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Abstract17

1. Turnover in species composition and community-wide functional traits across environmental18

gradients is a ubiquitous pattern in ecology, and is generally assumed to reflect shifts in trait optima19

across these gradients. However, the demographic processes that give rise to these trait turnover20

patterns at the community level remain unclear.21

2. We asked whether shifts in the community-weighted means of three key functional traits across an22

environmental gradient in a southern California grassland reflect variation in the trait-performance23

relationship across the landscape.24

3. We planted seeds of 17 annual plant species in cleared patches with no competitors, and quantified25

the lifetime seed production of 1360 individuals. We then asked whether models that included26

trait-environment interactions help explain interspecific variation in demographic responses to the27

environment. This allowed us to evaluate whether observed shifts in community-weighted mean28

traits matched the direction of any trait-environment interactions detected in the plant performance29

experiment.30

4. Our results indicate that commonly-measured plant functional traits help explain variation in31

species responses to the environment – for example, high-SLA species had a demographic advantage32

in soils with high soil Ca:Mg levels, while low-SLA species had an advantage in low Ca:Mg soils. We33

also found that shifts in community-weighted mean traits often reflect the direction of these34

trait-environment interactions, though not all trait-environment relationships at the community level35

reflect interactive effects of traits and environment on species performance.36

5. Our results support the value of plant functional traits for predicting species responses to37

environmental variation, and highlight a need for more detailed evaluation of how38

trait-performance relationships change across environments to improve such predictions.39
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Introduction40

Understanding how environmental variation shapes the diversity and dynamics of plant communities is a41

fundamental challenge in ecology . In addition to variation in species composition (Whittaker 1960; Janzen42

1967), turnover in the functional traits of plant communities across abiotic gradients has emerged as a43

ubiquitous pattern across ecosystems (Cavender-Bares et al. 2004; Hulshof et al. 2013; Bjorkman et al.44

2018; Jardine et al. 2020). These functional traits reflect key physiological and life history strategies of45

plants, which ultimately determine variation in plant fitness across different environments (Violle et al.46

2007; Reich 2014). One of the most common ways for plant ecologists to study trait-environmental47

relationships has been to quantify variation in community-weighted mean (CWM) of functional traits48

across landscapes. CWM trait values are calculated as species’ trait values weighted by their relative49

biomass or cover, and reflect the functional properties of the dominant plant species growing in a50

community (Grime 1998; Garnier et al. 2004). Across ecosystems, communities with less harsh abiotic51

conditions (e.g. lower drought stress, higher resource availability) tend to be dominated by plants with52

functional traits that generally reflect resource-acquisitive strategies (e.g. higher specific leaf area or leaf N53

concentrations (Reich 2014)), and vice-versa in environments that are less favorable for plant growth.54

Shifts in CWM traits are often assumed to reflect variation in trait optima across environmental gradients,55

with species whose traits closely match CWM expected to have highest fitness (Ackerly 2003; Shipley et al.56

2006; Enquist et al. 2015).57

Although shifts in the functional traits of plant communities across environmental gradients is58

well-documented, the demographic processes driving these pattern remain unclear (Salguero-Gomez et al.59

2018; Laughlin et al. 2020). As a result, predicting how variation in species functional traits drives60

variation in community composition – one of the key promises of functional trait ecology (McGill et al.61

2006; Westoby and Wright 2006)– remains a challenge. For example, Muscarella and Uriarte (2016) found62

that a substantial portion of tree species in a tropical forest were more abundant in sites where their traits63

were more dissimilar from the site’s CWM, contrary to predictions of the hypothesis that CWM shifts64

reflect shifts in trait optima. Part of the challenge is that we lack a clear understanding of whether CWM65

trait shifts reflect variation in the relationship between functional traits and the vital rates66

(e.g. germination rate, fecundity, survival rate) that ultimately determine species performance across67

landscapes (Shipley et al. 2016).68

One path forward is to pair observed shifts in CWM traits with analyses that evaluate the interactive69

effect of traits environments on species’ demographic rates (Laughlin and Messier 2015; Swenson et al.70

2020). For example, in one of the few studies that has investigated whether CWM trait shifts reflect71

variation in trait optima, Laughlin et al. (2018) found CWM shifts in leaf, root, and reproductive functional72

to be unreliable predictors of how traits influence survival rates of plants in a pine forest system, also73

contradicting the predictions of the idea that CWM trait shifts reflect shifting trait optima. It is important74
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for such analyses to quantify species fitness based on their vital rates or population growth rates rather75

than species abundance measured at a single time point, which can be influenced multiple abiotic and76

biotic processes (e.g. dispersal, competition, natural enemies) and is thus a poor proxy for intrinsic fitness77

