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Abstract 

Alpha-actinin 2 (ACTN2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 

mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel 

ACTN2 mutations to reveal insights into the physiological function of ACTN2. Patient-derived iPSC-

cardiomyocytes harboring ACTN2 protein-truncating variants were hypertrophic, displayed 

sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous 

indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc 

structure. In homozygous stop-gain cells, affinity-purification mass spectrometry reveals an intricate 

ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of 

ACTN2 disrupts interaction with ACTN1 and GJA1, two sarcolemma-associated proteins, that may 

lead to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was 

verified using CRISPR-Cas9 gene editing. Together, these data advance our understanding of the 

role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as 

causative of disease. 
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Introduction 

Inherited cardiomyopathy and arrhythmia syndromes are common indications for heart 

transplantation and leading causes of sudden cardiac death in children and adolescents. Clinical 

genetic testing of families with atypical presentations often leaves clinicians and families with variants 

of uncertain significance. Growing evidence has shown a diverse genetic etiology of early-onset 

cardiomyopathies including dilated, hypertrophic, restrictive, and arrhythmogenic cardiomyopathies 

due to mutations of genes of the sarcomere and the sarcolemma1–3.  

 

Alpha-actinin 2 (ACTN2) is an integral sarcomeric protein known to cross-link sarcomeric actin and 

titin filaments in the Z-disc of cardiac- and skeletal-myocyte sarcomeres. It is primarily expressed in 

cardiac and skeletal muscle4,5, where it forms an antiparallel homodimer, with an N-terminal actin-

binding domain, a central rod region with spectrin-like repeats, and a C-terminal titin-binding region 

containing a calmodulin-like and EF-hand (helix-loop-helix) domain6. Prior mechanistic work has 

shown multiple functions for alpha-actinin 2, including anchoring of proteins within the sarcomere7–10, 

regulation of ion channels11,12, and indirect control of striated muscle gene expression through 

enhanced transactivation activity of nuclear receptors13. A missense mutation in ACTN2 was first 

identified in a patient with dilated cardiomyopathy (DCM) in 200314. Since then, additional studies 

have reported heterozygous missense mutations in ACTN2 that co-segregate with both dilated and 

hypertrophic cardiomyopathy (HCM)15–21. Common genetic variation in a regulatory element 

modulating ACTN2 expression was recently associated with heart failure with reduced ejection 

fraction22. Despite these association studies, there is limited evidence for ACTN2 as a causative gene 

for cardiomyopathy23,24. In addition, very few studies have found truncating variants in ACTN2, 

without evidence of clear genetic association25–27, and the relationship of truncating variants with 

cardiac disease manifestations has not been established.   

 

To date, only autosomal dominant inheritance of ACTN2 variants has been described in association 

with striated muscle disease and there is very limited mechanistic data on how ACTN2 mutations 

cause disease. Herein, we demonstrate how structurally aberrant ACTN2 causes cardiac disease 

through two distinct mechanisms; one through integration of the truncated protein into the cardiac 

sarcomere, and the second through loss of integral protein-protein interactions. We describe these 

genetic variations, resulting in truncated ACTN2 proteins28, as causative of cardiomyopathy with 

prominent arrhythmic phenotypes in the heterozygous state, and as causative of a progressive, 

severe restrictive cardiomyopathy when in the homozygous state. Moreover, our successful modeling 
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of ACTN2 genetic disease using hiPSC-CMs presents an opportunity to identify targeted therapies, 

which are especially pertinent for this young patient population.  

Results 

To explore if structural variation in ACTN2 is causative of early-onset cardiomyopathy, we identified 

patients in the Stanford Center for Inherited Cardiovascular Disease database with rare or novel 

ACTN2 variants using a custom mutation pipeline optimized for rare variant discovery. The first 

patient showed homozygosity for a novel variant in ACTN2, p.Gln860Stop (Q860X), which is absent 

in gnomAD29. The patient presented in infancy with symptoms of tachypnea, reduced ejection 

fraction, as well as low muscle bulk and tone (pedigree presented in Figure 1A). Due to conflicting 

data regarding the etiology of her cardiomyopathy, she underwent diagnostic endomyocardial biopsy 

at age 16, which showed non-specific patchy hypertrophy and fine interstitial fibrosis, but no 

myofibrillar loss nor Z-band remnants (Figure 1G, Supplementary Figure 1). Early in the third 

decade of life, the patient developed progressive heart failure symptoms and episodes of atrial 

fibrillation with rapid ventricular response. Echocardiogram at that time was notable for severe biatrial 

enlargement, moderate biventricular dysfunction, and diastolic dysfunction (Figure 1F); right heart 

catheterization showed restrictive cardiomyopathy (RCM) with equalization of ventricular filling 

pressures. She underwent orthotopic heart transplantation at age 23. Explant ventricular myocardial 

tissue sections showed mild hypertrophy and severe interstitial fibrosis (Figure 1G). To verify the 

sequence-identified ACTN2 truncation and investigate possible nonsense-mediated decay, we 

isolated protein from the explanted left ventricle, right ventricle and from a contemporaneous biopsy 

of intercostal skeletal muscle. Western blot analysis showed that protein levels of ACTN2 were 

normal in patient cardiac tissue compared to corresponding cardiac tissue from healthy control 

individuals, and confirmed the sequence-based predicted size reduction of approximately 4kDa 

(Figure 1H). We further characterized the patient’s left ventricular tissue through RNA sequencing 

(Supplementary Figure 2, see Materials and Methods for details). Gene set enrichment analysis 

showed positive enrichment of extracellular matrix remodeling, collagen biosynthesis, and mRNA 

splicing gene sets (Supplementary Figure 2). Highly ranked genes included collagens (e.g. 

COL1A1, COL1A2, and COL4A1), fibronectin (FN1) and transforming growth factor β (TGFB1), that 

have been shown to be involved in pathologic cardiomyocyte hypertrophy and fibrosis.30 These 

findings were highly indicative of the fibrosis observed in the patient cardiac tissue. Common markers 

of pathologic cardiomyocyte hypertrophy and cardiomyopathy, e.g. NPPA and NPPB, were also 

elevated. Although ACTN2 protein levels were similar in the patient compared to controls, ACTN2 
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transcription was higher in the patient (Figure 1I). To evaluate if ACTN2 is differentially expressed in 

DCM and heart failure, we compared ACTN2 expression levels in the left ventricle of 25 healthy 

individuals, 24 DCM patients, and 21 patients with ischemic heart disease from the MAGNet 

consortium31,32. No difference in ACTN2 expression was observed in these samples (Supplementary 

Figure 3). 

