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2 Abstract

Genome-scale data are increasingly being used to infer phylogenetic trees. A major challenge in such infer-

ences is that different regions of the genome may have local topologies that differ from the species tree due

to incomplete lineage sorting (ILS). Another source of gene tree discrepancies is estimation errors arising

from the randomness of the mutational process during sequence evolution. There are two major groups

of methods for estimating species tree from whole-genome data: a set of full likelihood methods, which

model both sources of variance, but do not scale to large numbers of independent loci, and a class of faster

approximation methods which do not model the mutational variance.

To bridge the gap between these two classes of methods, we present COAL PHYRE (COmposite

Approximate Likelihood for PHYlogenetic REconstruction), a composite likelihood based method for in-

ferring population size and divergence time estimates of rooted species trees from aligned gene sequences.

COAL PHYRE jointly models coalescent variation across loci using the MSC and variation in local gene

tree reconstruction using a normal approximation. To evaluate the accuracy and speed of the method, we
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compare against BPP, a powerful MCMC full-likelihood method, as well as ASTRAL-III, a fast approx-

imate method. We show that COAL PHYRE’s divergence time and population size estimates are more

accurate than ASTRAL, and comparable to those obtained using BPP, with an order of magnitude decrease

in computational time. We also present results on previously published data from a set of Gibbon species

to evaluate the accuracy in topology and parameter inference on real data, and to illustrate the method’s

ability to analyze data sets which are prohibitively large for MCMC methods.

3 Introduction

With the continued improvement of sequencing technologies, inferring evolutionary relationships between

organisms using multi-gene sequences has become the standard in the field of phylogenetics. Bifurcating

species trees are a common way to represent these relationships, with branching points representing spe-

ciation events. While a species tree represents the history of these species as a whole, trees in individual

genome segments can have their own, potentially discordant, topology due to horizontal gene transfer, gene

duplication/loss, and/or incomplete lineage sorting (ILS) [21]. The most ubiquitous of these, ILS, is of

particular focus in the field [5], and can be well-modeled using the multi-species coalescent (MSC) (see e.g.,

[27]). Many methods exist to infer the species tree topology of a group of organisms using the MSC in the

presence of ILS, and are shown to be statistically consistent assuming the gene tree topologies are known

without error [15, 23, 20]. This assumption however is unrealistic, as gene trees typically are estimated from

sequence data, with a finite amount of mutations present. The random process of mutation adds a second

layer of variation among gene trees, and ignoring this can lead to poor method performance [10, 11, 14]. A

class of Bayesian hierarchical methods exist, which jointly model gene and species tree topologies in a full

likelihood framework (e.g. [17, 4, 19, 6, 9, 34]), and account for both coalescent and mutational variance,

but these approaches have been shown to be computationally intensive (100s of hours) and not able to scale

to large amounts of genes or species [18, 22, 31].

Although it has been known for decades that gene trees can differ in topology from an underlying

species tree, a common approach to estimating trees and divergence times to avoid gene tree estimation

error still relies on concatenated “super-matrices” of gene sequences (where multiple gene alignments are

concatenated together to form one large “super gene”). Under high levels of mutational variation, this

concatenation approach was justified as a way to pool information between highly noisy genes. [32, 16,

8] discuss results showing that concatenation-based approaches are not always outperformed by more ILS-

sensitive methods. In short, concatenation methods seem to be predictably less accurate than coalescent

based methods under high ILS (when there are short branches in the true species tree) and can even give high

confidence to incorrect topologies [29]. Away from these scenarios, concatenation can empirically perform

equal to or better than coalescent based methods. As such, concatenation is still widely used for inferring

phylogenies in many empirical studies.
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Divergence time estimates have become an essential addition in phylogenetic inference, as many studies

utilize or require time-calibrated phylogenies, for example in biogeography, or in modeling of character

evolution [3, 28, 25]. In particular, a challenging problem in phylogenetics is accurately inferring divergence

times and population sizes in the presence of mutational variance. The Bayesian method, BPP [34] provides

highly accurate results under the assumption of a molecular clock and the Jukes and Cantor model of

sequence evolution [13]. However, this method, along with other Bayesian approaches, is unable to take

advantage of the full information in genomic data sets, and must instead subdivide data into smaller (∼ 100

segments) blocks of genes per run to perform inference in reasonable amounts of time.

In this paper, we present a coalescent based method to jointly infer species divergence times and ancient

population sizes in the presence of mutational variance/gene tree estimation error. For a given topology,

or set of k topologies, our method COAL-PHYRE (COmposite Approximate Likelihood for PHYlogenetic

REconstruction) uses a composite likelihood approach to estimate tree parameters from DNA sequence data.

COAL-PHYRE is able to analyze data with tens of thousands of genes/loci and multiple individuals in each

sampled species. We show that the divergence time and population size estimates of COAL-PHYRE are

comparable to the more time intensive estimates obtained using BPP [34], with at least an order of magnitude

decrease in run time. We also compare to the popular approximate likelihood method ASTRAL-III [35], to

compare the accuracy of our method against one that does not directly model mutational variance. Lastly,

we analyze a data set of Gibbon species previously analyzed by BPP in [30], and find highly similar estimated

parameters.