(e.g. Fox 2012; McGill 2012).78

The impact of changing trait-performance relationships on CWM traits can be expected to take one of a79

number of forms, some of which are illustrated in Fig. 1. If trait-performance relations remain constant80

across an environmental gradient (Fig. 1B), any observed CWM trait shifts likely reflect the effects of81

species interactions or other processes rather than shifting trait optima in terms of species’ intrinsic82

responses to the landscape. Trait-performance relationships may differ in magnitude but not in sign across83

a gradient in a way that matches observed shifts in CWM traits (Fig. 1C). Such trait-performance84

relationships with the same sign across the environmental gradient would not by themselves result in85

differential distribution of traits across the landscape, but provide weak support that CWM trait shifts86

reflect shifting trait optima. The strongest evidence that CWM trait shifts reflect shifting trait optima87

would be if the sign of the trait-performance relationship changes across the gradient in a way that is88

consistent with the CWM trait patterns (Fig. 1D). It is also possible that we find strong trait-environment89

interactions when looking at the vital rates even when there are no observed CWM trait shifts. This might90

indicate that other processes obscure underlying trait-performance relationships. A major challenge in91

testing for concordance between CWM trait shifts and variation in trait-performance relationships has92

been that quantifying how trait variation influences species demography across landscapes is very93

data-intensive, requiring plant performance data across large temporal and spatial gradients. Although94

such data are becoming increasingly available for a wide range of perennial plants (e.g. Salguero-Gomez et95

al. 2014), short-lived plant communities, where we can quantify relevant vital rates on fairly short time96

scales, offer an ideal system in which to test for concordance between trait-performance relationships and97

CWM trait shifts.98

In order to address this longstanding question of how whether trait shifts at the community level99

reflect variation in trait optima across the landscape, here we compared CWM trait shifts to the interactive100

effects of traits and environment on species’ fitness in a southern California serpentine annual grassland101

community. We surveyed the plant community at sites that captured a wide range of variation in soil102

Ca:Mg, sand content, and depth – three axes of abiotic variation that are known to be important in such103

serpentine communities. To capture various dimensions of plant ecological strategies, we quantified104

community-wide variation in one leaf trait (specific leaf area), one root trait (specific root length), and one105

whole-plant trait (maximum height). In a parallel experiment, we quantified the intrinsic fitness (lifetime106

fecundity of individuals growing without competitors) of 17 annual plant species that naturally occur in107

this community and that capture a wide range of functional variation. We then asked whether observed108

CWM trait shifts reflect trait-environment interactions that shape variation in species’ fecundity across this109
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Figure 1: A) Variation in community-weighted mean (CWM) functional traits across gradients is a com-
mon pattern in plant communities, though whether or not such variation in CWM traits reflects shifts in
trait optima across environmental gradients. Here we evaluate whether CWM shifts in plant functional
traits reflect shifts in trait-performance relationships across key environmental gradients. Panels B-D il-
lustrate how trait-performance relationships might vary across environments. B) The trait-performance
relationship may be identical at opposite ends of the environmental gradient, indicating that other factors
(e.g. dispersal limitation) might drive observed shifts in CWM traits. We interpret this as a lack of evidence
that CWM trait-environment relationships reflect variation in trait optima across the environment. C) The
trait-performance relationship may change across the environmental gradient in a direction that is consis-
tent with observed CWM shifts, but the sign of the trait-performance relationship may be the same at either
end of the gradient. We interpret this as providing weak evidence that CWM shifts reflect changing trait
optima. D) The sign of the trait-performance relationship may change across the gradient, such that species
with low trait values have a relative advantage at the low end of the environmental gradient, and vice versa
at the high end of the gradient. We interpret this as strong evidence that CWM shifts reflect changing trait
optima.
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gradient. Our results show that shifts in CWM traits can provide valuable information into how trait110

optima shift across gradients, but also caution against predicting species responses to environmental111

variation on the basis of shifts in CWM traits alone.112

Methods113

Study system114

We studied trait-environment relations in the grassland community at the University of California115

Sedgwick Reserve in southern coastal California. This region experiences a Mediterranean climate of cool,116

wet winters and long, dry summers. Plant phenology in this system is driven largely by the rainfall117

regime: seeds of plants germinate with early-season rain storms in November and December, and plants118

begin to reproduce and senesce with the onset of summer droughts (though there is substantial variation119

in the timing of reproduction among species (Godoy and Levine 2014; Kraft et al. 2015)). The reserve120

encompasses significant topographic and edaphic heterogeneity, including oak-savanna, coastal sage121

scrub, and California grassland communities. Our study focused on a part of the reserve with122

serpentine-derived soils that are dominated by invasive Avena and Bromus spp. In this area, rocky123

serpentine outcrops (“hummocks”) are embedded within a matrix of deep, clay soil. The outcrops are124

considerably less vegetated than the matrix soils, and act as spatial refuges for several native plant species125

(Gram et al. 2004). We studied trait-environment interactions at 16 sites on this landscape, with 10 sites126

located on serpentine hummocks and 6 in the matrix.127

Quantifying species performance across the landscape128

In November 2015, before the first major rain storm of the season, we cleared all existing vegetation in 2m129

X 3m plots at each of our 16 focal sites. At each site, we sowed five replicate plots with the equivalent of130

20-60 viable seeds each of our 17 focal species (Table S2) on a grid with 15 cm spacing between each131

species. We collected seeds from hundreds of plants growing across Sedgwick Reserve in the spring prior132

to this study, and seeds were homogenized among sources before planting to ensure that local adaptation133