 

The second identified proband (Del 1) presented at age 16 with an episode of exertional syncope 

(individual IV-3 in Figure 1B). ECG showed T-wave inversion and repolarization abnormalities 

(Figure 1C). Clinical panel genetic testing identified a heterozygous novel 4.3kb deletion in ACTN2 of 

exons 8 through 10, (chr 1: 236,898,807-236,903,093) classified as a variant of unknown 

significance. A comprehensive 5-generation family history revealed diverse cardiac symptoms, 

including two early sudden cardiac deaths, ventricular tachyarrhythmias, atrial fibrillation, left 

ventricular noncompaction, diastolic dysfunction and symptomatic heart failure. Subsequent clinical 

screening and single locus testing of 1st degree relatives of affected individuals identified six 

additional family members with manifestations of ventricular conduction delay on ECG, early onset 

atrial arrhythmia, left ventricular noncompaction cardiomyopathy, and/or symptoms consistent with 

early onset heart failure with preserved ejection fraction, each of whom harbored the ACTN2 variant. 

Samples were also contributed by the proband’s father, who exhibited extensive T-wave inversions 

on ECG, atrial fibrillation, and nonsustained ventricular tachycardia (Del 2). The deletion identified 

through clinical genetic testing in Family 2 was verified using Sanger sequencing, which identified a 

41bp intronic insertion from a central region of intron 10 of ACTN2, in addition to the 4.3 kb deletion 

(Figure 1D). The resulting sequence is an in-frame deletion that would translate into an internally 

truncated protein of 771 residues compared to the full-length ACTN2 of 894 amino acids. The deleted 

region is shown in pink in the structural model of ACTN2 (Figure 1E).  

 

Genetic variants in ACTN2 are rare and the gene is intolerant to loss of function variation (pLI score 

of 1.0)29. The number of unique exonic variants in GnomAD was 506 after removal of synonymous 

variants (search: Nov 12 2020). The distribution of variants per exon is illustrated in Supplementary 

Figure 4. ClinVar33 reports 48 pathogenic variants (search: Nov 12 2020); 42 copy number variants,  

4 missense, 1 splice acceptor and 1 nonsense variant, which belongs to the first patient included in 

this study. 
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Figure 1. Protein-truncating alpha-actinin 2 variants cause diverse cardiac symptoms. A) Pedigree for a 
patient homozygous for a C-terminal truncation of ACTN2 (Q860X). B) Pedigree for a family heterozygous for a 
large indel in ACTN2 (Del). C) ECG recordings of the Del family proband shows T-wave inversion. D) Sanger 
sequencing showed insertion of a 41bp intronic sequence in addition to the exon 8-10 deletion in the Del 
family, producing an inframe indel. E) The protein-level truncating variants displayed in the 3D structure of 
ACTN2. The Q860X missing C-terminal region is shown in blue, while the exon 8-10 deletion of the indel is 
shown in pink. F) Transthoracic echocardiography of Q860X showed restrictive cardiomyopathy. G) Trichrome 
staining of an endomyocardial biopsy obtained at age 16 (top) and the explanted left ventricle tissue from 
transplant at age 23 showed coarse and fine interstitial fibrosis of cardiomyopathy. H) Western blot analysis of 
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ACTN2 protein expression in the cardiac tissue indicated no nonsense-mediated decay, and confirmed the 
predicted size reduction of the protein by 4kDa. I) RNA sequencing analysis of the Q860X patient’s left 
ventricle compared to healthy human control hearts (n=3) showed elevated expression of known markers of 
hypertrophy (NPPA and NPPB), as well as an elevated expression of ACTN2 itself.  

Patient-derived hiPSC-cardiomyocytes display elevated expression of metabolic genes 

To functionally model the disease caused by truncated ACTN2 proteins, we utilized patient-derived 

and healthy control human induced pluripotent stem cells (hiPSCs) differentiated into cardiomyocytes 

(hiPSC-CMs). Pluripotency of the hiPSC lines was confirmed through immunofluorescence staining 

for the pluripotency-markers Nanog, Oct4, SSEA3 and TRA-1-81 (Supplementary Figure 5). ACTN2 

expression occurred at day 6 post initiation of differentiation (Supplementary Figure 5). All 

subsequent experiments were performed ~30 days post initiation of differentiation. We started by 

performing RNA sequencing on the three patient hiPSC-CMs and two different control hiPSC-CMs. 

Basic features of the analysis are shown in Supplementary Figure 6. Expression of ACTN2 was 

somewhat higher in both Q860X (logFC 0.8) and the heterozygous patients (logFC 1.14). 

Interestingly, in all patients, the most elevated gene was MYL2 (Q860X: logFC 5.23, Del: logFC 4.90), 

coding for Myosin light chain 2, a key contractile cardiac protein. We performed a gene set 

enrichment analysis to investigate the general pathways affected in disease. Multiple pathways were 

common between the two genetic conditions; a Venn diagram summarizing this is shown in 

Supplementary Figure 6E. Notably, induction of metabolic pathways was a common feature, with 

respiratory electron transport and gluconeogenesis represented among the top five enriched 

pathways. Cristae formation was another common pathway, that is mainly driven by ATP synthase 

related genes. Among the top down-regulated pathways, only keratinization was common between 

the two genetic conditions. This is mainly driven by kallikreins, which are serine phosphatases with 

diverse functions. In Q860X, receptor-type tyrosine-protein phosphatases was the top down-regulated 

pathway. This was driven by lower expression of several SLIT and NTRK Like Family Members 

(SLITRK genes); integral transmembrane proteins expressed in the heart but with unknown cardiac 

function. In the patients with the heterozygous indel, lower expression level was seen for many 

structural genes associated with extracellular matrix organization and collagen formation. Multiple 

different collagens (e.g COL1A1, COL3A1, COL9A3 and COL6A3) and genes associated with 

collagen assembly (DCN, LUM and LOX) are represented.  

 

To verify that the pathology is not due to lower ACTN2 protein levels, protein expression was 

investigated using Western Blot. There was no evidence of proteolytic or ER mediated degradation of 

the aberrant protein due to Q860X; protein levels were similar to controls. Interestingly, we found that 
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the exon 8-10 indel allele also produces a protein product (Figure 2A-B), although the levels were 

lower compared to the full length protein in the same samples. RNA sequencing data from Del 1 and 

Del 2 similarly showed evidence of limited nonsense mediated decay of the truncated transcript with 

relative expression of 20% and 30% respectively, in relation to the full length transcript 

(Supplementary Figure 7).  

Truncated ACTN2 causes contractile dysfunction 

Next, we sought to assess the functional implications of a truncated ACTN2 protein. We utilized 

video-based edge detection to measure the contractile function of single hiPSC-CMs. A significantly 

lower contractile velocity was found in all three patient lines, with no difference in relaxation velocity 

(Figure 2C-D). There was no difference in beating frequency (Figure 2E) or contraction amplitude 

(Figure 2F), which measures the degree of cellular shortening during each contraction. 

