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Abstract

Since the amount of published biological sequencing data is growing exponentially, efficient methods
for storing and indexing this data are more needed than ever to truly benefit from this invaluable resource
for biomedical research. Labeled de Bruijn graphs are a frequently-used approach for representing large
sets of sequencing data. While significant progress has been made to succinctly represent the graph itself,
efficient methods for storing labels on such graphs are still rapidly evolving. In this paper, we present
RowDiff, a new technique for compacting graph labels by leveraging expected similarities in annotations
of nodes adjacent in the graph. RowDiff can be constructed in linear time relative to the number of nodes
and labels in the graph, and the construction can be efficiently parallelized and distributed, significantly
reducing construction time. RowDiff can be viewed as an intermediary sparsification step of the initial
annotation matrix and can thus naturally be combined with existing generic schemes for compressed
binary matrix representation. Our experiments on the Fungi subset of the RefSeq collection show that
applying RowDiff sparsification reduces the size of individual annotation columns stored as compressed
bit vectors by an average factor of 42. When combining RowDiff with a Multi-BRWT representation,
the resulting annotation is 26 times smaller than Mantis-MST, the previously known smallest annotation
representation. In addition, experiments on 10,000 RNA-seq datasets show that RowDiff combined with
Multi-BRWT results in a 30% reduction in annotation footprint over Mantis-MST.

1 Introduction

The exponential increase in global sequencing capacity [1] and the resulting growth of public sequence
repositories have created an urgent need for the development of compact representation schemes of bio-
logical sequences. Such schemes should not only maintain all relevant biological sequence variation but
also provide fast access for sequence search and extraction. After initial attempts focused on the lossless
compression of full sequences, e.g., using the Burrows-Wheeler transform [2], the field soon turned towards
representing a proxy of the input sequences instead: the sets of all k-mers contained in them. For this, any
recurrent occurrence of a substring of length k in the input is represented by a unique k-mer, forming a
k-mer set. A query of a given sequence against the input text can then be replaced by exact k-mer matching
against the set. Longer strings are queried as a succession of k-mers. Although it is a lossy representation
of the input (as, e.g., repeats longer than k are collapsed), constructing k-mer sets has proved highly useful
in practice [3, 4, 5, 6].

*Joint-first authors.
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1.1 Representation of k-mer sets

Various representations have been developed to balance the trade-off between the space taken by the k-mer
set and query time or representation accuracy. Conceptually, the k-mer set fully defines a node-centric de
Bruijn graph, where each k-mer forms a node and edges are represented implicitly, based on whether any
two nodes share a k − 1 overlap. The simplest representations are bitmaps or (perfect) hash-tables that
indicate the presence or absence of any possible k-mer over the input alphabet in the input text. While non-
optimal in space, they offer constant-time query of k-mers. More compact representations use approximate
membership query data structures to probabilistically represent a de Bruijn graph [7, 8] or utilize succinct
de Bruijn graphs (a generalization of the Burrows-Wheeler transform) [9], which usually require less than
one byte per input k-mer over the nucleotide alphabet {A,C,G, T}.

1.2 De Bruijn graph annotation

A major limitation of the above representations is that the identities of any sequence labels contained in the
input text set are lost. To alleviate this, the concept of colored de Bruijn graphs emerged [10], allowing for
the representation of additional annotations per k-mer. These annotations can either be stored in conjunction
with the k-mers or be organized in a separate data structure, using the k-mer representation only as an index
space. Although the first option is used by a number of conceptually interesting methods, such as Mantis [11]
that uses counting quotient filters to represent the k-mers linked to an annotation identifier, here we will only
focus on the second option, as it allows for the connection of arbitrary annotations to the k-mer set, without
re-processing the k-mer index.