(Rajakaruna and Bohm 1999) or maternal effects (Germain and Gilbert 2014) did not systematically drive134

variation in plant performance across sites in our experiment.135

In February 2016, we counted the number of germinants of each focal species in our experimental plots,136

and thinned each plot to leave only two individuals of each focal species. In March, we further thinned137

each point down to a single individual of each species, and weeded around this focal individual to ensure138

that it was not competing with other plants in a 15cm radius. Between April-June 2016, we quantified the139

total seed output of each focal individual in our experiment, for a total of 1360 individuals (17 species * 16140

sites * 5 plots per site) tracked across the environment (see Appendix S1 for details on how we estimated141

total seed output). This design let us quantify the germination rate and the per-germinant seed production142
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(fecundity) in the absence of competitors for each species at each site. Both of these vital rates are known143

to be important determinant of annual plant demography in this community (Levine and HilleRisLambers144

2009), but we focus only on fecundity as a measure of species performance in the remainder of this study145

because the functional traits we measured most clearly relate to the growth of plants after germination.146

Measuring compositional turnover across the landscape147

In Spring 2017 (the year after the experimental assessment of plant performance), we surveyed five148

undisturbed plots (0.5x0.5m) adjacent to the experimental plots at each of our 16 sites to characterize the149

vascular plant community composition. These community survey plots were spaced evenly on a 10m150

transect located alongside the cleared plots in which we had experimentally quantified plant performance151

in the prior year. In each plot, we visually estimated the total (absolute) cover of each of species in early152

April, and again in early June.153

Functional trait measurement154

Kraft et al. (2015) had previously measured 11 functional traits (Table S1) that to capture ecologically155

important variation in leaf, root, whole-plant, and reproductive functioning of plant species for most156

species in our demography experiment (12 out of 17 species; note that U. lindelyi was misidentified157

Agoseris heterophylla in that study). In Spring 2016, we measured the same set of traits for the five species in158

our experiment that were not part of Kraft et al. (2015)’s study: Bromus madritensis, Chaenactis glabriuscula,159

Hordeum murinum, Micropus californica, and Vulpia microstachys. We followed the protocols detailed in Kraft160

et al. (2015) to measure traits from 5-8 individuals growing in 0.7*0.7m plots at three of the matrix sites in161

our experiment, which we had sowed with seeds of all 17 annual plant species for a total sowing density162

of 8g viable seeds/m2. In Spring 2017, we measured the same set of functional traits on the 38 of the most163

common annual plant species encountered within the community composition plots (of the species for164

which we could not measure at least one of the focal traits, mean cover of these species in sites where they165

were present was < 5%).166

Our analysis focuses on three traits that capture distinct dimensions of plant ecological strategies and167

that were largely uncorrelated in a principal components analysis of the traits we measured (Fig. S1):168

specific leaf area (SLA), specific root length (SRL), and maximum height. SLA, the ratio of leaf area to dry169

mass, is strongly linked to species’ position along the leaf economics spectrum (Wright et al. 2004) and at a170

global scale is positively correlated to photosynthesis and growth rate (Adler et al. 2014). SRL, the ratio of171

fine root length to dry mass, reflects the area over which roots can uptake resources relative to biomass172

investment, is an important component of the root economics spectrum (Laliberte 2016; Weemstra et al.173

2020). At both a global scale (Weemstra et al. 2016) and within our study (Fig. S1), SRL is largely174

uncorrelated with SLA. Species with higher SRL tend to have superior nutrient acquisition capability, but175
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are generally more susceptible to attack by pathogenic microbes (Eissenstat 1992; Laliberte et al. 2014).176

Maximum height is a globally relevant trait (Díaz et al. 2016) that integrates across various dimensions of177

ecological strategy and can indicate the ability of adult plants to preempt and intercept light (Westoby et178

al. 2002). The 17 focal species of our performance experiment reflected a wide range of variation observed179

across the plant community for these three traits (Fig. S2)180

Environmental sampling181

We quantified various soil chemical and physical characteristics to identify the primary axes of182

environmental variation among our study sites. We measured gravimetric water content ((weight of fresh183

soil - weight of dry soil)/weight of dry soil) in the early- and mid- growing season (March and April,184

respectively), and summarized across these measurements to estimate the average soil moisture at each185

site. At each site, we also collected soil for analysis by A&L Western Agricultural Laboratories (Modesto,186

CA) for a variety of soil chemical and physical properties: soil organic matter, P (Weak Bray and Olsen187

methods), K (ppm), Mg (ppm), Ca (ppm), Na(ppm), pH, CEC, NO3, SO4, NH4, and soil texture (sand, silt,188

and clay content). We collected the soil for these analysis from three points arranged in between the five189

experimental plots, and homogenized within site prior to analysis. We also programmed iButtons (Maxim190