Representative traces from the contractility analysis is shown in Figure 2G. To confirm that the C-

terminal truncation (Q860X) is the causal disease variant, we used CRISPR-Cas9 to introduce the 

truncation into healthy hiPSCs to investigate if that would recapitulate the disease phenotype. Two 

different guide RNAs were introduced together with the Cas9 to cut out the C-terminal region of both 

copies of ACTN2. Sequencing and gel-based size verification were used to confirm successful gene 

editing (see Materials and Methods and Supplementary Figure 8 for details). After differentiation 

into hiPSC-CMs, single-cell contractility analysis was performed for the CRISPR:ed control line that 

mirrored the disease line (cr_Q860X) compared to the isogenic healthy control line (cr_Ctrl). Although 

there was no significant reduction in contractile velocity, there was a similar trend (p=0.058) to what 

was observed for Q860X (Figure 2C). The differences in relaxation velocity (Figure 2D) and 

contraction amplitude (Figure 2F) for cr_Q860X was also very similar to Q860X, while the changes 

were statistically significant for cr_Q860X. 

 

Next, because cellular Ca2+ handling is key for cardiomyocyte contractile function, we investigated if 

this was altered as a consequence of structurally aberrant ACTN2. We loaded live hiPSC-CMs with a 

ratiometric Ca2+-binding fluorescent probe and Ca2+ signals were evaluated using the IonOptix 

system. Interestingly, both patients with the heterozygous indel (Del 1 and Del 2) showed higher 

intracellular Ca2+ signalling (ΔF/F) compared to controls, while there was no effect in the patient with 

the homozygous truncation (Q860X) (Figure 2H). This suggests that the contractile dysfunction is at 

the sarcomeric level for the heterozygous family, where elevated Ca2+ signalling fails to compensate 

for the low contractility. There was no difference in baseline Ca2+ levels (Figure 2I).  
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Figure 2. ACTN2 truncation causes contractile dysfunction. A-B) Western blot analysis showed that 
hiPSC-CMs from Q860X, Del 1 and Del 2 expressed ACTN2. Del 1 and Del 2 also expressed the truncated 
protein product, although at a lower level compared to the full length protein. C-F) Contractility analysis of 
single-cell hiPSC-CMs using video-based edge detection through the IonOptix system. G) Representative 
traces from the contractile analysis. H-I) Ca2+-handling analysis of single cell hiPSC-CMs. Cells were loaded 
with a ratiometric Ca2+ probe and analyzed using video-based edge detection through the IonOptix system. * 
indicates significant difference compared to the control group at P<0.05 using a one-way ANOVA with 
Dunnett's multiple comparisons test.  
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ACTN2 dysfunction induces cardiomyocyte hypertrophy 

In response to the hypertrophic phenotype of the patients and the altered cardiac contractility 

observed, which commonly leads to hypertrophy, we continued by analyzing cell size in the hiPSC-

CMs. Single hiPSC-CMs were fixed and fluorescently co-labelled with ACTN2 as a cardiomyocyte-

specific marker and an actin probe. After imaging, cell edges were traced and analyzed blinded to 

disease status. Representative images for each patient line and a healthy control line are shown in 

Figure 3A. Patient cells were hypertrophic compared to healthy control cells (Figure 3B), which was 

also observed for the CRISPR:ed line (cr_Q860X, Supplementary Figure 9). To further determine 

the impact of a disrupted ACTN2 function on development of a hypertrophic phenotype, we used a 

knock down approach in neonatal rat ventricular myocytes (NRVMs). The results showed that cells 

targeted with siRNA against ACTN2 displayed marked hypertrophy compared to cells treated with a 

negative control siRNA (Supplementary Figure 9). 

Heterozygous indel in ACTN2 causes sarcomeric structural disarray 

The expression of the truncated protein product in the heterozygous family, and the likely sarcomeric 

cause of the contractile dysfunction lead us to investigate the sarcomeric structure of the 

cardiomyocytes. Transmission electron microscopy (TEM) of the patient and control hiPSC-CMs 

revealed severe structural disarray of the sarcomeres (Figure 3C). The sarcomeres were somewhat 

elongated, the Z-discs were larger and the I-bands were thicker compared to healthy control hiPSC-

CMs (Figure 3D-F). The Z-discs also displayed a zigzag-like shape. Similar structural abnormalities 

have been observed in skeletal muscle of a patient heterozygous for a missense mutation in exon 18 

of ACTN2, that was associated with a severe myopathy34. The C-terminal truncation in ACTN2 did not 

cause any clear structural abnormalities, only an increase in the Z-disc thickness was observed 

(Figure 3E). In zebrafish, a reduction of ACTN2 in cardiac tissue caused increased Z-disc thickness 

35, supporting that a disrupted ACTN2 function causes cardiac Z-disc abnormalities to different extent. 

 

The large structural consequence of a heterozygous indel in ACTN2 in combination with successful 

translation of the truncated transcript lead us to hypothesize that the pathogenic effect of the indel is 

due to incorporation of the truncated protein product into the Z-disc. To test this, we transfected a 

FLAG-tagged ACTN2 transcript, carrying the indel, using a pCMV vector in healthy control hiPSC-

CMs (Supplementary Figure 10). After fixation and staining with an anti-FLAG antibody, cells were 

imaged with confocal microscopy. The efficiency of the transfection was low, and some transfected 

cells were not cardiomyocytes. However, there were multiple successfully transfected hiPSC-CMs, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.19.389064doi: bioRxiv preprint 

https://paperpile.com/c/7tmoW7/AwpI
https://paperpile.com/c/7tmoW7/YhCE
https://doi.org/10.1101/2020.11.19.389064
http://creativecommons.org/licenses/by/4.0/


 

 

and in accordance with the hypothesis, the protein carrying the large indel was indeed incorporated 

into the sarcomeres (Figure 3G, Supplementary Figure 10). This strongly suggests a dominant 

negative effect of the ACTN2 indel, in concordance with the family history.   

 

Figure 3. Patient-specific hiPSC-CMs are hypertrophic and display sarcomeric structural disarray. A) 
Representative hiPSC-CMs from each line, with ACTN2 shown in purple, actin in turquoise and nuclei in blue 
(Dapi). B) Cell size of single-cell hiPSC-CMs. C) Representative transmission electron microscopy images of 
control hiPSC-CMs, Q860X and Del 1 at two different magnifications (6000X and 10000X). D-F) Quantitative 
analysis of the electron microscopy images, showing data for sarcomere length (D), Z-disc thickness (E) and I-
band thickness (F). Significant effect from a one-way ANOVA analysis at P<0.01 is indicated by #, at P<0.0001 
by ##. * indicates significant difference compared to control at P<0.001 using Dunnett's multiple comparisons 
test. G) Representative confocal image of cells transfected with a vector carrying a FLAG-tagged version of 
ACTN2_del. Image split into the FLAG-tagged ACTN2_del (top left), actin (lower left), Dapi for nuclei (top 
right), and a merged image with ACTN2_del shown in purple, actin in turquoise and nuclei in grey (lower right). 
White arrows point to examples where the FLAG-tagged protein carrying the indel has been incorporated into 
the cardiomyocyte sarcomeres. 

