes is still much stronger than in classical sexual species (30). This is especially the case in largely homozygous parthenogens, where recombination and segregation, even if mechanistically present, have no effect on genotype diversities.

Functional mitosis in Timema was previously inferred from the inheritance of heterozygous microsatellite genotypes between females and their offspring (18), a technique widely used in non-model organisms with no cytological data available (e.g., (31, 32)). The most likely reconciliation of these contrasting results is that heterozygosity is maintained in only a small portion of the genome, for example the centromeres or telomeres, or between paralogs. Consistent with this idea, we were unable to locate several of the microsatellite-containing regions in even the best Timema genome assemblies (SM text 4), suggesting that these regions are not present in our assemblies due to the inherent difficulty of assembling repetitive genome regions from short read data (33).

Extensive variation in genotype diversity between

 parthenogenetic populationsParthenogenesis and sexual reproduction are expected to drive strikingly different distributions of polymorphisms in genomes and populations. Different regions within genomes experience different types of selection with sometimes opposite effects on the levels of polymorphisms within populations, such as purifying versus balancing selection (34). The increased linkage among genes in parthenogenetic as compared to sexual species is expected to homogenize diversity levels across different genome regions. Furthermore, recurrent sweeps of specific genotypes in parthenogenetic populations can lead to extremely low genetic diversity and even to the fixation of a single genotype, while sweeps in sexual populations typically reduce diversity only in specific genome regions.

To address these aspects in the genomes of sexual and parthenogenetic Timema species, we mapped population-level variation for the SNPs and SVs inferred above to our species-specific reference genomes. We then anchored our reference genome scaffolds to the 12 autosomal linkage groups of a previously published assembly of the sexual species T. cristinae (v1.3 from (35), SM text 5). This revealed that different types of polymorphisms (SNPs and SVs) tended to co-occur across the genomes in all species, independently of reproductive mode (Figure 3).

The focal population for three of the five parthenogenetic species (T. genevievae, T. tahoe and T. shepardi) consisted largely of a single genotype with only minor variation among individuals. By contrast, genotype diversity was considerable in T. monikensis and T. douglasi (Figure 3A). In the former species, there was further a conspicuous diversity peak on LG8, supporting the idea that parthenogenesis is automictic in Timema. Indeed, under complete linkage (functionally mitotic parthenogenesis), putative effects of selection on this LG would be expected to propagate to the whole genome. Independently of local diversity peaks, overall

212 diversity levels in T. monikensis and T. douglasi were comparable to the diversities in 213 populations of some of the sexual Timema species (Figure 3A). Different 214 mechanisms could contribute to such unexpected diversities in parthenogenetic 215 Timema, including the presence of lineages that derived independently from their 216 sexual ancestor, or rare sex. While a single transition to parthenogenesis is believed 217 to have occurred in T. monikensis, the nominal species T. douglasi is polyphyletic 218 and known to consist of independently derived clonal lineages. These lineages have requires further investigation and is a challenge for future studies.

224

Figure 3. Population polymorphism levels in parthenogenetic (blue) and sexual (red)
Timema species. A. Phylogenies based on 1:1 orthologous genes reflect the different levels of genotype diversities in parthenogenetic Timema species B. Distribution of structural variants (SVs; dark blue and red) and SNPs (light blue and orange) along the genome. Scaffolds from the ten de novo genomes are anchored on autosomal linkage groups from the sexual species T. cristinae (SM text 5).

230 Independently of the mechanisms underlying polymorphism in the parthenogenetic 231 species T. monikensis, the polymorphism peak on LG8 is striking (Figure 3B). This peak occurs in a region previously shown to determine color morph (green, green-striped, or brownish ("melanistic")) in the sexual sister species of T. monikensis, T. cristinae (35). Our focal T. monikensis population features four discrete color morphs (green, dark brown, yellow, and beige), suggesting that additional color morphs may be regulated by the region identified in T. cristinae. We also found a peak in polymorphism on LG8, spanning over approximately two-thirds of LG8, in the sexual species T. californicum, which features a different panel of color morphs than T. cristinae (36). Interestingly, this diversity peak in T. californicum was generated by the presence of two divergent haplotypes (approximately 24Mbp long), with grey individuals homozygous for one haplotype and green individuals heterozygous or homozygous for the alternative haplotype (SM text 6). Note that the grey color morph is not known in the monomorphic green parthenogenetic sister of T. californicum (T. shepardi), and we therefore do not expect the same pattern of polymorphism on LG8 in this species.