Integrated) to log temperature at 2-hr intervals, and used these data to quantify the average daily191

maximum temperature at each site. To avoid direct solar radiation on iButtons, we placed them in192

anchored PVC tubes with holes for airflow. Based on a PCA of all environmental variables (Fig. S3), we193

focus on soil Ca:Mg, soil sand content, and soil depth as biologically relevant and largely uncorrelated194

environmental variables that capture the primary axes of abiotic variation among our study sites.195

Analysis196

Quantifying community-weighted trait turnover across the landscape197

We used the community composition and functional trait measurements to calculate the198

community-weighted mean (CWM) trait values, which represent the mean trait value of all species199

growing at a site, weighted by the species’ relative cover. We calculated the CWM for each trait (t) at each200

of our 16 sites (s) by averaging across the CWM of the five plots p at each site as follows:201

CWMt,s =
1
5 ∑5

p=1 ∑n
i=1 tici,p, where n is the number of species found in each plot, ti is the mean trait value202

of species i, and ci,p is the relative cover of species i in the plot p. We then evaluated whether CWM traits203

vary across the environmental gradient in our study with simple bivariate linear regressions between each204

of the three focal traits and each of the three focal environmental characteristics (α = 0.05). We also tested205

for evidence of nonlinear trait-environment relations by including a quadratic term in the predictor206

(environmental) variables.207

Quantifying the functional trait basis for variation in species performance across the environment208
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We next asked whether observed CWM trait shifts across the environmental gradients in our study reflect209

variation in the trait-performance relationship in the demography experiment. We used glmmTMB (Brooks210

et al. 2017) to fit a generalized linear mixed effects model with each focal individual’s seed production as211

the response variable, and with the three focal environmental variables, three focal functional traits, and212

nine pairwise trait-environment interaction terms as predictors. The model also included random effects213

for species identity and site, and was fit with a zero-inflated negative binomial error structure. We214

log-transformed all functional trait values, and scaled all parameters to help with model convergence. We215

used performance (Lüdecke et al. 2020) to quantify model fit and to ensure that the model did not suffer216

from colinearity of predictors (variation inflation factors < 2), and used DHARMa (Hartig 2020) to evaluate217

the model residuals. We also compared the AICc of the model with all trait-environment interaction terms218

to a null model and one with only the main trait and environment effects as predictors to verify that the219

interaction terms were supported (∆AICc > 2 in favor of the model with trait-environment interactions).220

Finally, we used effects (Fox and Weisberg 2018) to evaluate the trait-performance relationship at the221

highest and lowest value of the environmental gradient in our study based on the marginal effects of the222

model. We considered trait-environment interactions that were significant in the model, but whose slope223

did not change sign across the environmental gradient, as weak evidence that CWM trait shifts reflect224

shifts in trait optima across the landscape (Fig. 1C). If the sign of the trait-performance sign shifted in the225

direction predicted by CWM trait shifts, we considered this as strong evidence that CWM trait shifts226

reflect shifts in trait optima across the landscape (Fig. 1D).227

We conducted all analyses in R v. 3.6.3 (R Core Team 2020) and provide code to recreate all analyses in228

appendix S2. All data are available as supplementary files and will be deposited in to an archival229

repository prior to publication.230

Results231

Community-wide trait turnover at Sedgwick232

The plant species in our study system vary considerably in their functional traits. Across the 55 species we233

observed across the landscape, there was 3 fold variation in SLA (5th percentile = 124.83cm2/g, 95th234

percentile = 433.8cm2/g), 9 fold variation in SRL (5th percentile = 32.26m/g, 95th percentile = 290.67m/g),235

and 10 fold variation in Maximum Height (5th percentile = 11.38cm, 95th percentile = 108.7cm). This trait236

variation was strongly structured along various environmental axes in our study. We observed strong237

positive relationships between CWM SLA and soil Ca:Mg and soil depth (Fig. 3A-B), a strong negative238

relationship between CWM SRL and soil sand content (Fig. 3C), and a strong positive relationship239

between CWM max height and soil depth (Fig. 3D). We also found evidence that CWM SRL tends to be240

highest at intermediate values of Ca:Mg (Table S3).241
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Environmental and functional trait drivers of variation in species performance242

The fixed effects of our GLMM with all the main and interactive effects explained 18% of the variation in243

seed production (Marginal R2 = 0.18), and the random effects of species and site explained an additional244

19% of the variation (Conditional R2 = 0.37). The model included significant positive main effects of soil245

Ca:Mg (p = 0.016) and soil depth (p = 0.016), indicating that seed production was higher in sites with246

higher Ca:Mg and deeper soils, irrespective of plant traits (Fig 2). The main effect of maximum height was247

also significant and positive (p = 0.005), indicating higher seed output from larger-statured plants across248

the environmental gradient (Fig 2).249

The model also provided evidence that three out of the four significant relationships between CWM250

traits and environmental variables reflect variation in trait-performance relations across the environmental251

gradient. We found strong evidence that the positive relationship between CWM SLA and soil Ca:Mg (Fig.252

3A) reflects a shift in the trait-performance relationship on this landscape. Seed production was shaped by253

a significant positive interaction between SLA and soil Ca:Mg, which caused the sign of the254