C-terminal truncation of ACTN2 disrupts interaction with ACTN1 and GJA1 

The normal Ca2+ signaling and sarcomere structure in Q860X hiPSC-CMs does not explain the 

pathogenic contractile dysfunction. Because the patient is homozygous for the C-terminal truncation, 

we hypothesized that lack of a C-terminal interaction may explain the pathogenic phenotype. To 

investigate the ACTN2 interactome, we performed co-immunoprecipitation using an ACTN2 
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monoclonal antibody that had been tested for immunoprecipitation and that was verified to bind to the 

truncated protein through Western blot. The purified protein complexes were subsequently subjected 

to LC-MS/MS (Liquid chromatography with tandem mass-spectrometry) (Figure 4A). An IgG 

pulldown was used to control for nonspecific binding. 

  

The interactome of ACTN2 has not been previously investigated in cardiomyocytes or using AP-MS 

(Affinity-Purification Mass-Spectrometry), while multiple interactors have been identified through co-

fractionation experiments in cell lines36 and through yeast two-hybrid screens37, and a few in specific 

low-throughput affinity-purification experiments in other cell types38–40. In human iPSC-CMs we found 

multiple novel interactors, mainly associated with the cell membrane. Several proteins involved in 

endocytosis through clathrin-coated pits were significantly pulled down in both healthy WT cells and 

patient Q860X cells (Figure 4B). This demonstrates that ACTN2 plays a role in the cardiac cell 

membrane, and has a much more intricate regulatory role than what is known to date. Membrane 

protein extraction with detergent and ultracentrifugation from hiPSC-CMs showed abundant ACTN2 

levels in the membrane fraction (Supplementary Figure 11). Other studies have demonstrated that 

ACTN2 is required for the proper membrane localization of a Ca2+-activated K+-channel11, and have 

shown interactions with membrane-associated proteins, for example Kv1.5 channels 38 and Nav1.5 

channels41. While ACTN2 itself was significantly pulled down as expected, other large structural 

proteins or their interactors rarely reach significance in pulldown experiments due to the size and 

abundance of these proteins. Titin (TTN), Actin (ACTC1), Palladin (PALLD), Synaptopodin (SYNPO2) 

and Myozenin (MYOZ2) are all high abundance sarcomeric proteins that are known interactors of 

ACTN210, but did not reach significance based on this analysis. Intensity values from mass-

spectrometry are not quantitative, but the relative differences between the ACTN2 pulldown and the 

IgG control indicated higher levels with ACTN2 pulldown compared to the negative IgG control 

(Supplementary Figure 11).  

 

Two proteins that were pulled down with ACTN2 in healthy control hiPSC-CMs, GJA1 and ACTN1, 

were not identified in the pulldown of the C-terminal truncated ACTN2. GJA1, or Connexin 43, is the 

main connexin protein in cardiac muscle. It is a gap junction protein important for cardiac electrical 

conduction42. The subcellular location of Connexin 43 in the sarcolemma again suggests an important 

role for ACTN2 in the membrane. There is no previous evidence of an interaction between ACTN2 

and GJA1. ACTN1 is a non-muscle alpha-actinin that is ubiquitously expressed. It has been shown to 

heterodimerize with the other non-muscle alpha-actinin ACTN443. There are no previous affinity-

purification experiments that have shown interaction between ACTN1 and ACTN2, and previous 
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interaction data are from high throughput co-fractionation experiments36 and in vitro yeast two-hybrid 

screens37. RNA sequencing data showed similar expression levels of the majority of genes identified 

in the interactome, including ACTN1 and GJA1, showing that this finding is not an effect of 

differences in expression. Only two identified proteins in the network showed mRNA expression 

differences, NCCRP1 and ITLN1, both of which were lower in Q860X (Supplementary Figure 11).  

 

To corroborate these findings, we repeated the co-immunoprecipitation followed by Western Blot for 

ACTN1 and GJA1. ACTN1 was identified only in the healthy Ctrl hiPSC-CMs with no visible pulldown 

in Q860X (Figure 4C), in concordance with the mass-spectrometry data. We repeated this pulldown 

in the CRISPR-edited cr_Q860X and observed similarly reduced interaction with the introduction of 

the C-terminal truncation (Figure 4D). Interestingly, we observed a higher level of ACTN1 in the 

unbound fraction of Q860X, both in the patient-derived hiPSC-CMs and cr_Q860X. Next, we 

analyzed ACTN1 levels in the cardiac tissue of the patient, and observed greatly elevated levels in 

both the left and right ventricle (Figure 4E), which could be a compensatory response to the 

dysfunctional interaction with ACTN2. It could also be indicative of the observed pathophysiology, as 

elevated ACTN1 protein levels have been observed in myocardium from failing hearts44. Despite 

elevated levels of ACTN1 in the patient, no interaction with ACTN2 was observed. For GJA1, we 

were unable to confirm interaction through Co-IP followed by Western Blot. 

 

To further investigate the ACTN1-ACTN2 and GJA1-ACTN2 interactions in cardiomyocytes, we used 

double-label immunofluorescence in hiPSC-CMs followed by confocal microscopy imaging. The 

results showed a significant colocalization of GJA1 and ACTN1 with ACTN2 (Supplementary Figure 

12). Thus, we have demonstrated several lines of evidence to support an interaction between ACTN2 

and ACTN1, and ACTN2 and GJA1 in cardiomyocytes. No difference in the colocalization between 

either proteins was observed between Ctrl and Q860X in this analysis.  
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Figure 4. The cardiomyocyte ACTN2 interactome identifies C-terminal region to be necessary for 
interaction with ACTN1. A) Experimental set-up of the co-immunoprecipitation followed by mass-
spectrometry. IgG pulldown was used as a negative control. B) Analysis of the mass-spectrometry data using 
MaxQuant identified a common ACTN2 interactome in all hiPSC-CMs in turquoise (iLogFC>2, iPvalue<0.02 in 
both conditions, at least 3 peptides used for analysis, see Materials and Methods for details). Proteins 
significantly different between conditions and identified only in the WT control (n=3) are shown in dark green, 
and proteins uniquely identified in Q860X (n=3) are shown in dark blue. C) Co-immunoprecipitation with 
ACTN2 antibody followed by Western blot using an ACTN1 antibody showed interaction only in healthy control 
cells compared to patient Q860X, in concordance with the Co-IP mass-spec data. D) Co-immunoprecipitation 
with ACTN2 antibody followed by Western blot using an ACTN1 antibody showed interaction only in healthy 
control cells compared to cr_Q860X. E) Expression of ACTN1 in Q860X explanted cardiac left ventricle and 
right ventricle compared to control. 

Discussion 

We show how protein-truncating variants in ACTN2 causes cardiomyopathy with prominent 

arrhythmic phenotypes in the heterozygous state, and causes a progressive, severe restrictive 

cardiomyopathy in the homozygous state. Through deep cellular phenotyping and functional assays, 

we have demonstrated how these truncating variants cause disease and verified the causal nature 
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through gene editing. Furthermore, our results have defined a protein-protein interaction network for 

alpha actinin 2 in human iPSC-derived cardiomyocytes, suggesting the importance of novel signaling 

pathways in the pathogenesis of ACTN2-mutation associated cardiomyopathies. 

 

Alpha-actinin 2 is a highly conserved integral protein within skeletal muscle and cardiac sarcomeres5. 