Faster rate of adaptive evolution in sexual than parthenogenetic species

We have shown previously that parthenogenetic Timema species accumulate deleterious mutations faster than sexual species (37,38), a pattern also reported in other parthenogenetic taxa (reviewed in (17, 39)). This is expected given that linkage among loci in parthenogens prevents selection from acting individually on each locus, which generates different forms of selective interference (9, 10, 40). In addition to facilitating the accumulation of deleterious mutations, selective interference among loci in parthenogens should also constrain the efficiency of positive selection. While there is accumulating evidence for this process in experimental evolution studies (e.g., (41-43)), its impact on natural populations remains unclear (17, 39). To compare the efficiency of positive selection in sexual and parthenogenetic Timema, we used a branch-site model on the gene trees ((44), Methods). We compared the terminal branches leading to sexual or parthenogenetic

260 species in one-to-one orthologous genes identified in at least three species pairs 261 (SM Table 4), using a threshold of $q<0.05$ to classify which terminal branches show 262 evidence of positive selection.

264 We found a greater number of positively selected genes in sexual than 265 parthenogenetic species (Figure 4, binomial GLMM p = 0.005). In addition, we also 266 examined if there was more evidence for positive selection in sexual species in a 267 threshold-free way by comparing the likelihood ratio test statistic between 268 parthenogenetic and sexual species (as in (45, 46)). This confirmed that the 269 evidence for positive selection was stronger for sexual species (permutation glm $\mathrm{p}=$ 0.011).
 In addition to reproductive mode, species pair also had a significant influence on the number of positively selected branches (binomial GLMM p=0.015). There was no significant interaction between species pair and reproductive mode ($p=0.197$). 276 Note, the difference between reproductive modes is robust to a more stringent cutoff

Figure 4. Number of genes showing evidence for positive selection in each species.

278 The positively selected genes we identified are most likely associated with 279 species-specific adaptations. Few of them were shared between species, with 280 overlap between species not greater than expected by chance (SM Figure 3, FDR < 281 0.4), and there was little enrichment of functional processes in positively selected 282 genes (0-19 GO terms per species, SM Table 8). Interestingly, most of the significant 283 GO terms were associated with positively selected genes in parthenogenetic 284 Timema (SM Table 8), likely because a much smaller proportion of positively 285 selected genes in sexual species had annotations (SM Figure 4). We speculate that 286 positively selected genes in sexuals could often be involved in sexual selection and

Transposable element loads are similar between species with

 sexual and parthenogenetic reproductionUpon the loss of sexual reproduction, transposable element (TE) dynamics are expected to change $(14,16,48)$. How these changes affect genome-wide TE loads is however unclear as sex can facilitate both the spread and the elimination of TEs (17). In parthenogens, TE load might initially increase as a result of weaker purifying selection, a pattern well illustrated by the accumulation of TEs in non-recombining parts of sex chromosomes and other supergenes (49,50). However, TE loads in parthenogens are expected to decrease over time via at least two non-mutually exclusive mechanisms. First, TEs are expected to evolve lower activity over time as their evolutionary interests are aligned with their hosts $(14,48)$. Second, TE copies that were purged via excision can re-colonize a sexual but not a parthenogenetic genomic background $(15,16)$. Finally, it is important to note that the predicted effects of reproductive mode on TE loads require some amount of TE activity (active
transposition or excision) to occur. Without such activity, TE content does not vary among individuals and can therefore not change over time.

We generated a Timema genus-level TE library by merging de novo TE libraries generated separately for each of the ten Timema species. We then quantified TE loads in each Timema genome by mapping reads to this merged library (see Methods). The overall TE content was very similar in all ten species (20-23.6\%), with significant differences in abundance of TE superfamilies between species groups but no significant effect of reproductive mode ($p=0.43$; Figure 5; SM Figure 5).

No difference in TE load between sexual and parthenogenetic Timema would be expected if TEs were already well controlled in their ancestor, without any subsequent TE activity. Consistent with this idea, we find very little evidence for ongoing TE activity in the genus. The oldest node in our Timema phylogeny has an age estimate of 30 Mya (20) but the TE contents of the two clades separating at this node have only diverged by 1.3%, suggesting that TEs remained largely silent during the evolution of the genus. Inactive TEs may facilitate the persistence of incipient parthenogenetic strains (17) and thus help to explain the high frequency of established parthenogenetic species in Timema.

Figure 5. Total TE abundance in the ten Timema species. TE abundance is expressed as the fraction of reads that map to a genus-level TE library. TE families are named following the Wicker classification (51). The first character corresponds to the TE class (Class I are retrotransposons (R), Class II are DNA transposons (D)), the second character corresponds to the Order (e.g. LTR) and the third to the Superfamily (e.g. Gypsy); for example, RLG is a Gypsy retroelement. The character X indicates unknown classification at the superfamily level (because of fragmentation or lack of detectable homology).