SLA-performance relationship to shift from negative in the lowest-Ca:Mg site to positive in the highest255

Ca:Mg site (Fig 3E). We found similarly strong evidence that the negative relationship between CWM-SRL256

and soil sand content (Fig. 3C) reflects shifts in trait-performance relationships. Seed production was257

shaped by a significant negative interaction between SRL and soil sand content, which caused the sign of258

the SRL-performance to shift from positive in the least sandy site, to negative in the most sandy sites in259

our study (Fig 3G). The model also provided weak evidence that the positive relationship between CWM260

max height and soil depth (Fig. 3D) reflects shifts in trait-performance relationships. Seed production was261

shaped by a significant positive interaction between maximum height and soil depth, though this262

interaction only reflected a more positive max height-performance relationship in deeper than in263

shallower soils, rather than a change in the sign of the trait-performance relationship across the soil depth264

gradient (Fig. 3H). The model did not provide any evidence that the negative CWM SLA-soil depth265

relationship (Fig. 3B) reflected a change in the SLA-performance relationship across the soil depth266

gradient in our study (Fig. 3F). Finally, in no case did the model identify a trait-environment interaction in267

the demography experiment for which we did not also find a corresponding relationship in the CWM trait268

analysis (Fig. S4).269
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Figure 2: Standardized effects of environmental variables, functional traits, and their interactions on seed
production. Grey points indicate those effects whose 95% confidence intervals (indicated by thin bars) do
not overlap zero. Horizontal grey bars indicate the four significant trait-environment relations we observed
in the CWM trait analysis.
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Figure 3: Plots A-D show the four significant relationships we observed between environmental variables
and community weighted mean traits (points indicate means and bars show the 95% confidence interval at
each site). Panels E-H show the corresponding trait-environment interactions from our GLMM, with yellow
lines showing the trait-performance relationship at the lowest value of the environmental variable observed
in our study, and the blue lines at the highest. Translucent bands in all panels represent the 95% confidence
intervals. Note that model predictions were made with scaled values of trait and environmental predictors,
which were back-transformed onto their original scale for visualization. Plots of all non-significant trait-
environment relationships are available in Fig. S4, and 3D surfaces for each interaction in Fig. S5.
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Discussion270

Turnover in community-weighted trait means across environmental gradients is a ubiquitous pattern in271

nature, but whether these patterns reflect shifts in trait-performance relations across environmental272

gradients remains poorly understood (Shipley et al. 2016). As a result, predicting plant species’273

demographic responses to environmental variation on the basis of their functional traits remains274

challenging (Laughlin and Messier 2015). Quantifying trait-performance relations across environmental275

gradients at the community level is a key step in improving our ability to project how plant communities276

will respond to environmental change. Here, we asked whether patterns of community-weighted mean277

trait turnover in three key functional traits reflect variation in the trait-performance relationships across278

three abiotic gradients in a southern California serpentine grassland community. We found evidence that279

three out of the four significant trait-environment relationships at the community level reflect shifts in280

trait-performance relationships across the gradients. Quantifying how traits mediate species’281

demographic responses across their life remains a key step in improving our ability to use functional traits282

to predict plant community responses to environmental variation.283

We found three trait-environment interactions structuring both the whole plant community as well as284

variation in the seed production of focal species in our experiment on this landscape. The positive285

relationships between CWM SLA and soil Ca:Mg is consistent with other studies that have found lower286

CWM SLA in sepentine soils than in soils with weaker serpentine characteristics (Fernandez-Going et al.287

2013), and with the general finding of increasing CWM SLA in more fertile soils (e.g. Cornwell and288

Ackerly 2009). Our GLMM analysis of the focal species’ seed production suggests that this289

community-level pattern may arise in part because the value of SLA that confers the optimal fitness290

(measured here as the intrinsic fecundity of plants when not facing competitors) shifts along the Ca:Mg291

gradient. Our model included a significant positive main effect of soil Ca:Mg, indicating that all plants292

performed better in high-Ca:Mg than low-Ca:Mg soils, irrespective of their traits. However, the magnitude293

SLA-Ca:Mg interaction term indicates that lower SLA was associated with higher intrinsic fitness at soils294

with low-Ca:Mg, and vice-versa in high-Ca:Mg soils (Fig. 3E). This is consistent with the general295

expectation of lower SLA being correlated with a suite of traits that confer plants greater tolerance of296

abiotic stress, at the cost of a relative disadvantage when abiotic stress is less limiting (Wright et al. 2004;297

Sterck et al. 2006). For example, lower SLA was correlated with higher water use efficiency (Fig. S1),298

which may give low-SLA species a relative advantage in low-Ca:Mg sites, which also tended to have299

lower soil moisture in this system (Fig. S3).300

We also found a negative relationship between CWM SRL and sand content (Fig. 3C). This relationship301

is contrary to Laughlin et al. (2018), who found a positive CWM SRL-soil sand content relationship and a302

positive interactive effect of SRL and soil sand content on plant survival in a pine-dominated forest in303