The high-resolution three-dimensional structure of ACTN2 was recently revealed6. In Drosophila, lack 

of ACTN2 is lethal45, and it is required for locomotion and proper assembly of Z-disc like dense 

bodies in C. elegans46. In a Zebrafish model, knockdown of ACTN2 causes severe cardiac, skeletal 

muscle and ocular defects. Skeletal muscle manifestations included disorganized fibers, muscle 

weakness and overall immobility. Cardiac expression of ACTN2 was observed already in the first 

stage of cardiogenesis, in both atria and ventricles, and mutant fish developed enlarged, dilated 

hearts. Importantly, this pathogenic phenotype could not be rescued by ACTN3, despite high 

structural similarity between the two isoforms47. In the patients described here, the lack of specific 

regions of ACTN2 similarly lead to cardiac disease and milder skeletal muscle manifestations.  

 

The study of protein functional domains typically requires protein engineering. Here, we have utilized 

natural experiments to study the function of two domains in ACTN2. In the heterozygous state, we 

demonstrated the successful translation of transcripts from the allele carrying the large indel, and 

their incorporation into cardiomyocyte sarcomeres. The extent of the structural changes observed, 

with larger Z-discs, likely lead to altered contractile properties, where elevated Ca2+ signaling is a way 

for the cell to compensate for the contractile dysfunction. This establishes that protein-truncating 

ACTN2 variants can have dominant negative effects causative of cardiomyopathy and arrhythmia.  

 

The majority of genetic variants in sarcomeric genes that have been demonstrated to cause cardiac 

disease have been heterozygous. Our data show how a biallelic variant in ACTN2 causes disease 

through a recessive model. ACTN2 has a pLi score of 1; a complete intolerance to loss of function 

variation. However, this study describes a woman homozygous for a loss-of-function mutation in 

ACTN2, which presents an extremely rare case of a human C-terminal knockout. This patient has 

allowed us to study not only the pathogenic effect of this mutation, but also the physiological function 

of ACTN2 and how lack of the C-terminal region disrupts the physiological role of ACTN2 in 

cardiomyocytes. The patient developed early-onset RCM with progression to end stage heart failure 

in her early 20s. Genes that have been associated with a restrictive phenotype are also associated 

with HCM and DCM, and many described families have members with each cardiomyopathy subtype. 

Examples include MYBPC348, TNNI3, TNNT2, ACTC and MYH749–51. Only one previous study has 
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associated a likely pathogenic variant (N175Y) in ACTN2 with RCM52. Our study is the first to show 

evidence for genetic variation in ACTN2 as a cause of RCM through a recessive mode of inheritance. 

 

Understanding underlying genetic causes of cardiomyopathy has major implications for diagnosis and 

screening of unaffected family members, and establishing the mechanisms that underpin disease 

pathogenesis is critical for development of targeted therapies. Multiple genetic variants in sarcomeric 

genes are well-established to cause different forms of cardiomyopathy, e.g. MYH7, MYBPC3, TTN 

and LMNA. There are several recent papers suggesting that only a core set of genes, not including 

ACTN2, are causative of cardiomyopathy53,54. However, there are a growing number of publications 

that have associated genetic variants in ACTN2 with cardiomyopathy15–19, as well as a regulatory 

element of ACTN2 that was recently associated with heart failure22. We believe that the previous 

associations, in combination with the evidence presented here for how two protein-truncating 

variants, one dominant negative and one recessive, cause cardiac disease with variable pathological 

presentation supports inclusion of ACTN2 as a disease-causing gene for cardiomyopathy in humans. 

Moreover, our successful modeling of ACTN2 genetic disease using hiPSC-CMs presents an 

opportunity to identify more targeted therapies and test the potential alleviating effect of different 

drugs directly on myopathic cells.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.19.389064doi: bioRxiv preprint 

https://paperpile.com/c/7tmoW7/KdG2
https://paperpile.com/c/7tmoW7/VKO7+RI93
https://paperpile.com/c/7tmoW7/0Upv+VSVt+rPWw+26h0+G2p8
https://paperpile.com/c/7tmoW7/wdAI
https://doi.org/10.1101/2020.11.19.389064
http://creativecommons.org/licenses/by/4.0/


 

 

Materials and Methods 

Patient identification and genetic variant detection 

Both probands underwent clinical panel genetic sequencing for genes associated with 

cardiomyopathy (GeneDx). Clinical laboratory adjudication for both variants was ‘variant of uncertain 

significance’. Site-specific testing for family members of patient 2 was performed by GeneDx and 

reported as ‘variant of uncertain significance’ based on ACMG guidelines. The heterozygous deletion 

was verified in patient-derived cells using standard Sanger sequencing after PCR amplification of the 

target region (ACTN2 primers: CATCTCAGGGGAAAGGCTGC, TGCCTGAACTTCTCAGCCAG), 

where a 41bp insertion was also identified. 

Cardiac tissue sectioning and staining 

Cardiac tissue sections from the explanted tissue were subjected to Hematoxylin and Eosin staining 

for cell size and Trichrome staining for detection of fibrosis. This was performed by the Stanford 

Medicine Human Histology Center, using standardized protocols.  

hiPSC culture and cardiomyocyte differentiation 

Human iPSC lines for the healthy controls, Q860X and Del 1 were obtained from the Stanford 

University Biobank. The hiPSCs for Del 2 were obtained from the Coriell Institute (CW30314). All 

hiPSCs were maintained in Essential 8 medium and passaged until P20 before initiation of 

differentiation. Pluripotency of all hiPSC cell lines was confirmed with immunofluorescence staining 

for four pluripotency markers (Nanog, Oct4, SSEA3 and TRA-1-81, Supplementary Figure 4), see 

immunofluorescence methods for details. Differentiation into hiPSC-CMs was performed on a 

monolayer of cells using a small molecule Wnt-activation and inhibition protocol as previously 

described 55. All experiments were performed between day 30 and 45 post initiation of differentiation. 

Gene expression profiling and analysis pipeline 

RNA was extracted from pulverized left or right ventricle human cardiac tissue using the mirVana 

miRNA isolation kit (Thermo Fisher Scientific, #AM1560), according to the manufacturer’s 

specifications. RNA was isolated from cultured cells using the TRIzol method (Thermo Fisher 

Scientific, #15596026). RNA sequencing was performed on human cardiac left ventricle RNA from 

Q860X and three healthy control hearts and on hiPSC-CMs from all disease lines and two different 

healthy control lines. All sequencing was performed as paired end 2x150bp and generated an 
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average of 30.9 million and 25.4 million uniquely mapped reads per sample for the cardiac tissue 

samples and cells respectively. In brief, adapter trimming was performed using Cutadapt and reads 

were aligned to the human reference genome (hg38) from Gencode (release 30, available at 

www.gencodegenes.org/human/) using STAR and counts were generated using the RSEM program.  

