
Simplified and unified access to cancer
proteogenomic data

Caleb M. Lindgren ​1​, David W. Adams​1​, Benjamin Kimball ​1​, Hannah Boekweg ​1​, Sadie Tayler​1​,
Samuel L. Pugh ​1​, Samuel H. Payne ​1,​*

1. Biology Department, Brigham Young University, Provo, UT 84602
Correspondance to sam_payne@byu.edu

Abstract
Comprehensive cancer datasets recently generated by the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) offer great potential for advancing our understanding of how to combat
cancer. These datasets include DNA, RNA, protein, and clinical characterization for tumor and
normal samples from large cohorts in many different cancer types. The raw data are publicly
available at various Cancer Research Data Commons. However, widespread re-use of these
datasets is also facilitated by easy access to the processed quantitative data tables. We have
created a Python package, ​cptac ​, which is a data API that distributes the finalized processed
CPTAC datasets in a consistent, up-to-date format. This consistency makes it easy to integrate
the data with common graphing, statistical, and machine learning packages for advanced
analysis. Additionally, consistent formatting across all cancer types promotes the investigation
of pan-cancer trends. The data API structure of directly streaming data within a programming
environment enhances reproducibility. Finally, with the accompanying tutorials, this package
provides a novel resource for cancer research education.

Keywords​: data dissemination, cancer, proteogenomics

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

Large consortia, like the Clinical Proteomic Tumor Analysis Consortium (CPTAC), drive science
forward by creating coordinated and structured datasets on a scale that is typically not possible
with individual investigators. They amass both a number of samples and diversity of
measurements that requires a large collaborative effort. In addition to the primary analysis done
by the consortium and published as flagship manuscripts​1–6​, these datasets are designed to be
a resource to the scientific community to explore new questions or apply novel
methodologies​7–11​.

Proteogenomic cancer data is of interest to a wide interdisciplinary audience and different
scientists may want to interact with different data products, e.g. raw instrument data versus
summarized quantitative tables. Funding agencies have focused building resources for the
dissemination of voluminous raw data files, e.g NCI Genomic Data Commons​12,13​. These data
warehouses address the logistical and technological challenges of storing and disseminating
terabytes of sequencing and mass spectrometry data. However, raw data repositories have a
limited audience, as the re-analysis of raw instrument files requires domain-specific knowledge
and significant computational resources.

A growing audience of scientists want to directly interact with quantitative proteogenomics data
tables and not the raw data. Currently there is not a common method for projects, large or small,
to share these data tables in an open and computable format. Although some quantitative data
may be shared through the large data warehouses​14​, this mechanism has several drawbacks.
First, the final data tables used in a publication are usually highly curated and processed by
harmonization, batch correction, normalization, filtering, etc. The detailed attention in these
computational adjustments should not be lost; the public should have access to the exact data
tables used in a publication. Second, the Data Commons model as currently designed
separates multi-omics datasets into different Data Commons instances, requiring users to have
prior knowledge of which datasets belong together and where they are stored. Finally,
computational convenience should be a driving factor in the data storage mechanism, meaning
that data should be easy to access programmatically and to quickly use in computation. Thus,
an alternative dissemination mechanism that facilitates accessing and utilizing these data tables
is needed to serve a broader scientific community. A convenient method for disseminating
coordinated datasets is the data API model, where data is streamed directly into a programming
environment​15​.

As an illustration of the need for a higher-level data distribution methods, consider the
widespread use of Jupyter Notebooks​16,17​ and other similar programming environments​18​ for
sharing research. These tools are ideal for both explaining the context of an analysis, and
showing the exact methodology. However, for this method of sharing research to be successful,
it needs an accompanying flexible data distribution method. If a shared notebook uses files that

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

are stored on the original researcher's computer or are too large to be conveniently streamed, it
will be much less useful to others who wish to replicate and extend that analysis. The data API
model solves this problem by ensuring that the exact version of a dataset is globally and
universally accessible.

We present here a data API for proteogenomic cancer data generated by CPTAC, representing
six tumor types. All tumor samples are characterized with genomic, transcriptomic, proteomic
and clinical data. The API streams proteogenomic data directly into a Pandas dataframe within
a Python programming environment, dramatically improving the simplicity of data access. By
using native dataframe variables, the proteogenomic data easily integrates with common Python
libraries for machine learning, graphing and statistics. Along with the API, we released an
extensive set of tutorials to demonstrate common data analysis methods in proteogenomic and
pan-cancer studies.

Methods
Overview
When reading these methods, it is important to keep in mind the distinction between the data
files and the software API used to access them. In our project, these two entities are entirely
separate and can be changed/updated independently.

The CPTAC Python package, called ​cptac ​, is a data API that facilitates access and utilization
of cancer proteogenomic data within Python scripts (Figure 1). Similar to other
Data-as-a-Service applications, the ​cptac ​ package gives users on-demand access to
structured data. The API parses, loads, integrates and manipulates the cancer proteogenomic
data from the CPTAC consortium. When data are accessed via the API, they are presented to
the user as Pandas dataframes. This data structure conveniently and seamlessly integrates with
most major machine learning, graphing and data analytic libraries in Python.