Conclusion

We present genomes of five independently derived parthenogenetic lineages of Timema stick insects, together with their five sexual sister species. This design with replicated species pairs allows us, for the first time, to disentangle consequences of parthenogenesis from species-specific effects. All parthenogenetic Timema species are largely or completely homozygous for both SNPs and SVs, and frequently feature lower levels of population polymorphism than their close sexual relatives. Low population polymorphism can exacerbate the effects of linkage for reducing the efficacy of selection, resulting in reduced rates of positive selection in parthenogenetic Timema, in addition to the accumulation of deleterious mutations previously documented (37). In spite of these negative genomic consequences, parthenogenesis is an unusually successful strategy in Timema. It evolved and persisted repeatedly in the genus, and parthenogenetic species often occur across large geographic areas. Because Timema are wingless and their populations subjected to frequent extinction-recolonization dynamics in their fire-prone Californian shrubland habitats, the genomic costs of parthenogenesis are likely offset by one of the most classical benefits of parthenogenesis: the ability to reproduce without a mate.

Methods

Sample collection and sequencing
For each of the ten species, the DNA for Illumina shotgun sequencing was derived from virgin adult females collected in 2015 from natural populations in California (SM Table 1). Extractions were done using the Qiagen Mag Attract de HMW DNA kit, following manufacturer indications. Five PCR-free libraries were generated for each reference genome (three 2x125bp paired end libraries with average insert sizes of respectively 350, 550 and 700bp, and two mate-pair libraries with 3000 and 5000bp insert sizes), one library (550bp insert size) was generated for each re-sequenced

368 individual. Libraries were prepared using the illumina TruSeq DNA PCR-Free or 369 Nextera Mate Pair Library Prep Kits, following manufacturer instructions, and 370 sequenced on the Illumina HiSeq 2500 system, using v4 chemistry and $2 x 125$ bp 371 reads at FASTERIS SA, Plan-les-Ouates, Switzerland.

372 Genome assembly and annotation
373 The total coverage for the reference genomes (all libraries combined) ranged 374 between 37-45x (SM Table 2). Trimmed paired-end reads were assembled into 375 contigs using ABySS (52) and further scaffolded using paired-end and mate pairs 376 using BESST (53). Scaffolds identified as contaminants were filtered using Blobtools 377 (54). The assembly details can be found in supplementary materials (SM text 1).

379 Publically available RNA-seq libraries for Timema (37, 55, 56) were used as expression evidence for annotation. Trimmed reads were assembled using Trinity v2.5.1 (57) to produce reference-guided transcriptomes. The transcriptomes and protein evidence were combined with $a b$ initio gene finders to predict protein coding genes using MAKER v2.31.8 (58). The annotation details can be found in the supplementary materials (SM text 1).

Orthologs

Timema orthologous groups (OGs) were inferred with the OrthoDB standalone pipeline (v. 2.4.4) using default parameters (59). In short, genes are clustered with a graph-based approach based on all best reciprocal hits between each pair of genomes. The high level of fragmentation typical for Illumina-based genomes constrains the ability to identify $1: 1$ orthologs across all ten Timema species. To maximize the number of single copy OGs covering all ten Timema species, transcriptomes were included during orthology inference. Thus, transcripts were used to complete OGs in absence of a gene from the corresponding species. Using this approach, 7157 single copy OGs covering at least three sexual-parthenogenetic sister species pairs were obtained (SM Table 4).

396 Horizontal gene transfers (HGT)

397 To detect HGT from non-metazoan species, we first used the pipeline of foreign 398 sequence detection developed by Francois et al. (60). We used the set of CDS identified in publicly available transcriptomes (37) and the genome assemblies prior to the decontamination procedure with Blobtools (54). The rationale is that some 401 genuine HGT could have been wrongly considered as contaminant sequences during this decontamination step and thus been removed from the assembly. Scaffolds filtered during decontamination are available from our github repository (https://github.com/AsexGenomeEvol/Timema_asex_genomes/tree/main/4_Horizont 406 acceptance.

407 Briefly, a DIAMOND BlastP (v0.8.33) (61) allows to detect candidate non-metazoan genes in the set of CDS of each species. Taxonomic assignment is based on the 10 best blast hits to account for potential contaminations and other sources of taxonomic misassignment in the reference database. Candidate non-metazoan sequences are then subjected to a synteny-based screen with Gmap (v2016-11-07) (62) to discriminate between contaminant sequences and potential HGT-derived sequences. A sequence is considered as a HGT candidate if it is physically linked to (i.e., mapped to the same scaffold as) at least one "confident-arthropod" CDS (previously identified in the DIAMOND blast).