Patient FPKM values for each gene were compared to the corresponding healthy controls for each 

experiment (cardiac tissue or hiPSC-CMs). After removal of unexpressed genes that had FPKM < 1 in 

either group, fold differences (FDs), Z-scores, and differential expression significance of the 14,319 

remaining genes were calculated using limma56. Gene set enrichment analysis was performed on the 

ranked fold differences using the fGSEA R package57. For qRT-PCR, 1-2 ug total RNA was reverse 

transcribed to cDNA using the High-Capacity cDNA Reverse Transcription kit (Thermo Fisher 

Scientific, #4368814). Real-time PCR was performed using specific primers for ACTN2 

(GCTGAAGAAATTGTTGATGG, ATATCCTGAATAGCAAAGCG), with RPLP0 

(AAGGCTGTGGTGCTGATG, CGGATATGAGGCAGCAGTTT) as a housekeeping gene, on a ViiA 7 

Real-Time PCR System (Thermo Fisher Scientific) and quantified using the ΔΔCT method.  

Protein isolation and immunoblot analysis 

Total protein was isolated from whole or pulverized human left ventricle, right ventricle and skeletal 

muscle tissue. Each sample was mixed with RIPA buffer with 1x PI cocktail (Thermo Fisher Scientific, 

#78442). Cardiac tissue was homogenized with a bullet blender (4x1min, 3 minutes on ice between 

runs), while skeletal muscle was homogenized using a Dounce tissue grinder, while on ice. After 

centrifugation at 1500g for 10 minutes, the supernatant was used to assess protein concentration 

using the Pierce BCA Protein Assay kit (Thermo Fisher Scientific, #23225) before subsequent 

analysis. Cultured cells were washed once in PBS, incubated with ice-cold RIPA buffer + 1X PI 

cocktail for 10 minutes on ice, and snap-frozen in liquid nitrogen before protein quantification and 

analysis. For membrane protein isolation from hiPSC-CMs, cells were resuspended in TE buffer with 

1X PI cocktail and centrifuged at 40,000 x g. After a repeated centrifugation, membranes were 

solubilized using Triton X-100 and subsequently centrifuged at 100,000 x g for 30 min before 

subsequent quantification and analysis. 

 

Protein homogenates (10-20 ug) were separated on gradient TGX gels (Bio-Rad, #4568084 or 

#4568095) and blotted onto PVDF membranes. After blocking with Odyssey TBS blocking buffer (Li-

Cor, #927-50000), the membranes were incubated with primary antibody (ACTN2: ab68167; ACTN1: 

ab68194, Abcam; GAPDH: sc-48167, Santa Cruz Biotechnology), and after washing, the 

corresponding IRDye fluorescent secondary antibody (Li-Cor). GAPDH was used as a loading control 
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antibody on the same membrane. Immuno-complexes were imaged and quantified using the Li-Cor 

Odyssey Fc imaging system (Li-Cor).  

Immunofluorescence for cell size and pluripotency 

Cells were washed once in PBS. hiPSC-CMs were then treated with 50mM KCl in PBS to relax the 

beating cells. After three subsequent washes in PBS, the cells were fixed in 4% Paraformaldehyde. 

After two washes in PBS, the cells were permeabilized with 0.1% Triton X-100, washed 3x5 minutes 

in PBS, and subsequently blocked with 5% goat serum for 30 min. Incubation with primary antibodies 

(1:25-1:1000, diluted in 5% goat serum) was performed overnight at 4℃, followed by 1x wash in PBS, 

3x5 minutes gentle shaking washes in 0.1% Tween 20 in PBS, and a last wash in PBS. Cells were 

incubated with the appropriate secondary fluorescent antibody (diluted 1:1000 in 5% goat serum in 

PBS) for 1h at RT in the dark, followed by 1x wash in PBS, 3x5 minutes gentle shaking washes in 

0.1% Tween 20 in PBS, and a last wash in PBS (all dark). Cells were either coated in PBS or co-

stained using probes for Actin (Invitrogen, #R37110) and/or Nucblue (Invitrogen, #R37606), and then 

coated in PBS until imaging. Cells fixed on glass were mounted onto glass slides using the Prolong 

Diamond Antifade Dapi5 (Thermo Fisher Scientific, #P369-62).  

 

For analysis of cell size, cells were stained with a primary antibody against ACTN2 (Millipore Sigma, 

#A7811), and co-stained with probes for Actin and Dapi. Images were obtained at 10x magnification 

on a Leica DMI3000B (Leica Microsystems), and analyzed using Image J. Only cells positive for 

ACTN2, as a cardiomyocyte marker, were analyzed. All imaging and analysis were performed 

blinded. 

 

Pluripotency of all hiPSC lines was verified through immunofluorescent staining for the pluripotency 

markers Nanog (Stemgent, #09-0020), Oct4 (Thermo Fisher Scientific, #MA1-104), SSEA-3 (Thermo 

Fisher Scientific, #MA1-020) and TRA-1-81 (Thermo Fisher Scientific, #41-1100) (Supplementary 

Figure 4).  

Contractility and Ca2+-handling analysis 

For contractility analysis, hiPSC-CMs cultured on glass-bottomed dishes (MatTek) were placed on a 

heated platform (Warner Instruments) mounted on the stage of an inverted Olympus IX70 

microscope. Two or three of spontaneously beating hiPSC-CMs were randomly selected in each dish, 

and the contractility analysis was performed in RPMI 1640 without glucose medium (Corning, #10-

043-CV), supplemented with B27 (Thermo Fisher Scientific, #17504001) and lactate (Thermo Fisher 
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Scientific, #L7900) at 37°C. Contraction of the cells was measured at 240 Hz for 1 min using the 

edge-detection system (IonOptix) by tracing the displacement of the cellular edge. For each data, five 

or more twitches were averaged and contractility parameters were determined using IonWizard 

software (IonOptix). The contraction amplitude was expressed as a percentage change in cellular 

length. 

 

For Ca2+-handling analysis, a similar experimental setup as for contractility was used. At 

approximately day 25 of differentiation, single iPSC-CMs from Q860X, Del1, Del2 and healthy 

controls were seeded at a low density on Matrigel (Corning, 1:10 dilution in PBS) coated rectangular 

10 kPa micropatterns, with a 7:1 length:width aspect ratio as described by Ribeiro et al. 58, in glass-

bottom dishes (MatTek). Between day 30-35, CMs were loaded with 2µM Fura2-AM (Thermo Fisher 

Scientific, #F1221) with 0.02% Pluronic F-127 (Thermo Fisher Scientific, #P3000MP) in 0 Ca2+ 

Tyrode solution for 8 minutes at room temperature as described previously59. CMs were washed 

twice and final [Ca2+] was brought up to 1.8 mM. Cells remained at room temperature for 

approximately 30 minutes to allow for dye de-esterification and then were mounted on the IonOptix 

system and field-stimulated at 1 Hz at 37 °C. Single-cell calcium transients were measured at 

excitation wavelengths of 340 and 380 nm. Analysis and fitting of transient parameters was done 

using IonWizard software (IonOptix). Statistical analysis was performed using GraphPad (Prism). 