All the software code for the ​cptac ​ package is open source and available at
(​https://github.com/PayneLab/cptac​). Formal versions are tagged on GitHub and released as
software updates through the Python Package Index (​https://pypi.org/project/cptac/​). Thus,
developers​ can work with the code of the API by forking the GitHub repository, but ​users​ of the
data should install the package on their local computer with "​pip install cptac ​". Users
should follow the tutorials at ~/docs for explicit code demonstrating the use of the API.
Developers should follow the instructions in ~/devdocs for software design and implementation
requirements.

Data Tables
The data accessible with the ​cptac ​ package are the published final data tables for each
CPTAC tumor type, namely the published data tables associated with flagship publications of
the CPTAC consortium for six cancer types: colon ​5​, serous ovarian ​4​, breast [​in press​],

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://github.com/PayneLab/cptac
https://pypi.org/project/cptac/
https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

endometrial ​2​, renal clear cell ​1​, and lung adenocarcinoma ​3​. The dataset for every tumor type
contains genomic, transcriptomic, proteomic and phosphoproteomic measurements on the
tumor samples. Each patient in the dataset is described by a variety of clinical data including
demographic, treatment and outcome.

Package Construction and Organization
The methods of tumor collection and data generation within CPTAC follow a consistent,
organized structure (Figure 1A). Our package has taken advantage of this consistency by
creating an abstract class ‘Dataset’ which defines common variables and ‘get’ functions to
access all data tables that a dataset will have, e.g. get_clinical(), get_CNV(), get_proteomics(),
get_somatic_mutation(), etc. In addition to simple data access, the ​cptac ​ package assists
users in merging data across dataframes using native ​join​ functions as part of the abstract
Dataset class. These work on any combination of omics data and metadata, e.g.
join_metadata_to_mutations(). The ​join​ functions facilitate all merging to ensure that the
returned dataframes are properly keyed and indexed. Each tumor type is coded as a class
object that inherits from the abstract Dataset class, i.e. a derived class. Thus, each derived
class only needs to parse its specific data files into Pandas dataframes matching the format
required by the abstract Dataset container, and then the rest of the functionality is automatically
integrated. This construction greatly simplifies the process of adding new tumor types.

To minimize the number of dataframes and keep data descriptors present in the same variables
as data values, we have implemented a multi-level index for some omics dataframes. For
example, proteomics and transcriptomics dataframes reference protein/RNA isoforms both by
their common name and by their unique database identifier. Although common names are used
as the primary indexing key, the unique database identifiers are used as the secondary key to
differentiate between isoforms. A second data type which uses a multi-index is PTM proteomics
data such as phosphorylation. Here the multi-index comprises gene name, database identifier,
modified amino acid residue(s) and also the MS-identified peptide sequence. This is necessary
because multiple peptides may be observed in a dataset with the same phosphorylated residue,
often arising because of incomplete tryptic digestion.

Finally, the ​cptac ​ package contains extra functionality within the ​utils ​ sub-package,
accessed as “​from cptac import utils ​” or "​import cptac.utils ​". The ​utils
sub-package implements commonly used functions and is continually expanding. To help users
identify interacting proteins, a set of utility functions access pathway information from BioPlex,
STRING, Uniprot and WikiPathways. The ​utils ​ also provides several wrappers for common
statistical tests, like t-tests and linear regression, with automatic correction of the p-value cutoff
for multiple hypothesis testing. Finally, ​utils ​ automates the identification of frequently mutated
genes.

Streaming data through the API
The ​cptac ​ module gives users access to a large amount of data; the disk space for a single
cancer type is 50 - 100 MB. Because PyPI restricts the package size, and because a user may

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

not want all the data for all cancer types, the data files are not stored directly within the package
or its GitHub repository. Initially, the package contains only the URLs needed to access the
data. The user must request to download the dataset for a particular cancer type, whereon the
package uses one of these URLs to download an index file for that dataset. This index file
contains a list of all versions of the dataset, and a list of files, URLs and MD5 hashes contained
in each version. After each file is downloaded, the package hashes it and checks against the
hash in the index, to make sure none of the data was corrupted in the download process. After a
user has downloaded a dataset, they can load the data into variables in their Python program,
e.g. "​dataset = cptac.Colon() ​". The current implementation of the ​cptac ​ package
utilizes Box as a remote storage server. However, the software architecture has isolated the
code involving remote data streaming, which makes it trivial to change the remote location.

New data or API releases
The CPTAC data changes periodically during analysis as various pipelines are compared and
optimized. This is tracked by the consortium as versioned data releases, e.g. 1.0 or 2.0, etc.
The package has access to formal release versions and automatically monitors whether a user
is working with the most recent release. Each time the user loads a dataset within their Python
code, the package checks to make sure that the user has the current index for that dataset. If
necessary, it downloads a new version of the index from the server. Then, it checks whether the
user is using the latest version recorded in the index. If the user didn't request the latest version,
the package warns them that they are using an out-of-date version. It then loads whichever data
version the user requested.