We then clustered all HGT candidates identified in each of the 10 Timema species into HGT families using Silix (v1.2.10) (63), requiring a minimum of 85% identity (default parameters otherwise). These HGT families were then "completed" as much as possible by adding homologs from the genome assemblies not identified as HGT candidates (this could occur if the corresponding sequences are fragmented or on short scaffolds for example). To this end, the longest sequence of each HGT family was mapped (using Gmap) on the genomic scaffolds of all species, requiring a minimum of 85% identity.

424 For each completed HGT family, a protein alignment of the candidate HGT 425 sequence(s) and its (their) 50 best DIAMOND blastP hits in the reference database 426 ($1^{\text {st }}$ step of the pipeline) was generated with MAFFT (v7) (64). The alignments were 427 cleaned using HMMcleaner (stringency parameter = 12) (65) and sites with more 428 than 50\% missing data were removed. Phylogenetic trees were inferred using 429 RAxML (v8.2) (66) with the model 'PROTGAMMALGX' of amino-acid substitution 430 and 100 bootstrap replicates. Phylogenetic trees were inspected by eye to confirm or 431 not an evolutionary history consistent with the hypothesis of HGT.

Heterozygosity

Genome-wide nucleotide heterozygosity was estimated using genome profiling analysis of raw reads from the reference genomes using GenomeScope (v2) (23). A second, SNP-based heterozygosity estimate was generated using re-sequenced individuals. We re-sequenced five individuals per species, but 3 individuals of T. shepardi, 2 individuals of T. poppensis and one T. tahoe individual did not pass quality control and were discarded from all downstream analyses. SNP calling was based on the GATK best practices pipeline (67). We used a conservative set of SNPs with quality scores ≥ 300, and supported by $15 x$ coverage in at least one of the individuals. SNP heterozygosity was then estimated as the number of heterozygous SNPs divided by the number of callable sites in each genome. Due to stringent filtering criteria, our SNP based heterozygosity is an underestimation of genome-wide heterozygosity.

Structural variants
We used Manta (v1.5.0) (68), a diploid-aware pipeline for structural variant (SV) calling, in the same set of re-sequenced individuals used for SNP heterozygosity estimates. We found a high frequency of heterozygous SVs with approximately twice the expected coverage (SM Figure 7), which likely represent false positives. To reduce the number of false positives, we filtered very short SVs (30 bases or less) and kept only variant calls that had either split read or paired-end read support within the expected coverage range, where the coverage range was defined

454 individually for each sample by manual inspection of coverage distributions. The 455 filtered SV calls were subsequently merged into population SV calls using 456 SURVIVOR (v1.0.2) (69). The merging criteria were: SV calls of the same type on 457 the same strand with breakpoints distances shorter than 100 bp .

458 Genome alignment
459 We anchored our genome assemblies to the reference of T. cristinae (BioProject 460 Accession PRJNA417530) (35) using MUMmer (version 4.0.0beta2) (70) with 461 parameter --mum. The alignments were processed by other tools within the package: 462 show-coords with parameters -THrcl to generate tab-delimited alignment files and 463 dnadiff to generate 1-to-1 alignments. We used only uniquely anchored scaffolds for 464 which we were able to map at least 10k nucleotides to the T. cristinae reference 465 genome.

466 Transposable elements

For each species, specific repeat libraries were constructed and annotated to the TE superfamily level (51) wherever possible. For collecting repetitive sequences, we used a raw read based approach DNAPipeTE v1.2 (71) with parameters -genome_coverage 0.5 -sample_number 4 and respective species genome size, as well as an assembly based approach (RepeatModeler v1.0.8 available at http://www.repeatmasker.org/RepeatModeler/), such that repeats not present in the assembly can still be represented in the repeat library. The two raw libraries were merged and clustered by 95% identity (the TE family threshold) using usearch v10.0.240 (72) with the centroid option. To annotate TEs larger than 500 bp in the repeat library, we used an approach that combines homology and structural evidence (PASTEClassifier (73)). Because PASTEClassifier did not annotate to TE superfamily levels, we additionally compared by BlastN (v. 2.7.1+) (74) the repeat libraries to the well curated T. cristinae TE library from Soria-Carrasco et al. (21). Blast hits were filtered according to TE classification standards: identity percentage $>80 \%$, alignment length $>80 \mathrm{bp}$, and the best hit per contig was kept. The two classification outputs were compared and in case of conflict the classification level of PASTEClassifier was preferred. All non-annotated repeats were labelled 'unknown'.

Repeat library header naming was done according to RepeatMasker standard, but keeping the Wicker naming for elements (i.e., Wicker\#Repeatmasker, e.g., DTA\#DNA/hAT). TE libraries were sorted by header and TE annotations to similar families numbered consecutively. Species-specific TE libraries were merged into a genus-level Timema TE library to account for any TE families that might have not been detected in the single species assemblies.