4 Methods

We consider a rooted bifurcating species tree S = (S, τ, η) parameterized by topology S, divergence times

τ , and population sizes η. See figure 1(a) for an illustration. Given a recombination-free region of the

genome, l (interchangeably referred to as a gene or locus throughout), it is expected that that species tree

topology S and the true local gene tree Gl will not always match due to incomplete lineage sorting (ILS),

which is common when branch lengths are short relative to the effective population sizes. Let ḡl represent an

estimated rooted topology with branch lengths of the local ancestry from the region l. Note that ḡl need not

be bifurcating if the available genetic data is unable to resolve splits in the tree. This reconstructed gene tree

is an estimate of the true local relationship between individuals, Gl. For any finite amount of information,

(number of pairwise mutational differences on l), there is estimation variance in ḡl. If ḡl was known without

error, meaning ḡl = Gl, the MSC can be used to completely model the variation within and across gene trees,

such as in STEM [15]. In reality, however, Gl cannot be reliably estimated without sampling variance, and

accurate estimation of the species tree from a collection of estimated gene trees requires models accounting

for both the distribution of ḡl given Gl, and Gl given S.

Our goal is to incorporate the effect of mutational variance directly into the likelihood in an in-
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past

present

Species	A:	GTATACG	… TTCTGA
Species	B:	GTATACG	…ATGTGA
Species	C:	CTAATCG	… TTCTGA
Species	D:	CTATTCG	… TTCTGT
Species	E:	CTATTCG	… TTCTGT

Species	A:	TTGTAAC	… GTCACA
Species	B:	TTGTATC	…GTGACA
Species	C:	TTGATAG	… CTCAGA
Species	D:	ATGTTAG	… CTCAGT
Species	E:	ATGTTAG	… CTCTCT

Species	A:	TAGCCCA	… TGCTTC
Species	B:	TAGCCCA	…AGGAAC
Species	C:	TTGGCCT	… TCCAAC
Species	D:	TTCCCCA	… TGCAAC
Species	E:	TTCCGCA	… TGCAAG

…

gene	1: gene	2: gene	k:

(a)

(b)

(c)

(d)

Original	Species	Tree

Estimated	Species	Tree

Figure 1: Contribution of coalescent and mutational variance. (a) Original bifurcating species tree.

(b) K gene trees, each a different realization of a stochastic lineage sorting process on the original species

tree. (c) Sequences created from the mutational process on each gene tree. (d) Gene trees estimated from

the sequence data, which can differ in topology and branch length from the true gene trees due to mutational

variance.

terpretable way that is computationally tractable and scalable to many genes. We propose studying the

observed distribution of individual coalescence times to do this.

We use the approximation that ‘noisy’ coalescence times (coalescence times estimated with muta-

tional variation present) are well approximated by a hierarchical model of the MSC with an added normal

distribution to capture both the coalescent and mutational variance, respectively. When coalescence times

are estimated from sequence data, the layer of noise from gene tree reconstruction error (mutational vari-

ance) effectively smooths out the exponential-like distribution of the MSC, and the times fit closely to this

hierarchical model.

Our method takes as input a set of aligned sequence data, and a rooted species tree topology (or set

of topologies), and returns the inferred divergence times and population sizes which maximize the composite

likelihood of pairwise coalescence times across the inputted loci, along with a likelihood, for each inputted

topology. We assume there is no recombination within a locus, and allow free recombination between

loci, and therefore assume loci are independent. To make use of the MSC, we assume the sequences have

evolved on the gene tree under a molecular clock. Although not the goal of this paper, mutation rate

variation between species can be incorporated into the gene tree estimation process if the computed gene

trees have time measured in some real-time units as this satisfies the ultrametric property. We model each

estimated pairwise coalescence time at a locus as an independent draw from a hierarchical MSC-normal
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distribution. The distribution of true coalescence times is modeled by the MSC, under a proposed species

tree S. Conditional on those times, the normal distribution is then parameterized using the approximated

mutational variance, derived from properties of the Poisson distribution. Our goal is to infer a set of

divergence times and population sizes that maximize the composite likelihood of the estimated gene trees.

4.1 Mutational variance

As is common in most species tree inference methods ([34, 23, 15] for example), we assume that genomic

data can be divided into recombination-free regions, with free recombination between regions. At any given

locus, l, the underlying true gene tree Gl (including branch lengths) is not known but can be estimated from

aligned sequence data. This estimated gene tree ḡl is a topology with estimated coalescence times.

For a specific time on the estimated tree, we can decompose the estimated time ḡl(i) into a mixture

of two components: the true coalescent time Gl(i), and then the estimation error resulting from having only

a finite number mutations on each branch εl(i) (see figure 1). Mathematically, we can write this as:

ḡl(i) = Gl(i) + εl(i)

We approximate that error εl(i), the difference between the estimated and the (unknown) true coalescence

time, as distributed with mean 0 and variance ξl(i), i.e., we assume that an unbiased estimator has been used

to estimate ḡl(i). While Gl(i) can be modeled using the MSC, we use the Poisson distribution of mutations

given a coalescence time to quantify the variance ξl(i), meaning ξl(i) is a function of the unknown true

coalescence time Gl(i).

Under the infinite sites assumption, the number of mutations on a lineage is Poisson distributed and

the variance in the estimate of the coalescence time will also follow that of a Poisson distribution. In real

life applications, the divergence between sequences is often estimated using finite-sites models. However,

even for these models the Poisson variance might be a reasonable approximation, and we will evaluate

the performance of all estimators presented in this paper using simulations under finite sites models. The

estimation variance from the mutation process is then

ξl(i) = Var(ḡl(i)|Gl(i)) = Var
(kl(i)
θL
|Gl(i)

)
=

Var(kl(i)|Gl(i))
θ2L2

=
θLGl(i)
θ2L2

=
Gl(i)
θL

:= ωGl(i)

where ω = 1
θL , L is the length of locus l, and kl(i) is the number of pairwise mutations for i on locus l .