Note that when new data versions are released and downloaded, the package maintains any
prior versions that were downloaded to a user’s computer. When a user loads a dataset, they
can tell the package to load one of these older versions. Thus, if changes in a new version
affect the results of a user's analyses, they can go back and look at the old version to compare
the two outputs explicitly.

The package also makes sure that the software API itself is up to date. Periodically we release
new versions of the package to add or improve functionality. Each time the user imports the
package, it downloads a small file from the server that contains the latest release version
number. It then compares this with the version number of the installed copy of the package. If
they don't match, it informs the user that their copy of the package is out-of-date, and tells them
how to update it using ​pip ​.

As internet connectivity is not universal, the package first checks to see whether there is a
connection prior to comparing index files for API or data versions. If it is not possible to
download the files needed to check whether the indices and package are up-to-date, the
package automatically skips this version check and works with whatever it has installed locally.

Error Handling

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

The table joining and other data manipulation functions in our package provide novel
opportunities for users to make mistakes when working with data tables. If they request an
operation that causes problems severe enough that the operation needs to be cancelled, the
package raises an exception that informs them why it cannot do what they asked. If the
operation can be completed but may cause issues for the user, the package issues a warning to
alert them of the potential problem.

The package uses the standard Python methods for raising exceptions and issuing warnings.
However, the standard way that Python prints warnings and exceptions, with the full stack trace
and associated information, can be intimidating for users without a computer programming
background. To make these messages easier to decipher, our package defines custom
sys.excepthook ​ and ​warnings.showwarning ​ functions so that whenever the package
raises an exception or issues a warning, it will be printed in a concise, approachable format for
users. Warnings and exceptions from outside of the package are printed in the normal fashion.
However, in an IPython notebook environment, we cannot control how warnings and exceptions
are displayed, so this feature is a specific enhancement for users accessing the package
through the command line or scripts..

Results
To promote reproducibility, transparency and collaboration in the analysis of CPTAC
proteogenomic data, we created a data API that explicitly links data access and data analysis.
The API gives access to the CPTAC data from six cancer types: breast, colon, serous ovarian,
endometrial, clear cell renal cell carcinoma, lung adenocarcinoma. As new datasets are
published, they will become publicly available through the API. Data for each cancer type
contains information on DNA, RNA, proteins, and clinical information (Figure 1). DNA data is
derived from whole genome and whole exome sequencing of tumor and blood normal, and is
processed to yield somatic mutation calls and somatic copy number variation calls. RNA data is
from RNA-seq and is processed to yield transcriptomics and frequently circular RNA and
micro-RNA. Protein data is from mass spectrometry based proteomics and contains global
proteomics and phosphoproteomics. Clinical data contains patient demographic information,
descriptive data for the tumor, and patient follow up. See the original publication for a detailed
description of data acquisition and analysis methods​1–5​.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1 - CPTAC data API. ​ (top) Cohorts in CPTAC have the same fundamental multi-omics
and clinical data. (bottom) The ​cptac ​ Python module is simple to install and use within a
Python programming environment.

The data API is designed to provide frictionless access to quantitative data tables; its goal is to
provide the data in the most convenient format with the least effort. The focus on quantitative
data tables and not raw instrument data has several important benefits. First, these relatively

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

small sized files do not necessitate a voluminous server nor special considerations for
downloading, which enables the API to work on standard computers with standard internet
connectivity. Second, these processed tables are also completely publicly available and do not
contain any private germline information, further facilitating data access. Third, quantitative
tables can be provided directly within the programming environment as a simple matrix variable,
meaning that a user's first interaction with data is as a properly parsed and loaded
Python/Pandas dataframe (Figure 2A). In addition to single table access, the API also has
native join functions which will merge multi-omics data types (Figure 2B). This simple access
dramatically improves a user's ability for interaction, exploration, and visualization (Figure 2C).
Fourth, quantitative data files are the starting point of hypothesis testing and data analysis.
Providing direct access to these data improves the transparency and reproducibility by ensuring
all analysts are accessing the exact same data. This type of universal synchronization is not
typically seen when analysts keep their own local version of data files, which are frequently
altered and re-saved as re-normalized or filtered versions of the original. Moreover, independent
file versions often lack detailed provenance of data manipulation. However, with an API, all data
access is within a programming environment and any data manipulation is directly exposed in
code following the data access. Finally, the data API represents a dramatically simpler method
for users to access and analyze data. All data for the CPTAC cohorts is available in the same
format, from the same simple software interface. There is no need to visit multiple repositories,
e.g. sequencing and mass spectrometry data at multiple NCI Data Commons.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2 - Getting data from the ​cptac​ API​. A - The data API makes accessing CPTAC data
simple, and returns data in a native Pandas dataframe. B - Merging different data types is
facilitated by a suite of ‘join’ functions in the API. C - the joined mutation and proteomics data
from panel B is shown with a boxplot from the ​seaborn ​ Python graphing module. Example
drawn from use case 2 in the cptac documentation
(​https://github.com/PayneLab/cptac/blob/master/docs/usecase2_clinical_attributes.ipynb ​).