To estimate the TE load of reference genomes and resequenced individuals, we first repeat masked the assemblies with the genus-level TE library using RepeatMasker v4.1.0 with parameters set as -gccalc -gff -u -a -xsmall -no_is -div 30 -engine rmblast (75). Second, we mapped the 350 bp insert paired-end reads back to the reference genome assemblies using BWA-MEM v0.7.17 (76) with standard parameters. We then counted the fraction of reads mapping to TEs out of total mappable reads by counting the number of reads that mapped to each genomic location annotated as TE using htseq-counts (v0.6.1.1p1) (77) with parameters set to -r name -s no -t similarity -i Target --nonunique using the mapped read alignments and the gff output of RepeatMasker (filtered for TE length of >80 bp). TE loads were compared among species using a permutation ANOVA with 5000 bootstrap replicates.

Positive selection analysis
Only one-to-one orthologs in at least three pairs of species (sister-species sex-asex) were used. The species phylogeny was imposed on every gene as the "gene tree". We used a customized version of the Selectome pipeline (78). All alignment building and filtering was performed on predicted amino acid sequences, and the final amino acid MSAs (multiple sequence alignments) were used to infer the nucleotide MSAs used for positive selection inference. MSAs were obtained by MAFFT (v. 7.310) (64) with the allowshift option, which avoids over-aligning non homologous regions (e.g. gene prediction errors, or alternative transcripts). All the next steps "mask" rather than remove sites, by replacing the amino acid with a ' X ' and the corresponding codon with 'NNN'. MCoffee (v11.00.8cbe486) (79) was run with the following aligners: mafft_msa, muscle_msa, clustalo_msa (80), and t_coffee_msa (81). MCoffee provides a consistency score per amino acid, indicating how robust the

515 alignment is at that position for that sequence. Residues with a consistency score 516 less than 5 were masked. TrimAI (v. 1.4.1) (82) was used to mask columns with less 517 than 4 residues (neither gap nor ' X ').

519 The branch-site model with rate variation at the DNA level (44) was run using the 520 Godon software (https://bitbucket.org/Davydov/godon/, version 2020-02-17, option 521 BSG --ncat 4). Each branch was tested iteratively, in one run per gene tree. For each branch, we obtain a $\Delta \mathrm{InL}$ which measures the evidence for positive selection, a corresponding p-value and associated q-value (estimated from the distribution of p-values over all branches of all genes), and an estimate of the proportion of sites under positive selection if any. All positive selection results, and detailed methods, will be available at https://selectome.org/timema. To determine if there the number of positively selected genes differed between sexual than parthenogenetic species we used a binomial GLMM approach (Ime4 (83)) with q-value threshold of 0.05 or 0.01 . Significance of model terms was determined with a Wald statistic. In addition, we also examined if there was more evidence for positive selection in sexual species in a threshold-free way by comparing $\Delta \operatorname{lnL}$ values between parthenogenetic and sexual species (as in $(45,46)$). To do this we used a permutation glm approach where reproductive mode (sexual or parthenogenetic) was randomly switched within a species-pair. To determine if the overlap of positively selected genes was greater than expected by chance we used the SuperExactTest package (v. 0.99.4) (84) in R. The resulting p-values were multiple test corrected using Benjamini and Hochberg's algorithm implemented in R. Functional enrichment analyses were performed using TopGO (v. 2.28.0) (85) using the D. melanogaster functional annotation (see SM text 1). To determine if a GO term was enriched we used a Fisher's exact test with the weight01' algorithm to account for the GO topology. GO terms were considered to be significantly enriched when $\mathrm{p}<0.05$.

Data and code availability

Raw sequence reads have been deposited in NCBI's sequence read archive under the following bioprojects: PRJNA371785 (reference genomes, SM Table 7A), PRJNA670663 (resequenced individuals, SM Table 7B), and PRJNA673001 (PacBio reads for T. douglasi). Genome assemblies and annotations PRJEB31411. Scripts for the analyses in this paper are available at: https://github.com/AsexGenomeEvol/ Timema_asex_genomes. Data were processed to generate plots and statistics using R v3.4.4.

Acknowledgements

We thank Bart Zijlstra, Chloé Larose, and Kirsten Jalvingh for help in the field, and Deborah Charlesworth, Daniel Wegmann, and current and previous members of the Schwander and Robinson-Rechavi labs for discussions. This project was supported by several grants from the Swiss Science Foundation (CRSII3_160723 as well as PP00P3_170627, 31003A_182495, IZLRZ3_163872, and 407540_167276) and funding from the University of Lausanne.