While using the variance from the Poisson, we will approximate the sampling distribution of coales-

cence time estimates with a normal distribution for computational convenience. Figure 7 illustrates examples

of distributions of estimated coalescence times produced under different mutation rates for a fixed locus and

true coalescence time Gl(i), along with the variance approximated under a normal approximation. Further

details for the normal approximation are given below.
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4.2 The composite likelihood

The input for the algorithm are the haplotypes of M individuals, from K regions in the genome, ( ~h1, ..., ~hK),

where each ~hj contains M haplotypes from locus j. We assume that the K genes are non-recombining blocks

of the genome, and allow free recombination between genes. We allow for each locus to be of different length,

and allow for missing characters in the sequences. The rooted gene tree topology, ḡj , of M individuals with

branch lengths estimated from haplotypes ~hj at locus j from the pairwise number of differences between the

sequences. Each of the M individuals must also be assigned to be one of N present-day species.

We use a composite likelihood by maximizing the product of likelihoods of each independent gene

tree:

L(S|{ḡ1, ..., ḡK}) =
K∏
j=1

f(ḡj |S)

To evaluate the likelihood of an estimated gene tree ḡj , f(ḡj |S), we approximate it by the composite likelihood

obtained as products of the individual likelihood functions. For M individuals in the tree (M ≥ N), we

decompose the likelihood into Q univariate quantities:

f(ḡj |S) =

Q∏
i=1

PC(ḡj(i)|S)

where Q =
(
M
2

)
is the number of pairs of individuals in the data set. We index each pair of individuals by a

value i, (i ∈ {1, 2, ..., Q}), where ḡj(i) is the estimated coalescence time of pair i on gene tree j. Note that

these Q coalescence times are not all independent, as there are only M − 1 unique coalescence times on a

tree of M individuals.

We model PC(ḡj(i)|S) with a zero-inflated MSC-normal hierarchical distribution. Due to the random

process of mutation, the frequency of observing zero pairwise mutations at a locus needs to be explicitly

modeled, as the MSC-normal distribution does not adequately account for the point mass at zero.

4.3 MSC-Normal distribution

For two individuals, a, b (indexed by i), the divergence time for the species A,B respectively (a ∈ A, b ∈ B) is

denoted by τAB . For a given locus, we estimate a coalescence time ḡj(i) for the pair, based on the estimated

local gene tree. We know (assuming no recombination within the locus) that there is some underlying, but

unknown, true coalescence time Gl(i).

We model the distribution of location-adjusted true coalescence times, Gl(i) − τAB , using the co-

alescent with piecewise constant population size history, with population sizes and times given by SAB .

For notation’s sake, we assume the history is a sequence of R population size- split time pairs SAB =

{(η0, τ0), . . . , (ηR−1, τR−1)}, where η0 = ηAB and τ0 = τAB . At each branch along the tree, we can calculate

the likelihood of Gj(i) given the coalescence event occurs within the branch
(
Gj(i) ∈ (τr, τr+1)

)
, parameter-
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ized by the start and end times of the branch, along with the effective population size ηr. To get the overall

likelihood of Gj(i), we sum over all the possible branches.

P (Gj(i) = z,Gj(i) ∈ (τr, τr+1)|S) = P (Gj(i) > τr|S)
1

2ηr
e−

z−τr
2ηr for z ∈ (τr, τr+1)

P (Gj(i) = z|S) =
R−1∑
r=0

P (Gj(i) = z,Gj(i) ∈ (τr, τr+1)|S)

Assuming Gj(i) > τAB , and τ0 = τAB .

Given Gj(i), we view the distribution of ḡj(i) as normally distributed around mean Gj(i), with variance

ωGj(i), as described earlier.

P (ḡj(i) = x|Gj(i) = z, ω) =
1√

2πωz
e−

(x−z)2
2ωz

Combining these distributions, we have

P (ḡj(i) = x,Gj(i) = z|S, ω) =

R−1∑
r=0

P (ḡj(i) = x|Gj(i) = z, ω)P (Gj(i) = z,Gj(i) ∈ (τr, τr+1)|S)

=
R−1∑
r=0

P (z > τr|S)
1√

2πωz
e−

(x−z)2
2ωz

1

2ηr
e−

z−τr
2ηr

To get the marginal distribution of estimated coalescence times, we need to integrate over the latent variable,

Gj(i), the true coalescence time, which takes values in (τAB ,∞)

P (ḡj(i) = x|S, ω) =

∫ ∞
τAB

P (ḡj(i) = x,Gj(i) = z|S, ω)dz

=

∫ ∞
τAB

R−1∑
r=0

P (z > τr|S)
1√

2πωz
e−

(x−z)2
2ωz

1

2ηr
e−

z−τr
2ηr dz

=
R−1∑
r=0

P (z > τr|S)

∫ τr+1

τr

1√
2πωz

e−
(x−z)2

2ωz
1

2ηr
e−

z−τr
2ηr dz

=
R−1∑
r=0

P (z > τr|S)
ωΩ(r)

4(ω + ηr)
e
τr
2ηr

[
e−xΩ(r)

(
ζ(τr)− ζ(−τr+1)

)
− exΩ(r)

(
ζ(τr)− ζ(τr+1)

)]

Where

Ω(r) =

√
ω + ηr
ω2ηr

ζ(t) = erf
( t ωΩ(r) + x√

2
√
|t|
√
ω

)
, with ζ(0) = 1

P (z > τr|S) =
r−1∑
l=0

e
−
τl+1−τl

2ηl

erf(q) =
2√
π

∫ ∞
q

e−y
2

dy
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4.4 Accounting for no observed mutations

In studying sequence data it is common to encounter genes where two or more individuals have identical

sequences, especially when genes are short, or the individuals are of the same species. In constructing a gene

tree with no mutations between the two, this pair of individuals would have an estimated coalescence time of 0.