Versions
The data API is designed to keep track of formal versions of data. This is accomplished through
a strict separation of the software code to load the data, and the actual data files. As with many
large-scale projects, the data tables used in CPTAC analyses are periodically updated. Such
adjustments are common in data analysis and using a formal data version helps to properly
track changes. These updates are often prompted by new patient survival or treatment
information from follow up visits. Distributing these updates throughout the consortium in a
coordinated manner is best done through an official data release. Other reasons that prompt a
data release include when the consortium has refined a software pipeline involved in generating
the quantitative data tables (e.g. a different algorithm for processing raw sequencing or mass
spectrometry data). The end-user can access these different versions when loading data into
their Python environment (see Methods). When working with the data API, the default version is
the current published version; however, a user can specify a different version.

Tutorials and user support
One of the most important goals of the ​cptac ​ package is to promote re-analysis of the
consortium’s datasets. To facilitate this, we have created a comprehensive set of tutorials and
use cases (Table 1). The tutorials cover the basic mechanics of accessing data through the API,
and manipulating and merging data tables. The use cases are short examples that use the
package to investigate real, biologically meaningful questions; they demonstrate how to use the
API for hypothesis driven biological discovery. As the CPTAC datasets contain a variety of
diverse data types, use cases often explore scientific questions that utilize integrated
multi-omics data.

The tutorials and use cases are written in interactive Python notebooks (Jupyter Notebooks).
This format allows explanatory text, code, and output to be seamlessly integrated into a single
document. The notebooks can be viewed on GitHub in the docs folder of the project repository
(​https://github.com/PayneLab/cptac/tree/master/docs​). Users can also access interactive
versions of the notebooks hosted on Binder
(​https://mybinder.org/v2/gh/PayneLab/cptac/master​).In addition to the Python-based notebooks,
tutorial 6 demonstrates how to access the API within the R programming environment.

Along with our tutorials and use cases, we also provide user support through our GitHub issues
page. This page allows users to submit bug reports, feature requests, and other feedback about
our package. Past questions and answers are publicly available for others to view for reference.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://github.com/PayneLab/cptac/blob/master/docs/usecase2_clinical_attributes.ipynb
https://github.com/PayneLab/cptac/tree/master/docs
https://mybinder.org/v2/gh/PayneLab/cptac/master
https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: User documentation ​. A list of tutorials and use cases to help users explore the data
API, available at ​https://github.com/PayneLab/cptac/tree/master/docs​. (a) The GSEApy module
is available at ​https://gseapy.readthedocs.io/en/latest/introduction.html ​. (b) The BlackSheep
module is available at ​https://blacksheep.readthedocs.io/en/master/​.

Tutorial 1: Data intro

Goes over the basics of how to install the
package and access data

Tutorial 2: Pandas

More in-depth description of how to work
with the tables using Pandas

Tutorial 3: Joining dataframes

Shows how to use built-in functions from
cptac for joining tables of different data types

Tutorial 4: MultiIndex

Some tables provided by the package use
multi-level column indexes in cases where
multiple keys are required to uniquely
identify each column. This tutorial describes
unique aspects of working with these tables.

Tutorial 5: Updates

An explanation of how to access and work
with data version updates, and package
version updates.

Tutorial 6: Python and R How access the Python API within R

Use case 1: Multi-omic integration

Data access and integration for multiple
omics data types

Use case 2: Clinical covariates

Explores meta-data for correlation between
clinical attributes

Use case 3: Clinical and acetylation

Compares acetylation levels between tumor
subtypes

Use case 4: Mutations and omics

Studies the effects of DNA mutations on
protein abundance

Use case 5: Enrichment analysis

Uses the GSEApy​a​ module to find enriched
pathways

Use case 6: Derived molecular Identifies correlation between proteomics
and attributes derived from molecular data,
e.g. MSI status

Use case 7: Trans genetic effect

Studies the effect of DNA mutations on the
expression of a different protein

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://github.com/PayneLab/cptac/tree/master/docs
https://gseapy.readthedocs.io/en/latest/introduction.html
https://blacksheep.readthedocs.io/en/master/
https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Integrating with external bioinformatics tools
To enhance usability and functionality, the data API connects with several bioinformatics tools.
The first category of tools are those that have a Python implementation. Working with these
third-party packages is facilitated by our use of dataframes to encapsulate omics data, as many
Python packages are written for Pandas. Gene set analysis is a frequent step in omics data
analysis to find common biological functions among a specified set of genes. One of the first of
these tools was GSEA​19​, which has been re-implemented in Python in the ​gseapy ​ module
(​https://pypi.org/project/gseapy/​). A tutorial demonstrating the use of ​gseapy ​ is available in the
cptac ​ documentation. Another common task for CPTAC data is survival analysis. Several
Python packages implement analyses like the Kaplan-Meier curves or the Cox proportional
hazard test. These tests identify whether time to an event is affected by a specified variable,
e.g. protein abundance, tumor grade, etc (Figure 3). The ​cptac ​ tutorials demonstrate the
lifelines ​ package (​https://pypi.org/project/lifelines/​) using data from the API.