References

1. M. Neiman, C. M. Lively, S. Meirmans, Why sex? A pluralist approach revisited. Trends Ecol. Evol. 32, 589-600 (2017).
2. N. P. Sharp, S. P. Otto, Evolution of sex: Using experimental genomics to select among competing theories. Bioessays. 38, 751-757 (2016).
3. G. Bell, The Masterpiece of Nature: The Evolution and Genetics of Sexuality (Univ of California Press, Los Angeles, 1982).
4. G. C. Williams, Sex and Evolution (Princeton University Press, 1975).
5. J. Maynard Smith, The Evolution of Sex (CUP, 1978).
6. J. Gerritsen, Sex and Parthenogenesis in Sparse Populations. Am. Nat. 115, 718-742 (1980).
7. S. K. Jain, The Evolution of Inbreeding in Plants. Annu. Rev. Ecol. Syst. 7, 469-495
(1976).
8. J. Felsenstein, The evolutionary advantage of recombination. Genetics. 78, 737-756 (1974).
9. W. G. Hill, A. Robertson, The effect of linkage on limits to artificial selection. Genet. Res. 8, 269-294 (1966).
10. P. D. Keightley, S. P. Otto, Interference among deleterious mutations favours sex and recombination in finite populations. Nature. 443, 89-92 (2006).
11. N. H. Barton, Why sex and recombination? Cold Spring Harb. Symp. Quant. Biol. 74, 187-195 (2009).
12. C. W. Birky Jr, Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics. 144, 427-437 (1996).
13. D. Mark Welch, M. Meselson, Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science. 288, 1211-1215 (2000).
14. D. A. Hickey, Selfish DNA: a sexually-transmitted nuclear parasite. Genetics. 101, 519-531 (1982).
15. E. S. Dolgin, B. Charlesworth, The effects of recombination rate on the distribution and abundance of transposable elements. Genetics. 178, 2169-2177 (2008).
16. J. Bast, K. S. Jaron, D. Schuseil, D. Roze, T. Schwander, Asexual reproduction reduces transposable element load in experimental yeast populations. Elife. 8 (2019), doi:10.7554/eLife. 48548.
17. K. S. Jaron, J. Bast, R. W. Nowell, T. R. Ranallo-Benavidez, M. Robinson-Rechavi, T. Schwander, Genomic Features of Parthenogenetic Animals. J. Hered. (2020), doi:10.1093/jhered/esaa031.
18. T. Schwander, B. J. Crespi, Multiple direct transitions from sexual reproduction to apomictic parthenogenesis in Timema stick insects. Evolution. 63, 84-103 (2009).
19. T. Schwander, L. Henry, B. J. Crespi, Molecular evidence for ancient asexuality in Timema stick insects. Curr. Biol. 21, 1129-1134 (2011).
20. R. Riesch, M. Muschick, D. Lindtke, R. Villoutreix, A. A. Comeault, T. E. Farkas, K. Lucek, E. Hellen, V. Soria-Carrasco, S. R. Dennis, C. F. de Carvalho, R. J. Safran, C. P. Sandoval, J. Feder, R. Gries, B. J. Crespi, G. Gries, Z. Gompert, P. Nosil, Transitions between phases of genomic differentiation during stick-insect speciation. Nature Ecology \& Evolution. 1, 0082 (2017).
21. V. Soria-Carrasco, Z. Gompert, A. A. Comeault, T. E. Farkas, T. L. Parchman, J. S. Johnston, C. A. Buerkle, J. L. Feder, J. Bast, T. Schwander, S. P. Egan, B. J. Crespi, P. Nosil, Stick insect genomes reveal natural selection's role in parallel speciation. Science. 344, 738-742 (2014).
22. R. M. Waterhouse, M. Seppey, F. A. Simão, M. Manni, P. Ioannidis, G. Klioutchnikov, E. V. Kriventseva, E. M. Zdobnov, BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 35, 543-548 (2018).
23. T. R. Ranallo-Benavidez, K. S. Jaron, M. C. Schatz, GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).
24. J. Romiguier, P. Gayral, M. Ballenghien, A. Bernard, V. Cahais, A. Chenuil, Y. Chiari, R. Dernat, L. Duret, N. Faivre, E. Loire, J. M. Lourenco, B. Nabholz, C. Roux, G. Tsagkogeorga, A. A.-T. Weber, L. A. Weinert, K. Belkhir, N. Bierne, S. Glémin, N. Galtier, Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 515, 261-263 (2014).
25. A. Mackintosh, D. R. Laetsch, A. Hayward, B. Charlesworth, M. Waterfall, R. Vila, K. Lohse, The determinants of genetic diversity in butterflies. Nat. Commun. 10, 3466 (2019).
26. T. Schwander, S. Vuilleumier, J. Dubman, B. J. Crespi, Positive feedback in the transition from sexual reproduction to parthenogenesis. Proc. Biol. Sci. 277, 1435-1442 (2010).
27. E. Suomalainen, A. Saura, J. Lokki, Cytology and evolution in parthenogenesis (CRC Press, 1987).
28. J. Engelstädter, Asexual but Not Clonal: Evolutionary Processes in Automictic Populations. Genetics. 206, 993-1009 (2017).
29. M. Neiman, T. Schwander, Using Parthenogenetic Lineages to Identify Advantages of Sex. Evol. Biol. 38, 115-123 (2011).
30. S. Glémin, C. M. François, N. Galtier, Genome Evolution in Outcrossing vs. Selfing vs. Asexual Species. Methods Mol. Biol. 1910, 331-369 (2019).
31. M. Pearcy, S. Aron, C. Doums, L. Keller, Conditional use of sex and parthenogenesis for worker and queen production in ants. Science. 306, 1780-1783 (2004).
32. M. O. Lorenzo-Carballa, A. Cordero-Rivera, Thelytokous parthenogenesis in the damselfly Ischnura hastata (Odonata, Coenagrionidae): genetic mechanisms and lack of bacterial infection. Heredity . 103, 377-384 (2009).
33. T. J. Treangen, S. L. Salzberg, Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36-46 (2011).
34. H. Ellegren, N. Galtier, Determinants of genetic diversity. Nat. Rev. Genet. 17, 422-433 (2016).
35. P. Nosil, R. Villoutreix, C. F. de Carvalho, T. E. Farkas, V. Soria-Carrasco, J. L. Feder, B. J. Crespi, Z. Gompert, Natural selection and the predictability of evolution in Timema stick insects. Science. 359, 765-770 (2018).
36. V. R. Vickery, Revision of Timema scudder (Phasmatoptera: Timematodea) including three new species. Can. Entomol. 125, 657-692 (1993).
37. J. Bast, D. J. Parker, Z. Dumas, K. M. Jalvingh, P. Tran Van, K. S. Jaron, E. Figuet, A. Brandt, N. Galtier, T. Schwander, Consequences of asexuality in natural populations: insights from stick insects. Mol. Biol. Evol. 35, 1668-1677 (2018).
38. L. Henry, T. Schwander, B. J. Crespi, Deleterious mutation accumulation in asexual