Arizona. This discrepancy may have arisen in part because in our system, soil sand content was generally304
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much higher on serpentine hummocks that were also characterized by low soil moisture and organic305

matter (Fig. S3). In this context, the negative relationship between CWM SRL and sand content is306

consistent with the more general expectation of low SRL indicating a resource-conservative strategy that307

allows plants outperform species with resource-acquisitive strategies in more stressful conditions (Reich308

2014). Moreover, our analysis of trait and environmental predictors of seed production provides strong309

evidence that this community-level pattern is in part driven by low-SLA species having higher intrinsic310

fecundity in sandy soils, and vice-versa in soils with low sand content (Fig. 3C). Understanding the311

drivers of variation in trait-environment interactions among different plant communities remains a key312

challenge in building towards a more predictive trait ecology (Funk et al. 2016), and may be achieved with313

more studies that couple observational studies at the community level with species-level analyses of314

trait-environment interactions.315

The third trait-environment interaction for which we found evidence for in both the observational316

study and in our demography experiment was the positive interaction between soil depth and maximum317

height (Fig. 3D). This finding of a positive CWM max height-soil depth relationship is consistent with the318

distribution of plant height along soil depth gradients in other Mediterranean grassland communities319

(Bernard-Verdier et al. 2012). This community-level pattern may be driven by a positive interactive effect320

of maximum height and soil depth on intrinsic fecundity (Fig. 3H). However, this interaction term321

provides only weak evidence that the turnover in CWM max height across soil depth reflects a shifting322

trait-performance relationships, because seed production was also influenced by a significant positive323

main effect of species’ max height. In other words, even though the relative advantage to taller species is324

diminished in shallower vs. deeper soils, tall species had higher intrinsic fecundity than short species325

across the depth gradient. Although the interactive effect of maximum height and soil depth on intrinsic326

fecundity alone may not be sufficient to drive trait shifts across the landscape, trait-performance327

relationships in other vital rates may compound this effect to give rise the community-wide trait turnover328

in maximum height. For example, Kraft et al. (2015) previously found that taller species have a329

competitive advantage over shorter species in a pairwise competition experiment conducted on matrix330

soils in this landscape. Shallower soils on serpentine hummocks are also characterized by lower density of331

vegetation (Gram et al. 2004) and potentially less severe light competition, which could provide a332

competitive advantage to shorter species if there is a tradeoff in aboveground vs. belowground333

competitive ability (DeMalach et al. 2016). Future studies that investigate trait-performance relationships334

in various demographic processes will be critical for understanding how plant traits determine overall335

population growth rates and this influence community assembly processes across landscapes.336

Although three three of the four CWM trait-environment correlations in this study seem to at least337

qualitatively reflect the direction of the trait-environment interaction in terms of species’ intrinsic338

fecundity, we did not find such evidence for the positive CWM SLA-soil depth correlation (Fig. 3B,F). This339
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raises the question of what might drive the community-level association between species’ SLA and soil340

depth. It is possible that the rather than influencing how intrinsic fecundity of species responds to341

variation in soil depth, SLA might instead mediate the response of other vital rates to this environmental342

gradient. It is also possible that the CWM SLA-depth relationship arises due to trait-environment343

interactions between other correlated traits or environmental variables which are not reflected in our344

analysis of intrinsic fecundity (Marks and Lechowicz 2006; Laughlin and Messier 2015). In general, that345

the CWM SLA is strongly correlated with soil depth even though SLA does not appear to mediate346

variation in intrinsic fecundity across the soil depth gradient highlights the potential pitfalls in predicting347

species’ demographic responses to environmental gradients on the basis of community-wide patterns of348

trait turnover.349

Our analysis also allows us to ask whether any trait-environment interactions mediate variation in350

species performance but do not appear to turn over across the environmental gradient at the community351

level. We did not find any evidence for trait-environment interactions influencing species performance352

that did not manifest in CWM trait turnover (Fig. S4). This suggests that in our annual grassland system,353

trait-environment interactions that shape variation in species’ intrinsic fecundity in different environments354

do manifest in trait turnover at the community level. In comparison, Laughlin et al. (2018) found a strong355

negative interactive effect of SLA and soil C:N on plant survival, but did not observe a negative CWM356

SLA-C:N relationship at the community level. It is possible that community patterns in annual-dominated357

communities are more sensitive to underlying species-level trait-environment interactions than the358

perennial system in Laughlin et al. (2018)’s study. Coupling empirical studies with simulations of359

community dynamics in systems dominated by plants of differing life histories will help to build a more360

general understanding of the mapping between species- and community-level trait-environment361

interactions.362

Our overall finding that shifts in CWM traits across environmental gradients often reflect shifts in363

trait-performance relations but are not perfect predictors of trait optima is consistent with other studies364

that have investigated variation in CWM traits and species performance on a landscape (Muscarella and365

Uriarte 2016; Laughlin et al. 2018). However, our study also had some important limitations. First, the 17366

species we used in our experiment to quantify intrinsic fecundity across the landscape did not include367

several of the most dominant species in our observational community composition plots (e.g. Avena fatua,368