For a given pair of individuals (indexed by i on the tree), we can calculate P0(ḡj(i) = 0|S, ω), using the MSC

and a Poisson distribution of the mutation process. From the Poisson, for a given coalescence time, Gj(i),

the probability of observing no mutations on the branch of length 2Gj(i) is p(ḡj(i) = 0|Gj(i) = z, ω) = e−z/ω.

To obtain the unconditional probability of observing 0 mutations, we need to integrate over all of the

possible values of the underlying (and unknown) true gene tree coalescence time, Gj(i) ∈ (0,∞):

P0(ḡj(i) = 0|S, ω) =

∫ ∞
0

p(ḡj(i) = 0|Gj(i) = z, ω)p(Gj(i) = z|S)dz

We break the integral into regions of constant population size, indexed by r ∈ {0, ..., R − 1} and evaluate

them separately.

P0(ḡj(i) = 0|S, ω) =
R−1∑
r=0

P (Gj(i) > τr|S)

∫ τr+1

τr

P (ḡj(i) = 0|ω,Gj(i) = z)P (Gj(i) = z|S, τr)dz

=

R−1∑
r=0

P (Gj(i) > τr|S)

∫ τr+1

τr

1

2ηr
e−z/ωe−

z−τr
2ηr dz

=
R−1∑
r=0

P (Gj(i) > τr|S)
[ 1

2ηrω + 1

(
e−τr/ω − e−

(τr+1−τr)
2ηr

−τr+1/ω
)]

Where τ0 is the species divergence time for the pair of individuals indexed by i. Calculating the quantity gives

us the probability of encountering no mutations between pair i on gene j given species tree S, gene length

L, and scaled mutation parameter θ. To distinguish this probability from the MSC-Normal distribution

also presented above, we subscript the probability with a zero, P0(ḡj(i) = 0|S, θ,L), and write the complete

likelihood as

PC(ḡj(i) = x|S, ω) =

P0(ḡj(i) = 0|S, ω) if x = 0

P (ḡj(i) = x|,S, ω) if x > 0

4.5 Likelihood weighting

In the composite likelihood, identical information is repeatedly used in multiple probability calculations. For

a given node in a gene tree, let n1 be the number of individuals on one side of the split, and n2 be the number

on the other. Being based on pairwise events, the composite likelihood would then use the information of

that node split time n1 × n2 times, which can become a large number for nodes deep in a gene tree. We

apply a weight to the terms of the likelihood to down-weight this redundant use of information. As we do
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not observe the gene trees beforehand, we rely on the species tree topology to create the weight values. For

a pair of individuals, i = (i1, i2), V (i) denotes the split on the tree such that i1 is on one side of the split,

and i2 is on the other. Given V (i), denote n1(i) and n2(i) to be the number of individuals on each side of

the branch, such that n1(i) × n2(i) is the number of pairs of individuals who share the same split at V (i).

Define weight

wV (i) =
1

n1(i)n2(i)

such that, for a given split V (i), ∑
j|V (j)=V (i)

wV (j) = 1

where j indicates a pair of individuals (j1, j2) that share the same split event V (i). We apply this weight to

each term in the composite likelihood,

PC(ḡj(i)|S, ω)wV (i)

so that the weight of information applied to each split on the species tree is equivalent.

It should be noted that these weights are only used in parameter inference, as using weights which

depend on the topology can be problematic when comparing topologies. COAL PHYRE is able to run with

and without the weights applied.

4.6 Data simulation

To test the effectiveness of parameter inference of COAL-PHYRE, we conduct simulation studies under

varying species tree topologies, divergence times, population sizes, mutation rates, and data set sizes. We

simulate gene trees using ms [12] under a bifurcating species tree with piece-wise constant population size and

no gene flow or migration after split. For consistency with the assumptions of BPP, we simulate the mutation

process using the Jukes and Cantor mutation model [13] through Seq-Gen [26] to produce haplotypes under

various mutation rates to introduce varying levels of mutational variance. See Appendix C for more details on

the simulations. Although we use a simple model of evolution with a Jukes and Cantor model, performance

using other models will likely be similar as long as gene tree estimation is done under the same model as

used for simulation.

5 Simulation Results

5.1 5 species asymmetrical tree

We simulate a tree of 5 taxa, with asymmetric topology (5, (4, (1, (3, 2)))), where species 5 is the outgroup,

and 2 individuals sampled per species. The population size within a branch is simulated to be constant, but

different between branches, see Appendix section C for exact simulation details. We compare our method,

COAL PHYRE, to BPP [34] and ASTRAL-III [35]. COAL PHYRE and BPP provide separate estimates of
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divergence times and population sizes, while ASTRAL-III provides estimates of the coalescence rate of each

branch (coalescence rate = branch length/ population size), and does not attempt separate the parameters

further. To accommodate the comparatively slow run time of the MCMC-based BPP, we simulate only

100 independent loci for each replicate. It should be noted that COAL PHYRE can handle much larger

sets of genes with only modest increases in run-time. For this data of 5 species, BPP and COAL PHYRE

provide estimates of all 4 split times, as well as the 9 separate population sizes ( 5 modern-day species

and 4 ancestral populations). ASTRAL provides an estimate of 4 external branch lengths, and 2 internal.