Timema stick insects. Mol. Biol. Evol. 29, 401-408 (2012).
39. M. Neiman, P. G. Meirmans, T. Schwander, S. Meirmans, Sex in the wild: How and why field-based studies contribute to solving the problem of sex. Evolution. 72, 1194-1203 (2018).
40. S. P. Otto, Selective Interference and the Evolution of Sex. J. Hered. (2020), doi:10.1093/jhered/esaa026.
41. M. J. McDonald, D. P. Rice, M. M. Desai, Sex speeds adaptation by altering the dynamics of molecular evolution. Nature. 531, 233-236 (2016).
42. O. Kaltz, G. Bell, The ecology and genetics of fitness in Chlamydomonas. XII. Repeated sexual episodes increase rates of adaptation to novel environments. Evolution. 56, 1743-1753 (2002).
43. M. R. Goddard, H. C. J. Godfray, A. Burt, Sex increases the efficacy of natural selection in experimental yeast populations. Nature. 434, 636-640 (2005).
44. I. I. Davydov, N. Salamin, M. Robinson-Rechavi, Large-Scale Comparative Analysis of Codon Models Accounting for Protein and Nucleotide Selection. Mol. Biol. Evol. 36, 1316-1332 (2019).
45. J. T. Daub, S. Moretti, I. I. Davydov, L. Excoffier, M. Robinson-Rechavi, Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans. Mol. Biol. Evol. 34, 1391-1402 (2017).
46. J. Liu, M. Robinson-Rechavi, Adaptive Evolution of Animal Proteins over Development: Support for the Darwin Selection Opportunity Hypothesis of Evo-Devo. Mol. Biol. Evol. 35, 2862-2872 (2018).
47. W. Haerty, S. Jagadeeshan, R. J. Kulathinal, A. Wong, K. Ravi Ram, L. K. Sirot, L. Levesque, C. G. Artieri, M. F. Wolfner, A. Civetta, R. S. Singh, Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics. 177, 1321-1335 (2007).
48. B. Charlesworth, C. H. Langley, The evolution of self-regulated transposition of transposable elements. Genetics. 112, 359-383 (1986).
49. T. Schwander, R. Libbrecht, L. Keller, Supergenes and complex phenotypes. Curr. Biol. 24, R288-94 (2014).
50. D. Bachtrog, Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113-124 (2013).
51. T. Wicker, F. Sabot, A. Hua-Van, J. L. Bennetzen, P. Capy, B. Chalhoub, A. Flavell, P. Leroy, M. Morgante, O. Panaud, E. Paux, P. SanMiguel, A. H. Schulman, A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973-982 (2007).
52. S. D. Jackman, B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo, S. A. Hammond, G. Jahesh, H. Khan, L. Coombe, R. L. Warren, I. Birol, ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 27, 768-777 (2017).
53. K. Sahlin, R. Chikhi, L. Arvestad, Assembly scaffolding with PE-contaminated mate-pair
libraries. Bioinformatics. 32, 1925-1932 (2016).
54. D. R. Laetsch, M. L. Blaxter, BlobTools: Interrogation of genome assemblies. F1000Res. 6, 1287 (2017).
55. D. J. Parker, J. Bast, K. Jalvingh, Z. Dumas, M. Robinson-Rechavi, T. Schwander, Sex-biased gene expression is repeatedly masculinized in asexual females. Nat. Commun. 10, 4638 (2019).
56. D. J. Parker, J. Bast, K. Jalvingh, Z. Dumas, M. Robinson-Rechavi, T. Schwander, Repeated evolution of asexuality involves convergent gene expression changes. Mol. Biol. Evol. 36 , 350-364 (2019).
57. B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B. Couger, D. Eccles, B. Li, M. Lieber, M. D. MacManes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C. N. Dewey, R. Henschel, R. D. LeDuc, N. Friedman, A. Regev, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-1512 (2013).
58. C. Holt, M. Yandell, MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 12, 491 (2011).
59. E. V. Kriventseva, F. Tegenfeldt, T. J. Petty, R. M. Waterhouse, F. A. Simão, I. A. Pozdnyakov, P. loannidis, E. M. Zdobnov, OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res. 43, D250-6 (2015).