Conceptually, the set of annotations is a relation between k-mers and labels that can be represented
as a binary matrix, where the k-mer set indexes the rows and each annotation label specifies a column.
Any entry (i, j) in the matrix represents the relation of k-mer i and annotation j. Different methods have
been suggested to compress this annotation matrix in a way that still allows for efficient query. VARI [12]
concatenates the rows of the annotation matrix and compresses the result using either an RRR [13] or Elias-
Fano coding [14, 15]. Rainbowfish [16] takes advantage of high redundancy in matrix rows by computing a
frequency code for the unique rows, compressing the unique rows in a matrix ordered by these codes, then
representing the original matrix as a variable-length code vector. However, this method and other frequency
coding-based approaches become less effective for data sets with greater levels of noise or inter-sample
variability. Multi-BRWT [17] compresses the matrix in a hierarchical tree structure exploiting column
similarity, but leaving the possible row redundancy unexploited. All of these methods share the common
property that they act as general purpose binary matrix compressors, and thus, they do not take into account
any particular domain knowledge in their construction.

1.3 Leveraging graph topology to improve annotation compression

While the methods mentioned above rely solely on similarities between annotation matrix elements to
achieve their compression, a few have additionally leveraged graph topology to increase their compression
potential. The Bloom filter correction method introduced by [18] encodes the columns of the annotation
matrix in Bloom filters with high false positive rate. Assuming that all nodes within a graph unitig share
identical annotations, a row in the annotation matrix (corresponding to all nodes from the same unitig in the
graph) is computed as the bit-wise AND of the rows stored for every node of that unitig.

The more recently introduced Mantis MST method [19] constructs an annotation graph with nodes
representing the unique rows of the annotation matrix. In this annotation graph, a weighted edge between
two nodes v1 and v2 is created if there exist adjacent nodes s1 and s2 in the underlying de Bruijn graph
whose annotations are represented by v1 and v2, respectively. The weight of this edge (v1, v2) is then set to
the Hamming distance of the unique rows v1 and v2. Mantis MST computes the minimal spanning tree of
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the annotation graph and represents the annotation of a node as its bit-wise XOR with the annotation of its
parent node in the spanning tree, while only the annotation of the root node is represented explicitly.

1.4 Our contribution

We present a new scheme for representing graph annotations, RowDiff, which takes advantage of simi-
larities between the annotations of neighboring nodes to compress annotation matrices. RowDiff can be
constructed in linear time relative to the input size and has a small memory footprint, thus making it suitable
for annotating virtually arbitrarily large graphs. Since RowDiff is a transformation of the input annotation
matrix attempting to increase its sparsity, RowDiff can be naturally chained with any generic scheme for
compressed binary matrix representation to achieve further improvements in compression performance.

In the next sections, we define the underlying concepts (Sections 2.1 and 2.2) and detail our methods
for construction (Sections 2.3 to 2.4) and querying (Section 2.5) of the RowDiff data structures. We then
describe the test datasets (Section 3.1) and study the construction time (Section 3.2) and representation sizes
(Sections 3.3 and 3.4) of RowDiff-compressed annotations. Finally, we discuss limitations and directions
for future work (Section 4).

2 Method
2.1 Idea Sketch

RowDiff relies on the observation that neighboring nodes in the de Bruijn graph are likely similarly anno-
tated, which implies that storing differences between rows corresponding to adjacent k-mers may be more
space efficient than storing the full rows.

We propose the RowDiff transform that converts an annotation matrix of a de Bruijn graph into a new
annotation matrix of the same size and an anchor bit vector. The anchor vector stores which rows remain
unchanged. We show that the original annotation matrix can be reconstructed from the RowDiff trans-
formed matrix (and the anchor vector). Empirically, the RowDiff transformed matrix is significantly better
compressible in the typical case where neighboring nodes have similar annotations. We develop an efficient
algorithm for defining good anchors and for computing the RowDiff transform (and inverse).

2.2 RowDiff transformation

For each node in the de Bruijn graph we arbitrarily define its RowDiff successor as its lexicographically
largest adjacent k-mer. We will use the terms node and row interchangeably to denote both a node in the de
Bruijn graph and its corresponding annotation row.