A. barbata, Bromus diandrus, Microseris douglasii, and Lolium perenne each achieved >50% cover in at least369

one 1x1 plot across the 16 sites, but were not part of the experiment). Moreover, the functional traits of370

some of the most dominant species were beyond the range of functional traits captured by the 17 species371

in our demography experiment (e.g. all five of the aforementioned dominant species had SRL values372

below those of the 17 species in the experiment, Fig. S2). As CWM trait values are intrinsically reflective of373

dominant species’ responses to the landscape, it is possible that including more species that captured a374
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wider range of the trait variation found in our community would reveal trait-environment interactions375

that drive trait turnover patterns at the community level.376

A second limitation of our study is that we were unable to account for the possibility that intra-specific377

trait variation (ITV) driven by local adaptation, phenotypic plasticity, or maternal effects – processes that378

are known to be important in similar serpentine systems (Rajakaruna and Bohm 1999; Baythavong 2011;379

Germain and Gilbert 2014) – mediate trait-environment relations at either the community or individual380

scale. However, our finding that trait-performance relationships do change across the environmental381

gradient generate predictions for future studies about how ITV may be structured on this landscape. For382

example, our result finding that the optimal value of SLA shifts from low to high with an increase in soil383

Ca:Mg (Fig. 3E) suggests that ITV may be structured such that individuals of the same species growing in384

soils with higher Ca:Mg build higher-SLA leaves than conspecific individuals on low-Ca:Mg soils.385

Understanding how the spatial structure of ITV differs between species may be critical for predicting386

variation between species in their demographic responses to environmental gradients (Swenson et al.387

2020).388

Conclusion389

Understanding and forecasting how species and communities respond to environmental variation is a390

fundamental challenge in ecology. Predicting variation in species-level demographic processes based on391

patterns in trait turnover across whole communities is a promising approach, but most methods to do so392

have relied on the assumption that variation in community-weighted mean (CWM) traits reflect shifts in393

trait optima over landscapes. Our study found consistent evidence that variation in CWM traits across394

environmental gradients reflect the effects of changing trait-performance relationships, but they our395

results caution against inferring likely demographic responses of plants to environments on the basis of396

CWM traits alone. Future efforts that link plant traits to variation in population growth across variable397

environments rates will help build towards more predictive trait-based models of plant community398

dynamics.399
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Figure S1: Biplots of axes 1/2 (Panel A) and axes 2/3 (Panel B) from a PCA of the functional traits measured
for this study. Light grey points indicate the position of the species found across the community (N = 55),
and red points indicate the position of each of the focal species of the demography experiment (N = 17)
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Figure S2: Histograms of the three focal for all species encountered in the Serpentine grassland at Sedgwick
Reserve. Each blue tick at the bottom of the histograms indicates the trait value for one of the focal species in
the demography experiment, and the orange ticks indicate trait values of species that were dominant in the
community (relative cover > 50 in at least one site) but absent in our experiment. Note the log-transformed
X-axis in each panel.

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

740

741

742

743744

745

746

747

748

749

750

751

752

753

754

755
organic_matter_ENR

pH

CEC_meq_100g

K_ppm

Ca_ppm

Mg_ppm

NH4_N_ppm

Nitrate_ppm

soil_moisture

sand

depth

Tmax

ca_mg
P1_weak_bray_ppm

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

−2.5 0.0 2.5 5.0
Dim1 (37.2%)

D
im

2 
(1

7.
5%

)

PCA − Biplot
A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754
755

organic_matter_ENR

pH

CEC_meq_100g

K_ppm Ca_ppm

Mg_ppm
NH4_N_ppm

Nitrate_ppm

soil_moisture

sand

depth

Tmax

ca_mg

P1_weak_bray_ppm
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−2

−1

0

1

2

−2 0 2
Dim2 (17.5%)

D
im

3 
(1

3.
1%

)

PCA − Biplot
B

microsite ● ●hummock matrix

Figure S3: Biplots of axes 1/2 (Panel A) and axes 2/3 (Panel B) from a PCA of the environmental gradients
measured for this study.

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.387076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387076
http://creativecommons.org/licenses/by/4.0/


p = 0.361 ,  r2 = 0.06

3

4

5

0.15 0.20 0.25 0.30

Ca:Mg

C
W

M
 lo

g(
S

R
L 

(m
/g

))
A

p = 0.814 ,  r2 = 0.00408

3

4

5

20 30 40

Depth (cm)

C
W

M
 lo

g(
S

R
L 

(m
/g

))

B

p = 0.146 ,  r2 = 0.145

4.4

4.8

5.2

20 30 40 50 60 70

Sand (%)C
W

M
 lo

g(
S

LA
 (

cm
^2

/g
))

C

p = 0.439 ,  r2 = 0.0434

3.0

3.5

4.0

4.5

20 30 40 50 60 70

Sand (%)

C
W

M
 lo

g(
M

ax
. H

ei
gh

t (
cm

))

D

p = 0.0981 ,  r2 = 0.183

3.0

3.5

4.0

4.5

0.15 0.20 0.25 0.30

Ca:Mg

C
W

M
 lo

g(
M

ax
. H

ei
gh

t (
cm

))

E

	 N.S.