CRISPR-Cas9 gene editing to recapitulate Q860X 

RNA guides were designed using CHOPCHOP (https://chopchop.cbu.uib.no/) and two guides cutting 

out the C-terminal region of ACTN2 were selected (TCGGGAGCTGCCCCCGGATC and 

ATCGCTCTCCCCGTAGAGTG). Both primers were produced with annealing ends for the pX330 

plasmid containing Cas9 (Supplementary Figure 7). After alignment of the sense and antisense 

oligos for each guide, the restriction enzyme BbsI was used to incorporate the guides into the pX330 

plasmid. Following Sanger sequence verification, positive colonies were amplified and plasmids 

purified using a Qiagen Midiprep kit (Qiagen) according to the manufacturer’s specifications.  

 

Human control iPSCs were cultured to 80% confluence. Cells were detached with Accutase (Sigma, 

#A6964) for 5 mins at 37℃. After washing in cell medium, cells were centrifuged at 300 RCF at RT 

and the cell pellet was subsequently resuspended in Buffer R from the Neon® transfection system kit 

(Thermo Fisher Scientific, #MPK10025) to a concentration of 40 million cells per ml. Nucleofection 

was performed on a Neon® Transfection System (Thermo Fisher Scientific, #MPK5000) on 5ul cells 

mixed with 1.5ug of each plasmid in 5ul Buffer R. The cell-DNA mix was exposed to one single pulse 
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of 1100mV for 30s and subsequently replated on matrigel-coated plates (Corning) with Essential 8™ 

media (Thermo Fisher Scientific, #A1517001). After 2 weeks, multiple colonies were picked, replated 

and expanded. DNA was isolated using the QuickExtract kit  (Epicentre, #QE09050) and the target 

region in the last exon of ACTN2 (Primers: ATGTTGTGGTGTTTCTGCAACT, 

TATTGCATTCTGATGGGATGAG) was amplified and successful gene editing was verified through 

an agarose gel (Supplementary Figure 7B) and Sanger sequencing of the PCR product. 

Successfully edited cells were subsequently used for hiPSC-CM differentiation followed by 

phenotyping. 

NRVM isolation and analysis 

Neonatal rat ventricular myocytes (NRVMs) were isolated from newly born rats using the neonatal 

rat/mouse cardiomyocyte isolation protocol from Cellutron (nc-6031) according to the specifications 

from the manufacturer. In brief, neonatal hearts were harvested from anesthetized newborn rats. 

NRVMs were extracted using multiple rounds of digestion with stirring at 37℃. On day 0, NRVMs 

were plated at a density of 0.2 million cells/well for 6 well plates, 0.5 million cells/well for 6 cm dishes, 

2 million cells/plate for 10 cm plate in NS medium with 10% FBS plus glutamine. On day 1, the 

medium was changed to serum-free NW media and siRNA treatment was performed overnight using 

the Lipofectamine RNAiMAX Transfection Reagent (Invitrogen, 13778150) protocol. In brief, 30 pmol 

ACTN2 siRNA (Thermo Fisher Scientific, s145555) and 9ul Lipofectamine® reagent per well of a 6 

well plate was each mixed with 150ul Optim-MEM I reduced serum media (Thermo Fisher Scientific, 

#31985062). After 5 minutes, the siRNA and lipofectamine solutions were mixed and incubated at RT 

for 20 mins before being added dropwise into the NRVM-containing wells. On day 2, the medium was 

changed to low-serum medium (0.2% FBS) for 48 hours for cell cycle synchronization. On day 4, the 

cells were harvested.  

Transmission electron microscopy 

Cells were replated onto matrigel-coated 1cm x 5mm Aclar (Ted Pella, #10501-10). After 5 days of 

recovery, cells were relaxed using 50mM KCl and then fixed in Karnovsky’s fixative: 2% 

Glutaraldehyde (EMS, #16000) and 4% paraformaldehyde (EMS, #15700) in 0.1M Sodium 

Cacodylate (EMS, #12300) pH 7.4 for 30 min, chilled and sent to Stanford’s Cell Sciences Imaging 

Facility on ice. They were then post-fixed in cold 1% Osmium tetroxide (EMS, #19100) in water and 

allowed to warm for 2 hr in a hood, washed 3X with ultra-filtered water, then en bloc stained 2 hours 

in 1% Uranyl Acetate at RT.  Samples were then dehydrated in a series of ethanol washes for 10 

minutes each at room temperature beginning at 50%, 70%, 95%, changed to 100% 2X, then 
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Propylene Oxide (PO) for 10 min.  Samples are infiltrated with EMbed-812 resin (EMS, #14120) 

mixed 1:1, and 2:1 with PO for 2 hrs each. The samples were then placed into EMbed-812 for 2 hours 

opened then placed into flat molds w/labels and fresh resin and placed into 65o C oven overnight.  

  

Sections were taken around 90nm, picked up on formvar/Carbon coated slot Cu grids, stained for 40 

seconds in 3.5% Uranyl Acetate in 50% Acetone followed by staining in 0.2% Lead Citrate for 6 

minutes. Observed in the JEOL JEM-1400 120kV and photos were taken using a Gatan Orius 2k X 

2k digital camera. Quantification of sarcomere length, Z-disc thickness and I-band thickness was 

performed using ImageJ. For sarcomere length, an average of three measurements across each 

sarcomere was used, whereas for Z-disc and I-band thickness, the average of five measurements 

across each was used.  

ACTN2 heterozygous indel labelling 

To visualize the ACTN2 protein product carrying the indel, we introduced the corresponding genetic 

sequence with a C-terminal FLAG-tag into a vector (Supplementary Figure 9). Differentiated control 

hiPSC-CMs were replated onto matrigel-coated (Corning) 35mm glass bottom dishes (MaTek). After 

recovery for 4 days, 5ug of the vector was introduced to the cells using the TransIT-TKO transfection 

reagent (Mirus) according to the specifications by the manufacturer. A mock transfection without the 

vector was used as a negative control. The transfection was repeated after 24h to increase 

transfection efficiency. After an additional 24h, cells were fixed and stained with an anti-DDK antibody 

(OriGene, TA50011), and actin and dapi probes as described for immunofluorescence above. 

Confocal images at 40X magnification were obtained on an inverted Zeiss LSM 780 multiphoton laser 

scanning confocal microscope to visualize the FLAG-tagged protein within the hiPSC-CMs. 

Co-Immunoprecipitation followed by LC MS/MS  

The PierceTM classic magnetic IP/Co-IP kit (Thermo Fisher Scientific, #88804) was used for co-

immunoprecipitation of ACTN2 in hipsc-derived cardiomyocytes from patient Q860X (3 replicates) 

and a healthy control sample (3 replicates). At day 36 post initiation of differentiation, the cell culture 

plates were placed on ice and the cells washed once in ice-cold PBS before addition of 100ul IP 

lysis/wash buffer (with 20ul/ml PI cocktail added fresh) was added to each well of a 12-well culture 

plate. After 10 min incubation on ice, the lysed cells were transferred to tubes and subjected to 10 

min centrifugation at 13000xg. The supernatant was transferred into a fresh tube and protein 

concentration determined using the PierceTM BCA protein assay kit (Thermo Scientific, #23225). 