RowDiff replaces each row with the (likely sparser) delta relative to its RowDiff successor. For binary
rows, the delta is simply the element-wise XOR relative to the successor, while for non-binary rows, the
delta could store the difference between the row and its successor. In order to be able to reconstruct the
original annotation, some rows are left unchanged. A node for which the annotation is stored unchanged is
called an anchor. Nodes with zero out-degree (called sinks) do not have a RowDiff successor, and must thus
be anchors.

RowDiff defines a transformation of the original annotation matrix to a RowDiff-transformed matrix.
Algorithm 1 shows the implementation of the inverse transformation, which reconstructs the original row
from the RowDiff representation.
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Algorithm 1 Row annotation reconstruction
1: function RECONSTRUCTANNOTATION(node)
2: row← get row(node)
3: while node is not an anchor do
4: node← Successor(node)
5: row← row ⊕ get row(node) . ⊕: bit-wise XOR
6: end while
7: return row
8: end function

Starting from any node in the de Bruijn graph, Algorithm 1 defines a traversal leading to an anchor node
for which the annotation was not transformed. get row(node) returns the sparsified row for the given node
or the original annotation row, if this node is an anchor. Since de Bruijn graphs may have cycles, additional
anchor nodes might have to be assigned in order to break RowDiff cycles (those cycles where every node is
a RowDiff successor relative to its predecessor in the cycle).

Proposition 1. Algorithm 1 finishes for every starting node, and therefore, reconstructs the original anno-
tation, if and only if every sink node in the graph is an anchor and every RowDiff cycle has at least one
anchor node in it.

Once the set of anchor nodes satisfies Proposition 1, the RowDiff-transformed matrix together with the
anchor vector of the anchor nodes set encode the original annotation matrix.

2.3 Anchor assignment

In addition to the small set of anchors described in Proposition 1, we assign more nodes as anchors to limit
the length of each RowDiff path traversed in order to reconstruct a node annotation and thereby ensuring
that Algorithm 1’s time complexity is bounded by a constant. We cap the maximum RowDiff path length to
a certain value M (typically between 10 to 100) by making every M -th node in a RowDiff path an anchor.
At the same time, since anchor nodes require storing the original, less sparse annotation row, it is desirable
to minimize the total number of anchor nodes in order to keep the annotation size small.

The following anchor assignment algorithm allocates anchor nodes near-optimally in three steps as
follows (see Algorithm 2). First, we traverse backwards (in parallel) starting with sink nodes, i.e. nodes
with zero out-degree (see Algorithm S1). The traversal of a path stops at a bifurcation if the current node
is not the last outgoing for its source node (Figure 1, left). When the length of the current path reaches a
multiple of M , the current node is marked as an anchor node. Once the backward traversal is finished, the
vast majority of the nodes have been traversed, and anchor allocation is optimal, in the sense that no anchors
are closer than M to each other. In the second step, we start with source nodes, i.e. nodes with in-degree
zero, and traverse RowDiff paths forward, by always selecting the last outgoing edge at a bifurcation (see
Algorithm S2). Traversal stops when we reach an already visited node. Lastly, in the third step, we start
traversing forward at all forks with unvisited nodes.

One important detail in the forward traversal step is handling the situation when the traversal stops due
to merging into a visited node. Not doing anything may result in arbitrarily long paths with no anchors
(when such merges are chained). Always setting an anchor at a merge will introduce unnecessary anchors
and increase the annotation size. We handle merges with the following simple heuristic: use an additional
bit vector, nearAnchor, to mark all nodes that are known to be at a distance smaller than M to an anchor
node. When hitting a merge during forward traversal, we only set an anchor node if the merge node is
not marked in nearAnchor, i.e. we have a chained merge (Figure 1, right). An optimal algorithm for
deciding if a merge node should create an anchor would require labeling each node with the distance to its
nearest anchor. In our implementation we preferred the heuristic algorithm due to its significantly reduced
memory footprint.
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Forward traversal

Backward traversalSource

Sink

Sink

Merge
(not anchor)

Merge
(anchor)