30

100

300

1000

3000

4.0 4.5 5.0 5.5 6.0

log(Specific root length)

F
ec

un
di

ty

Soil Ca:Mg = 0.118 Soil Ca:Mg = 0.327

F

	 N.S.

30

100

300

1000

4.0 4.5 5.0 5.5 6.0

log(Specific root length)
F

ec
un

di
ty

Soil Depth = 12.8 Soil Depth = 45

G

	 N.S.

100

300

500

5.0 5.2 5.4 5.6

log(Specific leaf area)

F
ec

un
di

ty

Soil sand = 19 Soil sand = 71

H

	 N.S.

30

100

300

1000

2.5 3.0 3.5 4.0 4.5

log(Max height)

F
ec

un
di

ty

Soil sand = 19 Soil sand = 71

I

	 N.S.

30

100

300

1000

3000

2.5 3.0 3.5 4.0 4.5

log(Max height)

F
ec

un
di

ty

Soil Ca:Mg = 0.118 Soil Ca:Mg = 0.327

J

Figure S4: Panels A-E are biplots of CWM trait values and environmental variables for the five pairwise
comparisons that were non-significant. Panels F-J show the corresponding trait-environment interactions
in the model of seed output as a function of trait and environmental predictors.23
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Figure S5: 3D interaction surfaces for all nine trait-environment interactions in our GLMM of seed pro-
duction as a function of trait and environment predictors. Plots labeled with an asterisk indicate significant
interaction terms.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.387076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387076
http://creativecommons.org/licenses/by/4.0/


Table S1: List of traits measured for this study

Organ Trait Units

Whole plant Max. height cm
Canopy shape index dimensionless
Carbon isotope composition (dC13) dC13
Phenology day of year
Seed mass mg

Leaf Leaf size cm$^2$
Specific leaf area g/cm$^2$
Leaf dry matter content mg/g
C:N ratio dimensionless
Leaf N concentration mg/g

Root Specific root length m/g

Table S2: Species used in the demography experiment.

Family Species Name in Kraft et al. 2015

Asteraceae Centaurea melitensis same
Chaenactis glabriuscula N/A
Hemizonia congesta same
Lasthenia californica same
Micropus californica same
Uropappus lindleyi Agoseris heterophylla

Boraginaceae Amsinckia menziesii same

Euphorbiaceae Euphorbia spathulata Euphorbia peplus

Fabaceae Acmispon wrangelianus Lotus wrangelianus
Medicago polymorpha same

Lamiaceae Salvia columbariae same

Onagraceae Clarkia bottae N/A
Clarkia purpurea same

Plantaginaceae Plantago erecta same

Poaceae Bromus madritensis N/A
Hordeum murinum N/A
Vulpia microstachys N/A
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Table S3: Model output for quadratic relationships between CWM traits and environmental variables

trait environment term estimate std.error statistic p.value

SLA Ca:Mg Intercept 4.1710630 0.3810 10.9473 0.0000
SLA Linear 6.7997132 3.7945 1.7920 0.0964
SLA Quadratic -8.8295749 8.8486 -0.9978 0.3366

SLA Depth Intercept 4.8685302 0.3669 13.2676 0.0000
SLA Linear 0.0039068 0.0296 0.1322 0.8968
SLA Quadratic 0.0001119 0.0005 0.2187 0.8302

SLA Sand Intercept 5.6767840 0.5039 11.2652 0.0000
SLA Linear -0.0211202 0.0225 -0.9375 0.3656
SLA Quadratic 0.0001628 0.0002 0.6820 0.5072

SRL Ca:Mg Intercept 1.3091538 0.9470 1.3824 0.1901
SRL Linear 24.1034774 9.4310 2.5558 0.0239
SRL Quadratic -53.0592298 21.9926 -2.4126 0.0313

SRL Depth Intercept 3.7116730 0.8014 4.6316 0.0005
SRL Linear 0.0093611 0.0645 0.1450 0.8869
SRL Quadratic -0.0001975 0.0011 -0.1768 0.8624

SRL Sand Intercept 3.6723606 0.7948 4.6207 0.0005
SRL Linear 0.0207823 0.0355 0.5849 0.5686
SRL Quadratic -0.0003831 0.0004 -1.0175 0.3275

Max. Height Ca:Mg Intercept 2.9756663 1.9356 1.5373 0.1482
Max. Height Linear 2.8657993 19.2769 0.1487 0.8841
Max. Height Quadratic 5.5585773 44.9527 0.1237 0.9035

Max. Height Depth Intercept 3.4516879 0.7104 4.8586 0.0003
Max. Height Linear -0.0486766 0.0572 -0.8508 0.4103
Max. Height Quadratic 0.0016727 0.0010 1.6891 0.1150

Max. Height Sand Intercept 4.4618081 1.7386 2.5663 0.0235
Max. Height Linear -0.0246015 0.0777 -0.3165 0.7566
Max. Height Quadratic 0.0001513 0.0008 0.1837 0.8571
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