60. C. M. Francois, F. Durand, E. Figuet, N. Galtier, Prevalence and Implications of Contamination in Public Genomic Resources: A Case Study of 43 Reference Arthropod Assemblies. G3. 10, 721-730 (2020).
61. B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 12, 59-60 (2015).
62. T. D. Wu, C. K. Watanabe, GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 21, 1859-1875 (2005).
63. V. Miele, S. Penel, L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics. 12, 116 (2011).
64. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780 (2013).
65. A. Di Franco, R. Poujol, D. Baurain, H. Philippe, Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol. Biol. 19, 21 (2019).
66. A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30, 1312-1313 (2014).
67. G. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. Del Angel, A. Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K. V. Garimella,
D. Altshuler, S. Gabriel, M. A. DePristo, From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics. 43, 11.10.1-11.10.33 (2013).
68. X. Chen, O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger, M. Källberg, A. J. Cox, S. Kruglyak, C. T. Saunders, Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 32, 1220-1222 (2016).
69. D. C. Jeffares, C. Jolly, M. Hoti, D. Speed, L. Shaw, C. Rallis, F. Balloux, C. Dessimoz, J. Bähler, F. J. Sedlazeck, Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).
70. S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, S. L. Salzberg, Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
71. C. Goubert, L. Modolo, C. Vieira, C. ValienteMoro, P. Mavingui, M. Boulesteix, De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol. Evol. 7, 1192-1205 (2015).
72. R. C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26, 2460-2461 (2010).
73. C. Hoede, S. Arnoux, M. Moisset, T. Chaumier, O. Inizan, V. Jamilloux, H. Quesneville, PASTEC: an automatic transposable element classification tool. PLoS One. 9, e91929 (2014).
74. S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).
75. A. Smit, R. Hubley, P. Green, RepeatMasker Open-4.0 (2013-2015; http://www.repeatmasker.org).
76. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [q-bio.GN] (2013), (available at http://arxiv.org/abs/1303.3997).
77. S. Anders, P. T. Pyl, W. Huber, HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 31, 166-169 (2015).
78. S. Moretti, B. Laurenczy, W. H. Gharib, B. Castella, A. Kuzniar, H. Schabauer, R. A. Studer, M. Valle, N. Salamin, H. Stockinger, M. Robinson-Rechavi, Selectome update: quality control and computational improvements to a database of positive selection. Nucleic Acids Res. 42, D917-21 (2014).
79. I. M. Wallace, O. O'Sullivan, D. G. Higgins, C. Notredame, M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34, 1692-1699 (2006).
80. F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, D. G. Higgins, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.

7, 539 (2011).
81. C. Notredame, D. G. Higgins, J. Heringa, T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217 (2000).
82. S. Capella-Gutiérrez, J. M. Silla-Martínez, T. Gabaldón, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25, 1972-1973 (2009).
83. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using Ime4. Journal of Statistical Software, Articles. 67, 1-48 (2015).
84. M. Wang, Y. Zhao, B. Zhang, Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).
85. A. Alexa, J. Rahnenführer, T. Lengauer, Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 22, 1600-1607 (2006).