Figure 3 - Survival analysis with CPTAC data. ​ Using the ​lifelines ​ Python module, we
identify variables that impact patient survival in ovarian cancer. A Kaplan-Meier curve is shown
to separate time to death based on: A - FIGO stage, B - protein expression of PODXL, C -
RAC2. A Cox proportional hazard assessment is shown in D. Images generated using code in
use case 9 of the ​cptac ​ documentation
(https://github.com/PayneLab/cptac/blob/master/docs/usecase9_clinical_outcomes.ipynb).
Figure 3 - Survival analysis with CPTAC data. ​ Using the ​lifelines ​ Python module, we
identify variables that impact patient survival in ovarian cancer. A Kaplan-Meier curve is shown
to separate time to death based on: A - FIGO stage, B - protein expression of PODXL, C -
RAC2. A Cox proportional hazard assessment is shown in D. Images generated using code in
use case 9 of the ​cptac ​ documentation
(https://github.com/PayneLab/cptac/blob/master/docs/usecase9_clinical_outcomes.ipynb).

Use case 8: Outliers

Uses the Blacksheep ​b​ module to study
outliers in expression values

Use case 9: Clinical outcomes

Uses patient follow up data to look for
correlations between clinical and molecular
data, and patient survival

Use case 10: Pathway overlay Integrates quantitative molecular data with
Reactome pathway maps

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://pypi.org/project/gseapy/
https://pypi.org/project/lifelines/
https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3 - Survival analysis with CPTAC data. ​ Using the ​lifelines ​ Python module, we
identify variables that impact patient survival in ovarian cancer. A Kaplan-Meier curve is shown
to separate time to death based on: A - FIGO stage, B - protein expression of PODXL, C -
RAC2. A Cox proportional hazard assessment is shown in D. Images generated using code in
use case 9 of the ​cptac ​ documentation
(https://github.com/PayneLab/cptac/blob/master/docs/usecase9_clinical_outcomes.ipynb).

A second type of external tool that can be integrated with the data API are bioinformatics
databases. Many large databases like Uniprot have web-services that allow for programmatic
access to specific information. To integrate our CPTAC data with these, the API wraps REST
calls to the database. For example, the API can give users a list of interacting proteins from both
Uniprot and STRING by wrapping a call to their respective web-service. Some other databases
either do not have a convenient REST-API or have a small enough database that it can be
loaded in full. Proteins belonging to biological pathways are curated by Wikipathways. We have
downloaded this open source information and integrated it into the data API, which users can
access through simple function calls.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Conclusions
Frictionless data access has become an important goal for science, as it promotes
collaboration, transparency, reproducibility and data re-use. In the past decade, attitudes and
expectations in the scientific community have changed with respect to data sharing. As data
re-use extends the value of the financial investment beyond the original grant holder, various
funding agencies have begun to set benchmarks for program success based on these more
inclusive definitions of impact - as opposed to simply citation metrics. Although the sharing of
raw data has a robust infrastructure for many primary data types, processed data tables are still
frequently not shared in a simple and convenient manner. Here we present a data API for
cancer proteogenomic data associated with the CPTAC consortium. By adopting the goals of
the Data-as-a-Service model, our API radically improves access to these data.

As a generalized adaptation of the Data-as-a-Service model, our API’s guiding philosophy is
that datasets should be accessible within a programming environment. Previous work with a
similar on-demand goal is often achieved with a REST-API, which frequently returns data in a
structured JSON format. Unfortunately, a JSON object requires parsing and reshaping to obtain
the practical data matrix object. As a data matrix is the most common datatype for many
scientific domains, our API directly gives users a native dataframe object. A second advantage
of our data API implementation over a REST-API is that it obviates the need to host a
webserver, making it simpler for creation and long-term maintenance. Numerous scientific
projects, large and small, could improve the dissemination of their data through this mechanism.

Acknowledgments
The authors acknowledge important testing and feedback on the API provided by members of
the Payne lab and the Fenyö and Ruggles labs (New York University). The authors also thank
Jason McDermott (Pacific Northwest National Laboratory) for initial conversations about the
concept. This work was supported by the National Cancer Institute (NCI) CPTAC award [U24
CA210972], and by the Simmons Center for Cancer Research.