For each method, we provide as input the known species tree topology, and allow for parameter inference

under the true topology. Note that BPP and COAL PHYRE take as input the sequence data directly, but

ASTRAL requires gene trees to be provided. As these simulations use the molecular clock, we use UPGMA

(unweighted pair group method with arithmetic mean) to reconstruct gene trees as input to ASTRAL. We

simulate under two different mutation rates, θ = 0.01, and θ = 0.001 (here θ = 4η0µ where µ is the per

generation per base pair mutation rate), representing both high and low levels of mutation, with each locus

chosen to be 1000 bp long. Under the θ = 0.01 simulation, the the variance in the estimate of coalescence

times is higher than for θ = 0.01 due to the increased mutational noise.

We simulated 40 separate replicates under the two mutation rates, and used COAL PHYRE, ASTRAL-

III, and BPP to evaluate the accuracy of parameter reconstruction. The results of the estimation from all

three methods can be seen in figure 2.

We can see that the performance of ASTRAL deteriorates under the low mutation rate model, as the

method assumes gene trees are estimated without error, which is violated when the amount of phylogenetic

signal in each gene is low. Divergence time estimates are nearly identical between COAL PHYRE and BPP in

the 0.01 mutation rate setting. Under the lower mutation rate, COAL PHYRE tends to have higher variance

and uncertainty in estimating divergence times than BPP. However, it is, similarly to BPP, approximately

unbiased. Population size estimates are again nearly identical between COAL PHYRE and BPP under the

0.01 mutation rate setting. For a lower mutation rate (0.001), the two methods are nearly identical in

accuracy for the external population sizes (η1 . . . η5) and COAL PHYRE has more uncertainty than BPP in

estimation of internal population sizes, reflecting the well-known challenge of disentangling internal branch

lengths from population sizes.

When comparing run times, ASTRAL completed on average in about 1 second per replicate, much

faster than either COAL PHYRE or BPP, but requires pre-computed gene trees before running. COAL PHYRE

outputs results for each replicate in, on average, 1 minute whereas BPP required ∼ 10− 20 minutes to con-

verge, both using a single-core on a standard laptop.

5.2 8 species symmetrical tree

Here we simulate a balanced tree topology of 8 species with 2 diploid individuals sampled per species. We

simulate under the assumption of constant population size within each branch, but population sizes vary
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Figure 2: Full parameter estimation for the fixed species tree topology (5,(4,(1,(2,3)))). Compar-

ison of parameter estimates between COAL PHYRE, ASTRAL and BPP by branch over 40 iterations, using

100 independent loci each iteration. The y-axis gives the standardized deviation from the true parameter

value. In each panel, the top plot represents a high mutation rate setting, where mutational variance is low,

and the bottom represents a ×10 lower mutation rate, where mutational variance is larger. A) A compar-

ison of estimated scaled branch lengths (branch length divided by population size) for the three methods.

Only branches for which ASTRAL can provide an estimate are included. B) A comparison of divergence

time estimates between COAL PHYRE and BPP. C) A comparison of population size estimates between

COAL PHYRE and BPP.

among branches [RN: insert reference to where full details can be found]. Again, we compare COAL PHYRE

to BPP [34], and ASTRAL-III [35]. We simulate 100 independent sequences in each replicate, to compare

against BPP at a reasonable run time. Both COAL PHYRE and BPP can provide estimates of all 7

divergence times, and 15 population sizes (8 modern day, and 7 ancestral). ASTRAL only provides estimates

for the leaf population branch lengths, and internal branches which are not directly adjacent to the ancestor

of all species in the tree, (so not branch ”1234” or ”5678”). For BPP and COAL PHYRE we provide as

input the sequence data, the mutation rate, and the known species tree topology. To use ASTRAL, we

provide a file of gene trees, pre-estimated using UPGMA, as well as the known species tree topology.

We simulate under two different mutation rates θ = 0.01 and θ = 0.001 ( see above 5 species simulation

for discussion on units), with each sequence simulated to be 1000 bp long (Figure 3). Similarly to the 5

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.17.387399doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387399
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.01
0.001

Β1 Β2 Β3 Β4 Β5 Β6 Β7 Β8 Β12 Β34 Β56 Β78

−1.0
−0.5

0.0
0.5
1.0

−1.0
−0.5

0.0
0.5
1.0

(E
st

im
at

e 
− 

Tr
ut

h)
/T

ru
th

method

ASTRAL

COAL_PHYRE

BPP

A. Scaled Branch Lengths

0.01
0.001

τ 3
4

τ 1
2

τ 1
23

4

τ 5
6

τ 7
8

τ 5
67

8
τ 1

23
45

67
8

−0.50
−0.25

0.00
0.25
0.50

−0.50
−0.25

0.00
0.25
0.50

(E
st

im
at

e 
− 

Tr
ut

h)
/T

ru
th

B. Divergence Times

0.01
0.001

η 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8

η 34 η 12

η 12
34 η 56 η 78

η 56
78

η 12
34

56
78

−0.5
0.0
0.5
1.0

−0.5
0.0
0.5
1.0

C. Population Sizes

Figure 3: Full parameter estimation for the fixed species tree topology

(((1,2),(3,4)),((5,6),(7,8))). Comparison of the parameter estimation accuracy between COAL PHYRE

(blue) and BPP (orange), and ASTRAL-III (red) using 100 independent genes, across 40 independent

replicates. A) A comparison of estimated scaled branch lengths (branch length divided by population size)

for the three methods. Only branches for which ASTRAL can provide an estimate are included. B) A

comparison of divergence time estimates between COAL PHYRE and BPP. C) A comparison of population

size estimates between COAL PHYRE and BPP.

species simulation, the branch length estimates of ASTRAL are biased downwards for the low mutation rate

setting. As both COAL PHYRE and BPP explicitly model the mutational noise, they do not experience the

same bias. BPP and COAL PHYRE demonstrate approximately the same level of performance at estimating

divergence times and population sizes in the species tree. In particular, both methods provide highly accurate

estimates of the leaf branch population sizes (η1,...η8). On a single-core laptop computer, COAL PHYRE

completed each of the replicates in 3-10 minutes. We were able to run BPP in approximately 30-60 minutes

per replicate. We note that we allow BPP to complete under the recommended settings.