Visited

Visited + near anchor

Visited

Figure 1: Left: RowDiff traversal. When traversing forward, the last outgoing edge is selected. When traversing backward to
assign anchor nodes, the traversal stops when reaching an edge that is not the last outgoing edge of its source node. Right: Chained
merge. Grey nodes represent traversed nodes, darker grey are nearAnchor. When traversing the light grey nodes, we merge into
a nearAnchor, so no anchor is set. When traversing the blue nodes, an anchor must be set at the merge, as the node is not marked
as nearAnchor

Algorithm 2 Anchor assignment

1: function ASSIGNANCHORS(M )
2: visited[]← {False} . initialize mask of visited nodes
3: anchor[]← {False} . initialize mask of anchor nodes
4: for all s ∈ Sinks() parallel do
5: anchor← TraverseBwd(s, visited, anchor, M )
6: for all s ∈ Sources() parallel do
7: anchor← TraverseFwd(s, visited, anchor, M )
8: for all s ∈ Forks() parallel do
9: anchor← TraverseFwd(s, visited, anchor, M )

10: for all s ∈ Nodes() parallel do
11: anchor← TraverseFwd(s, visited, anchor, M )
12: return anchor
13: end function

Another anchor setting strategy would be to generate unitigs and mark all nodes at the end of a unitig as
an anchor. This strategy, which is equivalent to setting an anchor at all bifurcations and merges, lead to an
80% increase in annotation size (relative to a diff annotation with infinite maximum path length M ) when
tested on microbial genomes. While the penalty in annotation size is significant, the quick construction time
and faster query time may make this option attractive for certain applications.

2.3.1 Anchor optimization

To guarantee that none of the rows in RowDiff has more set bits than the corresponding row in the original
annotation, which may happen when two adjacent nodes carry completely different annotations, we perform
an anchor optimization procedure on RowDiff. For each node in the graph, we compute the difference
between the number of set bits in its original row and the RowDiff-transformed one. Then, each node with
a negative difference is made an anchor. This ensures that all rows in the RowDiff-transformed annotation
matrix are at least as sparse as the corresponding rows in the original annotation matrix.

Proposition 2. Each row in a RowDiff-transformed annotation matrix has the same or smaller number of
set bits than its corresponding row in the original annotation matrix.

The anchor optimization procedure is implemented similarly to the initial construction of RowDiff (see
Section 2.4), thus it has the same time and memory complexity.

2.4 RowDiff construction

The sparsification workflow is schematically described in Figure 2. The initial sparsification of annotation
columns can be trivially parallelized by dividing the columns into groups and processing each group on
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a different machine. Each machine processes columns in batches. The size of each batch is determined
dynamically by loading columns into memory until a desired upper limit has been reached. This upper
limit needs to be larger than the largest column being processed, in compressed bit-vector format. For each
column in the batch, we traverse only the set bits and compare them with the bits in the predecessor and
successor rows. Since the predecessor and successor vectors contain row indexes, they are more
than 2 orders of magnitude larger than a compressed column and are thus streamed from disk as described
in Algorithm 3.
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Figure 2: RowDiff transform algorithm – Schematic
overview of sparsification. Top: Columns are divided into
groups and distributed for processing on an arbitrary num-
ber of machines in parallel. Middle: Columns are loaded
into memory in batches (until memory is exhausted) and
each batch is fully transformed to RowDiff. The result
is serialized and the process moves on to the next batch.
Bottom: Each batch is transformed to RowDiff as follows.
The algorithm iteratively loads into memory blocks of the
pre-computed vectors predecessor and successor.
Then, all columns of the batch are processed in parallel.
The algorithm iterates only through set bits of each col-
umn in the active block and computes the elements of the
RowDiff transformed matrix (see Algorithm 3 for a more
detailed description).