References

(1) Clark, D. J.; Dhanasekaran, S. M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; da Veiga

Leprevost, F.; Reva, B.; Lih, T.-S. M.; Chang, H.-Y.; Ma, W.; Huang, C.; Ricketts, C. J.;
Chen, L.; Krek, A.; Li, Y.; Rykunov, D.; Li, Q. K.; Chen, L. S.; Ozbek, U.; Vasaikar, S.;
Wu, Y.; Yoo, S.; Chowdhury, S.; Wyczalkowski, M. A.; Ji, J.; Schnaubelt, M.; Kong, A.;
Sethuraman, S.; Avtonomov, D. M.; Ao, M.; Colaprico, A.; Cao, S.; Cho, K.-C.; Kalayci,
S.; Ma, S.; Liu, W.; Ruggles, K.; Calinawan, A.; Gümüş, Z. H.; Geiszler, D.; Kawaler, E.;

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Teo, G. C.; Wen, B.; Zhang, Y.; Keegan, S.; Li, K.; Chen, F.; Edwards, N.; Pierorazio, P.
M.; Chen, X. S.; Pavlovich, C. P.; Hakimi, A. A.; Brominski, G.; Hsieh, J. J.; Antczak, A.;
Omelchenko, T.; Lubinski, J.; Wiznerowicz, M.; Linehan, W. M.; Kinsinger, C. R.;
Thiagarajan, M.; Boja, E. S.; Mesri, M.; Hiltke, T.; Robles, A. I.; Rodriguez, H.; Qian, J.;
Fenyö, D.; Zhang, B.; Ding, L.; Schadt, E.; Chinnaiyan, A. M.; Zhang, Z.; Omenn, G. S.;
Cieslik, M.; Chan, D. W.; Nesvizhskii, A. I.; Wang, P.; Zhang, H.; Clinical Proteomic
Tumor Analysis Consortium. Integrated Proteogenomic Characterization of Clear Cell
Renal Cell Carcinoma. ​Cell ​2019​, ​179​ (4), 964-983.e31.
https://doi.org/10.1016/j.cell.2019.10.007.

(2) Dou, Y.; Kawaler, E. A.; Cui Zhou, D.; Gritsenko, M. A.; Huang, C.; Blumenberg, L.;
Karpova, A.; Petyuk, V. A.; Savage, S. R.; Satpathy, S.; Liu, W.; Wu, Y.; Tsai, C.-F.; Wen,
B.; Li, Z.; Cao, S.; Moon, J.; Shi, Z.; Cornwell, M.; Wyczalkowski, M. A.; Chu, R. K.;
Vasaikar, S.; Zhou, H.; Gao, Q.; Moore, R. J.; Li, K.; Sethuraman, S.; Monroe, M. E.;
Zhao, R.; Heiman, D.; Krug, K.; Clauser, K.; Kothadia, R.; Maruvka, Y.; Pico, A. R.;
Oliphant, A. E.; Hoskins, E. L.; Pugh, S. L.; Beecroft, S. J. I.; Adams, D. W.; Jarman, J.
C.; Kong, A.; Chang, H.-Y.; Reva, B.; Liao, Y.; Rykunov, D.; Colaprico, A.; Chen, X. S.;
Czekański, A.; Jędryka, M.; Matkowski, R.; Wiznerowicz, M.; Hiltke, T.; Boja, E.;
Kinsinger, C. R.; Mesri, M.; Robles, A. I.; Rodriguez, H.; Mutch, D.; Fuh, K.; Ellis, M. J.;
DeLair, D.; Thiagarajan, M.; Mani, D. R.; Getz, G.; Noble, M.; Nesvizhskii, A. I.; Wang, P.;
Anderson, M. L.; Levine, D. A.; Smith, R. D.; Payne, S. H.; Ruggles, K. V.; Rodland, K.
D.; Ding, L.; Zhang, B.; Liu, T.; Fenyö, D.; Clinical Proteomic Tumor Analysis Consortium.
Proteogenomic Characterization of Endometrial Carcinoma. ​Cell ​2020​, ​180​ (4),
729-748.e26. https://doi.org/10.1016/j.cell.2020.01.026.

(3) Gillette, M. A.; Satpathy, S.; Cao, S.; Dhanasekaran, S. M.; Vasaikar, S. V.; Krug, K.;
Petralia, F.; Li, Y.; Liang, W.-W.; Reva, B.; Krek, A.; Ji, J.; Song, X.; Liu, W.; Hong, R.;
Yao, L.; Blumenberg, L.; Savage, S. R.; Wendl, M. C.; Wen, B.; Li, K.; Tang, L. C.;
MacMullan, M. A.; Avanessian, S. C.; Kane, M. H.; Newton, C. J.; Cornwell, M.; Kothadia,
R. B.; Ma, W.; Yoo, S.; Mannan, R.; Vats, P.; Kumar-Sinha, C.; Kawaler, E. A.;
Omelchenko, T.; Colaprico, A.; Geffen, Y.; Maruvka, Y. E.; da Veiga Leprevost, F.;
Wiznerowicz, M.; Gümüş, Z. H.; Veluswamy, R. R.; Hostetter, G.; Heiman, D. I.;
Wyczalkowski, M. A.; Hiltke, T.; Mesri, M.; Kinsinger, C. R.; Boja, E. S.; Omenn, G. S.;
Chinnaiyan, A. M.; Rodriguez, H.; Li, Q. K.; Jewell, S. D.; Thiagarajan, M.; Getz, G.;
Zhang, B.; Fenyö, D.; Ruggles, K. V.; Cieslik, M. P.; Robles, A. I.; Clauser, K. R.;
Govindan, R.; Wang, P.; Nesvizhskii, A. I.; Ding, L.; Mani, D. R.; Carr, S. A.; Clinical
Proteomic Tumor Analysis Consortium. Proteogenomic Characterization Reveals
Therapeutic Vulnerabilities in Lung Adenocarcinoma. ​Cell ​2020​, ​182​ (1), 200-225.e35.
https://doi.org/10.1016/j.cell.2020.06.013.