6 Analysis of Gibbon Data

Here we analyze two full-genome data sets from [2] and [33] of four gibbon species: (Hylobates moloch (Hm),

Hylobates pileatus (Hp)), Nomascus leucogenys (N), Symphalangus syndactylus(S), and Hoolock leuconedys
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(B). Gibbons (Hylobatidae), close relatives to humans and great apes, are found throughout Southeast

Asia’s tropical forests. A recent study, Shi and Yang, 2017[30] (hereby referred to as SY17) used the MCMC

program, BPP ([34]), along with a suite of other methods, to attempt to resolve the phylogenetic relationship

of these species. The results of the study show there are two most likely species tree topologies, (H, (N,

(B, S))), which we will call Tree 1, and (N, (H, (B, S))), denoted by Tree 2. The authors also reported

estimates for the population sizes and divergence times on the trees. (Note H= (Hm, Hp) indicating two

subpopulations of the Hylobates species).

6.1 The data

The first data set (Noncoding) consists of 12,413 loci, each of 1,000 bp in length. The second data set

(Coding) consists of 11,323 coding loci, each of 200bp in length. Within each data set one human haplotype

(O) is used as an outgroup. There are a total of 17 haplotypes at each locus, with two diploid individuals

from each Gibbon population, allowing for the estimation of leaf population sizes. See SY17 for a more

detailed description of the data.

6.2 Results

We use COAL PHYRE to analyze each of these data sets to provide a likelihood for each of the two topologies,

and estimates of the divergence times and population sizes for each tree. To compare with the results of

BPP we assume the JC69 [13] model of mutation. As well, we use mutation rate parameters consistent with

the means of the Gamma priors used in SY17.

6.2.1 Divergence time and population sizes estimates

The parameter values estimated using COAL PHYRE, along with those previously estimated in SY17 are

presented in Tables 1, 2, 3, 4. In each scenario, we found that COAL PHYRE assigned the highest likelihood

to Tree 1, topology (H, (N, (B, S))), consistent with the findings in SY17. Also, note that population sizes

are not reported for the human out group O, as only one haplotype was used, and so no information is

available to estimate ηO.

Under the most likely topology (Tree 1) our estimates of the parameters are overall quite similar

between coding and noncoding data sets, providing some evidence of internal consistency. To verify this, as

suggested in SY17, we fit a regression line, y = bx between the 5 parameter points (each point a pair of τ

divergence time estimates, one from the noncoding dataset, the other from coding) to measure the internal

consistency of the estimates from COAL PHYRE. Our analysis under Tree 1 finds τ(C) = 0.69τ(NC) with

r2 = 0.988. This demonstrates that our timing estimates are consistent between the two data sets, and that

the mutation rate of the coding data is about 2/3 the rate of the non coding loci. SY17 found a rate of 0.73

with r2 = 0.985, from their analysis. For the population size estimates (η’s) of the leaf populations (B, S,
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N, Hm, Hp) we find η(C) = 0.95η(NC) with a correlation of r2 = 0.995 compared to r2 = 0.986 from SY17.

We can also compare the correlation between our results and the results from BPP. Divergence time

estimates for the (H,(N,(B,S))) coding data set show an r2 = 0.999 between the divergence times estimated

between the two methods, with τCOAL PHYRE = 0.81τBPP. For the noncoding data set and tree (H,(N,(B,S)),

we find an r2 = 0.9988 with τCOAL PHYRE = 0.94τBPP. When comparing the leaf population sizes we find

for the coding data set, ηCOAL PHYRE = 1.43ηBPP with r2 = 0.995. For the noncoding data set we find

ηCOAL PHYRE = 0.97ηBPP with r2 = 0.998.

We observe that our parameter estimates overall agree with the results of BPP, differing mainly in

estimation of internal population sizes. The largest discrepancies occur on the (N,(H,(B,S)) tree (tree 2),

which demonstrates how the two methods handle fitting parameters to a potentially incorrect topology. We

acknowledge that SY17 observed BPP had mixing issues for such a large data set, and parameter estimation

with short branch lengths can become highly variable. The extremely high population size estimate (which

we write as “inf”) of ηHBS in the noncoding tree 2 (N(H(B,S))) indicates that COAL PHYRE attempts

to model extremely high ILS in the HBS branch, attempting to fit a zero-probabilty of coalescence in that

interval.

Each of the four tables demonstrates one run of COAL PHYRE, which on a single core is able to run

on average in 10(±5) hours. As reported in SY17, BPP took approximately 200 hrs for each analysis on a

single core using the same data as COAL PHYRE.

6.2.2 Predicted distribution of estimated coalescence times

Parameters on the species trees are estimated to best match the distribution of estimated coalescence times in

the data, according to some likelihood function. In this section we assess the fit of the predicted distribution

of estimated pairwise coalescence times of the Gibbon data when using the zero inflated MSC-Normal

distribution implemented in COAL PHYRE.