Algorithm 3 RowDiff transform
1: function SPARSIFY(columns) . sparsifies a batch of columns loaded in memory
2: for chunk ← 0, numRows,BlockSize do . process rows in BlockSize chunks
3: load pred[chunk..chunk+BlockSize]
4: load succ[chunk..chunk+BlockSize]
5: for all col ∈ columns parallel do
6: for all rowIdx ∈ col[chunk..chunk+BlockSize] do
7: if not col[succ[rowIdx]] then sparseCol[rowIdx]← True
8: end if
9: for all p ∈ pred[rowIdx] do

10: if not col[p] then sparseCol[p]← True
11: end if
12: end for
13: end for
14: end for
15: end function

The predecessor and successor vectors are used to build the sparsified matrix by comparing each
set bit in the original matrix against its successor and predecessor nodes. Since de Bruijn graphs can have
billions, or even trillions of nodes, the width of each element can easily exceed 32 bits, making it impractical
to store them in memory. To ensure RowDiff is scalable, predecessor and successor need to be built
and traversed in a streaming manner. Once the RowDiff annotation was generated, the predecessor and
successor vectors are not required for querying and can be discarded. Since a node can have more than
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one predecessor, an additional bit vector is used to mark the end of each predecessor section.

2.4.1 Scalability and complexity

A simple analysis of Algorithms S1, S2 (see Supplementary Material), and Algorithm 2 shows that RowDiff
is constructed in linear time in terms of number of nodes and set annotation bits. At the same time, RowDiff
construction can both be efficiently distributed and parallelized, making the method very attractive for prac-
tical use. RowDiff is also extremely competitive in terms of memory usage during construction, as it does
not require loading the full (typically very large) annotation matrix into memory. Since all the auxiliary
arrays, such as predecessor and successor are pre-computed in the beginning and are streamed from
disk during transformation of annotation columns, the method only requires, in addition to a small buffer
for disk streaming, enough memory to load those columns from the current batch.

2.5 Querying annotations for paths

When querying annotations for paths in the graph, or sets of rows corresponding to nodes from a local
neighborhood in the graph, Algorithm 1 leads to redundant reconstruction work, as many of the queried
rows belong to the same RowDiff paths. To alleviate this, we perform the traversal first and precompute all
RowDiff paths from the queried rows. Then, we query all diff rows in one batch and reconstruct annotations
for each row from the query. This ensures that no edge in the graph is traversed more than once. Moreover,
querying all rows in one batch often allows making the query of the underlying binary matrix representation
faster by exploiting its potential intrinsic features (e.g., querying n bits in m columns is more cache-efficient
and faster than n queries of a single bit in each of the m columns).

2.6 Implementation details

We implemented RowDiff as part of the MetaGraph framework [6]. The code for reproducing results of
the experiments is available at https://github.com/ratschlab/row_diff. For storing original
columns of the annotation matrix as well as the indicator bitmap with anchor nodes, we used the SD vectors
from the sdsl-lite library [20] for compressed representation of bitmaps. For compression of the transformed
annotation matrix, we used the Multi-BRWT representation scheme proposed in [17], with its improved and
scaled up implementation available in MetaGraph.

3 Results and Discussion
In this section, we evaluate the performance of the methods described above both in terms of their construc-
tion time and their final representation sizes. In addition, we also study the effect of the maximum RowDiff
path length on the final representation size of the compressed annotations. Finally, we evaluate the degree
of size reduction that RowDiff provides on a per-column basis.

3.1 Data sets

We evaluated the compression performance of RowDiff on three data sets with different levels of sequence
variability. Our first data set consists of all Fungi sequences from RefSeq release 97 [21], with annota-
tions derived from the taxonomic IDs of the sequences’ respective organisms. Our second and third data
sets are derived from the cohort of 10,000 publicly available human RNA-Seq experiments used in [19].
We constructed annotated de Bruijn graphs from the RNA-Seq data set in the same manner as in [19], us-
ing a k value of 23, albeit with two samples discarded due to their withdrawal from the Sequence Read
Archive. We will refer to this data set as RNA-Seq (k=23). The third data set is constructed using the graph
cleaning approach implemented in MetaGraph [6], using a k value of 31. We will refer to this data set as
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RNA-Seq (k=31). For evaluating construction time and representation size, we shuffled the samples in each
data set and generated subsets of increasing size.