(4) McDermott, J. E.; Arshad, O. A.; Petyuk, V. A.; Fu, Y.; Gritsenko, M. A.; Clauss, T. R.;
Moore, R. J.; Schepmoes, A. A.; Zhao, R.; Monroe, M. E.; Schnaubelt, M.; Tsai, C.-F.;
Payne, S. H.; Huang, C.; Wang, L.-B.; Foltz, S.; Wyczalkowski, M.; Wu, Y.; Song, E.;
Brewer, M. A.; Thiagarajan, M.; Kinsinger, C. R.; Robles, A. I.; Boja, E. S.; Rodriguez, H.;
Chan, D. W.; Zhang, B.; Zhang, Z.; Ding, L.; Smith, R. D.; Liu, T.; Rodland, K. D.; Clinical
Tumor Analysis Consortium. Proteogenomic Characterization of Ovarian HGSC
Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. ​Cell
Rep Med ​2020​, ​1 ​ (1). https://doi.org/10.1016/j.xcrm.2020.100004.

(5) Vasaikar, S.; Huang, C.; Wang, X.; Petyuk, V. A.; Savage, S. R.; Wen, B.; Dou, Y.;
Zhang, Y.; Shi, Z.; Arshad, O. A.; Gritsenko, M. A.; Zimmerman, L. J.; McDermott, J. E.;
Clauss, T. R.; Moore, R. J.; Zhao, R.; Monroe, M. E.; Wang, Y.-T.; Chambers, M. C.;

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Slebos, R. J. C.; Lau, K. S.; Mo, Q.; Ding, L.; Ellis, M.; Thiagarajan, M.; Kinsinger, C. R.;
Rodriguez, H.; Smith, R. D.; Rodland, K. D.; Liebler, D. C.; Liu, T.; Zhang, B.; Clinical
Proteomic Tumor Analysis Consortium. Proteogenomic Analysis of Human Colon Cancer
Reveals New Therapeutic Opportunities. ​Cell ​2019​, ​177​ (4), 1035-1049.e19.
https://doi.org/10.1016/j.cell.2019.03.030.

(6) Zhang, H.; Liu, T.; Zhang, Z.; Payne, S. H.; Zhang, B.; McDermott, J. E.; Zhou, J.-Y.;
Petyuk, V. A.; Chen, L.; Ray, D.; Sun, S.; Yang, F.; Chen, L.; Wang, J.; Shah, P.; Cha, S.
W.; Aiyetan, P.; Woo, S.; Tian, Y.; Gritsenko, M. A.; Clauss, T. R.; Choi, C.; Monroe, M.
E.; Thomas, S.; Nie, S.; Wu, C.; Moore, R. J.; Yu, K.-H.; Tabb, D. L.; Fenyö, D.; Bafna,
V.; Wang, Y.; Rodriguez, H.; Boja, E. S.; Hiltke, T.; Rivers, R. C.; Sokoll, L.; Zhu, H.; Shih,
I.-M.; Cope, L.; Pandey, A.; Zhang, B.; Snyder, M. P.; Levine, D. A.; Smith, R. D.; Chan,
D. W.; Rodland, K. D.; CPTAC Investigators. Integrated Proteogenomic Characterization
of Human High-Grade Serous Ovarian Cancer. ​Cell ​2016​, ​166​ (3), 755–765.
https://doi.org/10.1016/j.cell.2016.05.069.

(7) Peng, X.; Xu, X.; Wang, Y.; Hawke, D. H.; Yu, S.; Han, L.; Zhou, Z.; Mojumdar, K.; Jeong,
K. J.; Labrie, M.; Tsang, Y. H.; Zhang, M.; Lu, Y.; Hwu, P.; Scott, K. L.; Liang, H.; Mills, G.
B. A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. ​Cancer Cell ​2018​, ​33
(5), 817-828.e7. https://doi.org/10.1016/j.ccell.2018.03.026.

(8) Ryan, C. J.; Kennedy, S.; Bajrami, I.; Matallanas, D.; Lord, C. J. A Compendium of
Co-Regulated Protein Complexes in Breast Cancer Reveals Collateral Loss Events. ​Cell
Syst ​2017​, ​5 ​ (4), 399-409.e5. https://doi.org/10.1016/j.cels.2017.09.011.