For a given set of tree parameters (topology, times and population sizes), we can study the resulting

marginal distributions of estimated times. As we have two sets of tree parameters for each scenario, one

from each method, we can compare the distributions predicted by each against the distribution of estimated

times from data.

We specifically study the most likely tree topology, Tree 1 (H,(N,(B,S))), parameterized by the sets

of divergence times and population sizes from Tables 1 and 2 (see Figures 5 and 4, respectively). Using the

parameter values estimated by both methods, we can compare the predicted distribution under each set of

parameters against the actual sampled distribution from the estimates across loci, and against one another

to assess a level of ’best fit’ to the data.

Figure 4 shows the distribution of binned estimated pairwise coalescence times from the data, along

with the predicted distributions using the parameters of both COAL PHYRE and BPP for the noncoding

data set under Tree 1. From the plot, we can see that the predicted distributions between the two methods
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agree almost exactly in each panel. Figure 5 is the same approach, using the coding dataset.

Across all distributions of estimated coalescence times, it is expected that COAL PHYRE should fit

the data as well or better than the parameters from BPP, as the parameters inferred by COAL PHYRE are

estimated to fit specifically this likelihood.

Each plot also shows the predicted fraction of sequences that have no pairwise differences, as well as

the observed frequency of zeros in the data. Comparing the parameters from COAL PHYRE and BPP on

the accuracy of predicting the fraction of zeros shows that BPP is slightly more accurate in this respect, on

average.

Overall, the parameters inferred by each method fit the shape of the distribution of estimates well.

6.2.3 Run times

Each of the four tables demonstrates one run of COAL PHYRE, which on a single core is able to run on

average in 10(±5) hours. As reported in SY17, BPP took approximately 200 hrs for each analysis on a single

core using the same data as COAL PHYRE.
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7 Discussion

Our simulations show that COAL PHYRE provides estimates that are comparable to BPP and much more

accurate than estimates obtained using ASTRAL-III. We observe a strong effect of mutational variance on

estimates obtained using ASTRAL in a low mutation rate setting. An advantage of COAL PHYRE is that

it is straightforward to separate the effects of the two genetic processes that generate the input data by

studying the role of both the MSC and the normal distribution.

For the Gibbon data set, we showed that our method can analyze genomic-sized data sets with similar

performance to BPP, with an order of magnitude decrease in run time. The composite likelihood approach

of only using pairwise coalescence times implemented and presented here seems to sufficiently capture the

relevant parts of the data needed to infer the tree parameters. COAL PHYRE recovered the same most

likely topology as presented in [30], for both the coding and non coding datasets. The largest discrepancies

between our method and BPP in the analysis of the gibbon data was in fitting parameters to tree 2, which

both methods infer to be an incorrect topology. We also see that large deviations in parameter estimates

can have negligible effect on the estimated distribution of estimated coalescence times, for example ηBS in

Table 2, and the resulting effect in Figure 4.

When studying species tree estimation, it is typical to also study topology reconstruction accuracy.

We have found in our simulations that ASTRAL is superior in topology reconstruction, and with the speed

of ASTRAL compared to COAL PHYRE, we do not make claims that our method is superior for inferring

topologies. The information extracted and used from the data by the two methods is largely orthogonal;

ASTRAL uses purely the topological information from each estimated gene tree, and discards all information

on coalescence times, whereas COAL PHYRE only uses marginal coalescence times from each gene, and

discards topology information. This lends itself to the idea that the information used in COAL PHYRE and

ASTRAL can be combined or that, at least, be employed in tandem. We also acknowledge work done in [1,

24] which presents a data pre-processing step to counter the effects of mutational variance for programs such

as ASTRAL which do not directly model it.

Lastly, none of these methods account for migration/gene flow between species after divergence, some-

thing which is common in most real data sets. Failing to account for this potential gene flow can affect

topology inference as well as drastically effect divergence time and population size estimation. Accounting

for and modeling potential sources of admixture is a next step for these parameter inference methods. It is

worth noting that a preprint for an extension of BPP implementing the full MSC with introgression (MSci)

has recently been released [7]. Identifying locations of admixture and fitting admixture branches to a species

tree are left to future work for COAL PHYRE.

More studies are needed to understand the robustness of the different methods, for example with

regards to substitution models or, and in particular, the effect of recombination within a block. Genomic

data is not truly composed of free recombining segments with no internal recombination, which is effec-

tively assumed by all methods analysed in this paper. To address the problem of recombination within
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blocks, a potential approach is to divide blocks into even smaller units, thereby increasing the amount of

mutational variance within each unit, but decreasing the probability of recombination within the unit. As

COAL PHYRE is designed specifically to handle increased variance in estimation, this could be a potential

work-around in cases where recombination might be a challenge.

7.1 Software Availability

Along with this manuscript, we provide code (implemented in C++) available for download which implements

the likelihood presented here, named COAL-PHYRE. The code is implemented in C++ and freely available

at https://github.com/gaguerra/COAL_PHYRE.
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Appendices

A Notation Reference

• N : Number of species considered.

• S = (S, τ, η): A species tree parameterized by topology S, split times τ , and population sizes η.

• K: Number of independent loci/genes.

• M : Number of sampled individuals (M ≥ N).

• Q =
(
M
2

)
: Number of pairs of individuals.
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• ~hj : Set of M haplotypes at locus j, j ∈ {1, 2, ...,K}.

• ḡj : Estimated gene tree at locus j.