We evaluated RowDiff against the smallest existing annotation representation method, MST [19], em-
ployed in Mantis [11]. Similarly to Rainbowfish [16], MST reduces the original annotation matrix to a set
of unique rows and consists of two components: a vector mapping indexes of rows of the annotation matrix
to its unique rows (color classes) and unique rows compressed in a minimum spanning tree. In Mantis, this
mapping vector is included into a hash table storing the k-mers of the de Bruijn graph, which is usually at
least an order of magnitude larger than the compressed annotation. Thus, to make a fair comparison and
exclude the contribution of the graph representation method, we use the same representation for the mapping
vector as in Rainbowfish [16]. Thus, we refer to the MST annotation representation as Rainbow-MST. Note
that Rainbow-MST forms a graph annotation representation which, similarly to RowDiff, can be used with
any de Bruijn graph representation with indexed k-mers.

3.2 Construction time

In this section, we compare the construction times
for building RowDiff and MST [19] (Figure 3).
The construction time for RowDiff-MultiBRWT
includes the RowDiff transform from original
columns to the RowDiff format (with the depth pa-
rameter set to 100) in addition to the time for con-
version of the transformed columns to the Multi-
BRWT binary matrix representation. For MST, the
time does not include construction of the mapping
vector and includes only the time for compression
of the unique annotation rows, which is a lower
bound on the total construction time for the MST
method.
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Figure 3: Construction time for RowDiff and MST on the
RNA-Seq (k=23) data set using 15 cores. The dashed line shows
the construction time for MST (with 16 threads) reported in [19].

3.3 Representation size

We now compare the disk footprint for RowDiff and other state-of-the-art graph annotation compression
methods.

2000 4000 6000 8000 10000

Number of SRA samples

0

10

20

30

40

50

60

S
iz

e,
G

B

Rainbow-MST

Rainbow-MST (mapping only)

MultiBRWT

RowDiff-RowSparse

RowDiff-MultiBRWT

(a) RNA-Seq (k=31) data set
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Figure 4: Annotation size. Rainbow-MST (mapping only) represents the size of the mapping vector compressed as in the Rain-
bowfish scheme, and represents a lower bound on the Rainbow-MST representation size. Rainbow-MST computation on the data
sets with > 4000 samples could not be computed because Mantis did not complete within the 10 day limit of our compute cluster.
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Figure 4 shows the representation size for the RNA-Seq (k=31) and RefSeq (Fungi) data sets. On the
RNA-Seq (k=31) data set, RowDiff-MultiBRWT effectively takes advantage of the topology of the graph
annotation and the similarity of rows of the annotation matrix and achieves a nearly 4-fold size reduction
compared to Multi-BRWT applied on non-sparsified columns. Compared to the Rainbow-MST method,
RowDiff-MultiBRWT achieves a 2-fold size reduction. Rainbow-MST computation on the subsets with
more that 4000 samples could not be computed because Mantis did not complete within the 10 day limit of
our compute cluster.

On the RefSeq (Fungi) data set, RowDiff takes advantage of the longer stretches of nodes with identical
annotations and achieves a 26-fold size reduction relative to Rainbow-MST. Notably, this significant dif-
ference comes from the fact that virtually all of the space used by Rainbow-MST is taken by the mapping
vector on this data set.
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Figure 5: Annotation size for RNA-Seq (k=23).

On the RNA-Seq (k=23) data set, RowDiff-
MultiBRWT achieves a 2.5-fold size reduction
(Figure 5) relative to Multi-BRWT and a 1.5-fold
reduction relative to Rainbow-MST.
The RowSparse format stores the indices of set bits
in each row in a compressed integer vector. This
type of annotation is faster to construct and to query
than the Multi-BRWT representation, but its foot-
print is significantly larger on denser datasets, such
as RNA-Seq (k=31).