(9) Gonçalves, E.; Fragoulis, A.; Garcia-Alonso, L.; Cramer, T.; Saez-Rodriguez, J.; Beltrao,
P. Widespread Post-Transcriptional Attenuation of Genomic Copy-Number Variation in
Cancer. ​Cell Syst ​2017​, ​5 ​ (4), 386-398.e4. https://doi.org/10.1016/j.cels.2017.08.013.

(10) Wu, P.; Heins, Z. J.; Muller, J. T.; Katsnelson, L.; de Bruijn, I.; Abeshouse, A. A.; Schultz,
N.; Fenyö, D.; Gao, J. Integration and Analysis of CPTAC Proteomics Data in the Context
of Cancer Genomics in the CBioPortal. ​Mol Cell Proteomics ​2019​, ​18 ​ (9), 1893–1898.
https://doi.org/10.1074/mcp.TIR119.001673.

(11) Tong, M.; Yu, C.; Zhan, D.; Zhang, M.; Zhen, B.; Zhu, W.; Wang, Y.; Wu, C.; He, F.; Qin,
J.; Li, T. Molecular Subtyping of Cancer and Nomination of Kinase Candidates for
Inhibition with Phosphoproteomics: Reanalysis of CPTAC Ovarian Cancer. ​EBioMedicine
2019​, ​40 ​, 305–317. https://doi.org/10.1016/j.ebiom.2018.12.039.

(12) Vizcaíno, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J.
A.; Sun, Z.; Farrah, T.; Bandeira, N.; Binz, P.-A.; Xenarios, I.; Eisenacher, M.; Mayer, G.;
Gatto, L.; Campos, A.; Chalkley, R. J.; Kraus, H.-J.; Albar, J. P.; Martinez-Bartolomé, S.;
Apweiler, R.; Omenn, G. S.; Martens, L.; Jones, A. R.; Hermjakob, H. ProteomeXchange
Provides Globally Coordinated Proteomics Data Submission and Dissemination. ​Nat
Biotechnol ​2014​, ​32 ​ (3), 223–226. https://doi.org/10.1038/nbt.2839.

(13) Grossman, R. L.; Heath, A. P.; Ferretti, V.; Varmus, H. E.; Lowy, D. R.; Kibbe, W. A.;
Staudt, L. M. Toward a Shared Vision for Cancer Genomic Data. ​N Engl J Med ​2016​, ​375
(12), 1109–1112. https://doi.org/10.1056/NEJMp1607591.

(14) Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.
J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; Pérez, E.; Uszkoreit, J.; Pfeuffer, J.;
Sachsenberg, T.; Yilmaz, S.; Tiwary, S.; Cox, J.; Audain, E.; Walzer, M.; Jarnuczak, A. F.;
Ternent, T.; Brazma, A.; Vizcaíno, J. A. The PRIDE Database and Related Tools and
Resources in 2019: Improving Support for Quantification Data. ​Nucleic Acids Res ​2019​,
47​ (D1), D442–D450. https://doi.org/10.1093/nar/gky1106.

(15) Wei, L.; Jin, Z.; Yang, S.; Xu, Y.; Zhu, Y.; Ji, Y. TCGA-Assembler 2: Software Pipeline for

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Retrieval and Processing of TCGA/CPTAC Data. ​Bioinformatics ​2018​, ​34 ​ (9), 1615–1617.
https://doi.org/10.1093/bioinformatics/btx812.

(16) Mendez, K. M.; Pritchard, L.; Reinke, S. N.; Broadhurst, D. I. Toward Collaborative Open
Data Science in Metabolomics Using Jupyter Notebooks and Cloud Computing.
Metabolomics ​2019​, ​15 ​ (10), 125. https://doi.org/10.1007/s11306-019-1588-0.

(17) Rule, A.; Birmingham, A.; Zuniga, C.; Altintas, I.; Huang, S.-C.; Knight, R.; Moshiri, N.;
Nguyen, M. H.; Rosenthal, S. B.; Pérez, F.; Rose, P. W. Ten Simple Rules for Writing and
Sharing Computational Analyses in Jupyter Notebooks. ​PLoS Comput Biol ​2019​, ​15 ​ (7),
e1007007. https://doi.org/10.1371/journal.pcbi.1007007.

(18) Rule, A.; Tabard, A.; Hollan, J. D. Exploration and Explanation in Computational
Notebooks. In ​Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems - CHI ’18 ​; ACM Press: Montreal QC, Canada, 2018; pp 1–12.
https://doi.org/10.1145/3173574.3173606.

(19) Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, M. A.;
Paulovich, A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S.; Mesirov, J. P. Gene Set
Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide
Expression Profiles. ​Proc Natl Acad Sci U S A ​2005​, ​102​ (43), 15545–15550.
https://doi.org/10.1073/pnas.0506580102.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385427doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.16.385427
http://creativecommons.org/licenses/by-nc-nd/4.0/