550ug protein from each sample was diluted to 500ul and mixed with 3 ug ACTN2 antibody (Abcam, 
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ab68167) or 3ug normal rabbit IgG (Sigma-Aldrich, #12-370) as a negative control and incubated 

under slow mixing overnight at 4°C. The homogenate was subsequently incubated with magnetic 

beads for 1h at RT under constant mixing, and subsequently washed according to the manufacturer’s 

specifications. Samples were then re-suspended in ammonium bicarbonate and reduced with 10 mM 

DTT at 55°C for 5 min, followed by 25 minutes at room temperature. Alkylation was performed with 30 

mM acrylamide for 30 min at room temperature. Digestion was performed with Trypsin/LysC 

(Promega) in the presence of 0.02% protease max (Promega) in a standard overnight digest at room 

temperature on head-over-head mixer. Digestion reaction was quenched with 1% formic acid and 

peptides were de-salted with C18 Monospin reversed phase columns (GL Sciences). De-salted 

peptides were dried in a speed vac., reconstituted in reconstitution buffer (2% acetonitrile with 0.1% 

Formic acid) and 500ng of peptide material was injected on the instrument. 

  

Mass spectrometry experiments were performed at the Stanford University Mass Spectrometry 

laboratory using an Orbitrap Q-Exactive HFX mass spectrometer (Thermo Fisher Scientific) with 

liquid chromatography performed using an Acquity M-Class UPLC (Waters Corporation). A pulled-

and-packed fused silica C18 reverse phase column was used, with Dr. Maisch 1.8 micron C18 beads 

as the packing material and a length of ~25 cm. A flow rate of 450 nL/min was used with a mobile 

phase A of aqueous 0.2% formic acid and mobile phase B of 0.2% formic acid in acetonitrile. 

Peptides were directly injected onto the analytical column using a gradient (3-45% B, followed by a 

high-B wash) of 80min. The mass spectrometer was operated in a data-dependent fashion, with MS1 

survey spectra and MS2 fragmentation collected in orbitrap using HCD.  

 

Raw MS files were analyzed by MaxQuant (version 1.6.3.4)60, against a database containing 20,399 

reviewed SwissProt human sequences61. All runs for a given bait were analyzed simultaneously to 

maximize the “match between runs” algorithm available on Maxquant. Multiplicity was set to 1 (as 

recommended for label-free experiments) and the false discovery rate imposed to 0.01 for peptide 

and protein identification. Statistical analysis of MaxQuant-analyzed data was performed with the 

artMS Bioconductor package62, which performs the relative quantification using the MSstats 

Bioconductor package63. Contaminants and decoy hits were removed. The samples were normalized 

across fractions by median-centering the log2-transformed MS1 intensity distributions. Log2(fold 

change) for protein/sites with missing values in one condition but found in >2 biological replicates of 

the other condition of any given comparison were estimated by imputing intensity values from the 

lowest observed MS1-intensity across samples64; p-values were randomly assigned between 0.05 

and 0.01 to facilitate the inclusion of the imputed proteins when filters by p-value <0.05 were applied. 
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SAINTq65 was used to assign scores to bait–prey interactions against the negative controls using 

peptide intensities as the input. Raw data, metadata, sequence file, and MaxQuant results files are 

available at the Mass Spectrometry Interactive Virtual Environment repository (MassIVE, 

https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) database. 

 

Proteins illustrated in Figure 4 were selected using the following criteria. For common identified 

proteins: FC>2 in both conditions compared to MOCK (IgG), p-value<0.02 in both, 

WT_CON_AvgP>0.95 (probability that it is a significant interactor in WT vs MOCK Control), Xpep1 

(WT) ≥3 and Xpep2 (Q860X) ≥3 (number of peptides used for quantification in both WT and Q860X 

respectively). For proteins identified in WT but also significant in Q860X at less stringent p-value 

cutoff (<0.05): FC>2 in WT, p-value<0.02 in WT, p-value<0.05 in Q860X, WT_CON_AvgP>0.95, 

Xpep1 ≥3. For proteins identified in Q860X but also significant in WT at less stringent p-value cutoff 

(<0.05): FC>2 in Q860X, p-value<0.02 in Q860X, p-value<0.05 in WT, Q860X_CON_AvgP>0.95, 

Xpep2  ≥3. For proteins uniquely identified in WT: Significant difference between WT and Q860X 

(WT-Q860X_iLogFC>2 and WT-Q860X_iPvalue<0.05), FC>2 in WT, p-value<0.02 in WT, 

WT_CON_AvgP>0.95, Xpep1 ≥3, Q860X p-value>0.05 (not significantly identified in Q860X). For the 

identified proteins in WT, only LACTB remains, which is uniquely identified in WT, but not significantly 

different between WT and Q860X. For proteins uniquely identified in Q860X: Significant difference 

between WT and Q860X (WT-Q860X_iLogFC<-2, WT-Q860X_iPvalue<0.05), FC>2 in Q860X, p-

value<0.02 in Q860X, Q860X_CON_AvgP>0.95, Xpep2 ≥3, WT p-value>0.05 (not significantly 

identified in WT). For the identified proteins in Q860X, only MYH11 and LRP2 remain, which are 

uniquely identified in Q860X, but not significantly different between WT and Q860X. 

 

For the Western Blot validation analysis, the protein complexes were eluted from the magnetic beads 

in the elution buffer provided in the PierceTM classic magnetic IP/Co-IP kit (Thermo Fisher Scientific, 

#88804) and subsequently analyzed according to the Western Blot protocol described above. Primary 

antibodies used were ACTN2 (Thermo Fisher Scientific, GT1253), ACTN1 (Abcam, ab18061) and 

GJA1 (Abcam, ab87645).  

Colocalization analysis 

Beating hiPSC-CMs from Q860X and healthy control cells were replated onto matrigel micropatterns 

on 35mm glass-bottomed plates (MaTek) and allowed to recover for 4 days. The cells were 

subsequently fixed in 4% PFA and co-stained with ACTN2 (Thermo Fisher Scientific, A7811) and 

ACTN1 (Thermo Fisher Scientific, PA5-17308) or GJA1 (Abcam, ab87645), and a Dapi probe as 
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described for immunofluorescence above. Confocal images at 40X magnification were obtained on an 

inverted Zeiss LSM 780 multiphoton laser scanning confocal microscope. Correlation Analysis: 

Confocal microscopy image stacks were analyzed using a custom image processing pipeline at the 

Stanford Shriram Cell Science Imaging Facility. The source code is available online at 

https://github.com/bioimage-analysis/malene_colocalization. This pipeline was created using 

algorithms from the scikit-image66, NumPy67 and SciPy68 Python packages. In order to create an ROI 

around the cell body, the signal from the green channel is first blurred using a gaussian filter with a 

sigma of 15. We then use the Li threshold algorithm to create a mask covering the cells which is 

further processed in order to remove small holes and small objects. The Pearson and Spearman 

correlation coefficients are then extracted from the ROIs.   
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