• Gj : True gene tree at locus j.

• a, b: Individuals sampled from populations A, B, respectively.

• τA,B : The split time of species A and B according to S.

• Each pair of individuals are indexed by an integer i,in (1, ..., Q).

• ḡj(i): The estimated coalescence time of pair i at locus j.

• Gj(i): The true time to coalescence of pair i at locus j.

• µ: The per generation per base pair mutation rate.

• L: The number of base pairs of gene.

• θ: The population scaled mutation rate, θ = 2µη0, for the reference population size, η0.

• ω = 1
θ×L

• ωGj(i): Mutational estimation variance of the true coalescence time.

B Fit of the MSC-Normal distribution

In this paper we have discussed that estimated coalescence times can be modelled with two sources of

variance, one from the coalescent process, and the other from mutational process. In figure 6 we visualize an

example of the approximation to the distribution of estimated coalescence times obtained using the MSC-

Normal distribution. As well, we plot the true coalescence times when times are known without error. From

the figure we notice that in the presence of estimation error, estimated coalescence times can be more recent

than the species divergence time. The MSC-Normal distribution acts as an approximation to the distribution

of estimated coalescence times, and captures this tail of recent times, as well as the overall distribution.

C Further Simulation Details

C.1 5-species simulation details

In this simulation study we analyzed a species tree of 5 species (labeled 1...5) with 10 individuals (labeled

1...10) where 2 individuals are from each species (i.e individuals 1 and 2 are from species 1). We simulate

the rooted species topology (5,(4,(1,(2,3)))).
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Figure 6: MSC-Normal approximation of coalescence times with coalescence estimation error.

Center: Species tree of two individuals with a piece-wise constant population size history. On the left: Plotted

in red is the distribution of coalescence times of these two individuals under simulation when the true gene

trees are known, so no estimation variance is present. On the right: Plotted in red is the distribution of

estimated coalescence times of the same two individuals from simulated sequence data, where variance is

introduced due to the mutational process. In green is the MSC-normal approximation to the distribution of

estimated coalescence times using the known tree parameters (τ ’s and η’s) and mutation rate θ.

For a single replicate, we use ms to generate K independent gene trees of 10 individuals, 2 from each

species, and Seq-Gen [26] to generate sequence data from the gene trees. To generate K = 100 gene trees of

10 individuals with species labeled as integers 1 through 5:

./ms 10 100 -T -I 5 2 2 2 2 2 -n 1 1.8 -n 2 2.4 -n 3 1.0 -n 4 2.0 -n 5 3.0 -ej 1.0 2 3

-en 1.0 3 2.4 -ej 1.5 1 3 -en 1.5 3 3.0 -ej 2.2 3 4 -en 2.2 4 4.0 -ej 4.0 4 5

-en 4.0 5 5.0 | tail +4 |grep -v // >gene.trees

In ms [12], time is measured in units of 4η0 generations, whereas COAL PHYRE measures time in

2η0 generations, so that times from COAL PHYRE must be halved to compare to the units of ms. As well,

population sizes in ms are diploid, whereas in COAL PHYRE we measure population sizes as haploid. To

compare with ms, population sizes from COAL PHYRE need to be doubled.

From the gene.trees file, and for a given mutation parameter θ (which we used either 0.01 or 0.001

in our simulation), and sequence length L, we use Seq-Gen. For example, for θ = 0.001 and L = 1000:

./Seq-Gen -mHKY -l 1000 -s 0.001 <gene.trees >seqfile
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We use this seqfile file as input to COAL PHYRE.

C.2 8-species simulation details

For 8 species, 2 individuals sampled per species, we generated a single replicate of K = 100 independent

gene trees using:

./ms 16 100 -T 8 2 2 2 2 2 2 2 2 -n 1 1.5 -n 2 2.5 -n 3 2.0 -n 4 6.0 -n 5 0.5 -n 6 1.0

-n 7 3.0 -n 8 4.0 -ej 0.5 2 1 -en 0.5 1 6.0 -ej 0.75 4 3 -en 0.75 3 1.0 -ej 0.8 8 7

-en 0.8 7 2.0 -ej 1.3 6 5 -en 1.3 5 4.0 -ej 1.5 3 1 -en 1.5 1 5.0 -ej 1.8 7 5 -en 1.8 1.5

-ej 2.0 5 1 -en 2.0 1 6.0 | tail +4 | grep -v // >gene.trees

For θ = 0.01 and gene length L = 1000, we generate sequence data with Seq-Gen:

./Seq-Gen -mHKY -l 1000 -s 0.01 <gene.trees >seqfile

We use this seqfile file as the input to COAL PHYRE.

D Normal Approximation To Poisson, A Simulation

Throughout we discuss the distribution of estimated coalescence times. The estimation error from the

mutation process, conditional on a branch length, follows a Poisson distribution. As our estimated coalescence

times are not discrete, we use the Normal approximation to the Poisson. In this section we demonstrate

in a simple simulation scenario, that this approximation is well fit to model the estimation error. For a

given coalescence time (fixed here to be 5 in units of 2η0 generations), we simulate 1000 pairs of sequences,

of length L = 1000 base pairs, under varying scaled mutation rates, θ (indicated in figure 7 legend), to

generate an empirical distribution of estimated coalescence times from the number of pairwise differences.

Figure 7 shows these distributions versus the normal approximation presented earlier. This demonstrates

the accuracy and suitability of the Normal approximation to mutational variance in time estimation.
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Figure 7: Modeling Mutational Variance: The Normal approximation to Possion variance in coalescent

time estimation error due to the mutational process.
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