3.4 Effect of the RowDiff depth parameter on size

Section 2.3 introduces the concept of a maximum path length M , which ensures that annotation reconstruc-
tion time is bounded by a constant. Figure 6 shows the effects of choosing various values for the maximum
path length M on the RNA-Seq (k=23), RNA-Seq (k=31), and RefSeq (Fungi) data sets. While setting a
shorter maximum path length has negligible effect on the denser RNA-Seq graph, increasing the path length
from 10 to 100 reduces the annotation size by a factor of 5.75 on the much sparser RefSeq (Fungi) graph.
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Figure 6: Annotation size vs. max path length for RNA-Seq (k=31) and RefSeq (Fungi).
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3.5 Compression of single columns

In this experiment, we measure how RowDiff affects the size of the individual columns of the annotation
matrix. Figure 7 shows the reduction factor achieved by RowDiff on two datasets representing two different
extreme cases of sequence variability.

0.0 0.2 0.4 0.6 0.8

Reduction factor: (Original - RowDiff) / Original

0

1

2

3

4

5

(a) RNA-Seq (k=31) data set.
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(b) RefSeq (Fungi) data set.

Figure 7: Column reduction factor weighted with the column size. The columns are stored in SD compressed vectors.

The de Bruijn graph constructed from assembled genomes (RefSeq (Fungi)) contains significantly fewer
branches and bubbles than the graph constructed from reads (RNA-Seq (k=31)) and, thus, is significantly
better compressed by RowDiff.

3.6 Query performance

In this experiment, we measured the time needed for querying the RNA-Seq (k=23) annotation for human
transcripts. The query is performed with the algorithm optimized for long paths (see Section 2.5). First, we
construct a list of annotation rows that have to be reconstructed from the RowDiff format and a list of all diff
rows for querying in the RowDiff matrix. Then, all these rows are queried and the original annotation rows
are reconstructed. Table 1 shows the time taken for reconstruction of the original annotations for 100 and
1000 random human transcripts, which includes the time for querying the diff rows and reconstruction of the
original annotations. Since RowDiff requires traversing the de Bruijn graph to get RowDiff paths, the query
time for RowDiff depends on the traversal performance of the underlying representation of the de Bruijn
graph. In this experiment, we used the succinct de Bruijn graph representation available in MetaGraph [6].

Table 1: Time for querying 100 and 1000 random human transcripts with RowDiff-RowSparse and RowDiff-MultiBRWT. The
second column shows the total number of original annotation rows reconstructed for the query. All benchmarks were performed
with a single thread on Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz.

Query data # rows reconstructed
Query time

RowDiff-RowSparse RowDiff-MultiBRWT
100 transcripts 44,995 8.7 sec 38 sec
1000 transcripts 553,280 95 sec 342 sec

4 Conclusions

In this paper, we introduced RowDiff, a new technique for compacting graph labels by leveraging the likely
similarities in annotations of nodes adjacent in the graph. We designed a parallel construction algorithm
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with linear time complexity in the number of node-label pairs and small memory footprint. In addition,
the algorithm can efficiently be distributed and parallelized, making it applicable on arbitrarily large graphs.
RowDiff reduced the size of graph annotations by 2- to 26-fold when used in combination with Multi-BRWT
relative to Mantis-MST, the most efficient state-of-the-art representation.

Although the row reconstruction method inevitably leads to an increase in ad hoc row query time due
to the larger number of required annotation matrix queries, this limitation is alleviated in practice due to the
tendency of real-world sequences to feature k-mers which co-occur on matching RowDiff paths.

The optimization of anchor assignment is also a clear direction for future development of these methods.
The anchor assignment method we have presented is designed to reduce the row reconstruction time by
setting an upper bound on the traversal length. However, given that there is a trade-off between the size and
the query time of the final representation, designing an objective function and a corresponding algorithm to
best optimize these measures is a non-trivial task.

Moving beyond the representation of binary relations, a simple extension of the RowDiff method can be
used as an efficient way to represent genomic coordinates for indexes of reference genomes. By representing
a coordinate at each anchor node, the coordinates of all other nodes in that anchor’s corresponding RowDiff
path can be computed via their traversal distance to the anchor.

Each improvement in the compression of sequence graphs and their associated annotations opens up
further opportunities for their real-world applicability. When handling large annotations, even a 2-fold
difference in the representation size can make a previously unapproachable annotation accessible to the
available hardware. With RowDiff, we have demonstrated that there still is great potential for improving the
representation of annotations on sequence graphs.
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