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Abstract 
 
Performing comprehensive quality control is necessary to remove technical or biological artifacts in single-cell 
RNA sequencing (scRNA-seq) data. Artifacts in the scRNA-seq data, such as doublets or ambient RNA, can 
also hinder downstream clustering and marker selection and need to be assessed. While several algorithms 
have been developed to perform various quality control tasks, they are only available in different packages 
across various programming environments. No standardized workflow has been developed to streamline the 
generation and reporting of all quality control metrics from these tools. We have built an easy-to-use pipeline, 
named SCTK-QC, in the singleCellTK package that generates a comprehensive set of quality control metrics 
from a plethora of packages for quality control. We are able to import data from several preprocessing tools 
including CellRanger, STARSolo, BUSTools, dropEST, Optimus, and SEQC. Standard quality control metrics 
for each cell are calculated including the total number of UMIs, total number of genes detected, and the 
percentage of counts mapping to predefined gene sets such as mitochondrial genes. Doublet detection 
algorithms employed include scrublet, scds, doubletCells, and doubletFinder. DecontX is used to identify 
contamination in each individual cell. To make the data accessible in downstream analysis workflows, the 
results can be exported to common data structures in R and Python or to text files for use in any generic 
workflow.  Overall, this pipeline will streamline and standardize quality control analyses for single cell RNA-seq 
data across different platforms. 
 
Introduction 
 
Single-cell RNA-sequencing (scRNA-seq) has been instrumental in providing detailed insights into cellular 
heterogeneity, which is key for tissue development and disease pathogenesis, at a resolution that was 
previously unattainable with bulk RNA sequencing1. By dissociation of tissue prior to sequencing, it is now 
possible to discern the genetic profile of an individual cell. 
Despite its utility, scRNA-seq data is susceptible to technical noise. The library size of each cell, determined by 
its number of unique molecular identifiers (UMIs), may be diminished due to cell lysis or faulty amplification 
during sequencing. Additionally, the number of features expressed per cell, measured as the total number  of 
features with non-zero expression per cell, could be reduced as a result of defective capture of cDNA during 
the library preparation protocol. Furthermore, a high degree of expression of mitochondrial genes in a scRNA-
seq library may indicate apoptosis or damage to cell membranes, or poor sample quality. Multiplets, which 
arise from multiple cells being incorrectly sorted into a single droplet, can result in an artificial hybrid 
expression profile and are a common issue as well in scRNA-seq data, with doublets making up more than 
97% of all multiplets2. A common strategy is to correct for existing doublets within the data by simulating 
doublets in silico through random combination of expression profiles and removing barcodes which cluster with 
the simulated doublets in the PCA space2, 3. Ambient RNA, which are RNA molecules that have been released 
from cells that could have been damaged or undergone apoptosis during sequencing, may also get 
incorporated into another droplet, leading to contamination4. A Bayesian approach has been previously 
developed to separate the expression of a cell into two separate multinomial distributions of the true cell 
population and the contamination4. It is also possible for ambient RNA to be incorporated into an empty droplet 
not containing a cell, which will need to be removed.  One approach to distinguish empty droplets from cell 
containing droplets is to characterize the contamination from ambient RNA in the dataset and determine if each 
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barcode deviates from the contamination model5. If not controlled for, these factors will cause non-viable cells 
to appear as a distinct cell type, and confound the identification of true cell types.  As such, quality control is a 
crucial step in scRNA-seq data analysis. 
 
An increase in the number and type of quality control methods, which are implemented in different packages 
across various programming environments, has necessitated the creation of a standardized, easy to use 
system for running quality control6. Currently, there are no standardized workflows that can streamline the 
process of generating quality control metrics from all of these tools. In order to address these limitations, we 
have developed a novel pipeline, called SCTK-QC, within the singleCellTK R package which can import data 
from multiple samples from a variety of preprocessing tools, apply a multitude of different tools to generate 
comprehensive sets of QC metrics, and visualize these data as intuitive plots and detailed accessible reports.  
 
Results 
 
Overview 
The SCTK-QC quality control pipeline accessible through the singleCellTK package in R/Bioconductor (Figure 
1). After alignment of the raw sequencing data and correcting for UMIs, the major steps in analysis of droplet-
based scRNA-seq data include: 1) import of the raw gene-barcode matrix and/or the filtered matrix assumed to 
only contain cells, which we will term as the Droplet Matrix and the Cell Matrix, respectively, 2) detection and 
exclusion of empty droplets in the Droplet Matrix, 3) calculation of quality control metrics on the Cell Matrix, 4) 
visualization of the quality control metrics, and 5) export of the data.  
 
Data import 
Import of scRNA-seq data from external preprocessing tools is carried out through a set of functions 
implemented within the SingleCellTK package. Supported algorithms include CellRanger from 10X Genomics, 
BUStools7, STARSolo8, as well SEQC9, Optimus10, and dropEST11. The dataset is stored within the pipeline as 
a SingleCellExperiment S4 object12, where the quality control metrics generated in the pipeline will be stored in 
the “colData” slot alongside other cell-level annotations. For reproducibility, the parameters used to run the 
functions within the pipeline will be stored in the “metadata” slot. Additionally, the expression data will go into 
the “assays” slot, while the feature-level information will be contained in the “rowData” slot. 
 
Generation of quality control metrics 
Many quality control algorithms have been included in SCTK-QC as R functions. emptyDrops and 
barcodeRanks from the dropletUtils5 package are used for the detection of empty droplets in the Droplet 
Matrix. The addPerCellQC function from scater13 will compute general quality control metrics on a 
SingleCellExperiment object including the total UMI and feature count per cell. Additionally, addPerCellQC is 
able to compute the expression of gene sets supplied by the user, which may be useful in cases such as the 
measurement of mitochondrial genes. scrublet2, scDblFinder14, DoubletFinder3, and the cxds, bcds and 
cxds_bcds_hybrid models from SCDS15 are utilized for doublet detection in the Cell Matrix. The decontX4 
algorithm in the Celda package is utilized to determine the level of ambient RNA contamination in the dataset 
(Table 1). 
 
Comparison to other tools 
The pipeline supports various types of input, including data generated from different preprocessing tools, 
SingleCellExperiment objects, h5 files and count matrices. While other QC tools perform specific quality steps, 
the singleCellTK quality control pipeline supports full scRNA-seq analysis workflow, including general quality 
metric, doublet detection and ambient RNA corrections (Table 2). Besides, the pipelines stores result in 
common data structures, which facilitates downstream analysis in different analysis workflows.  
 
Generation of comprehensive quality control reports 
Rmarkdown reports are reproducible documents that support a variety of both static and dynamic output 
formats. They use the markdown syntax that allows their conversion to many other types of documents (e.g., 
.html, .pdf formats). Rmarkdown reports have been widely used in the bioinformatics community as they 
facilitate ease of sharing and executing the embedded R code. SCTK-QC supports the export of the QC output 
into comprehensive Rmarkdown reports. The functions reportDropletQC, reportCellQC, and reportQCTool 
make use of algorithm-specific Rmarkdown templates to generate HTML reports with the visualizations of QC 
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metrics. These reports provide a detailed annotation of the QC algorithms and the output results (Figure 2). 
 
Export to common data structures 
Different software packages utilize varying data containers to store and retrieve scRNA-seq data17. To facilitate 
downstream analysis in multiple platforms, the SingleCellTK package provides several options to export the 
data in one or more formats. 
The exportSCEtoFlatFile function writes all slots of the SingleCellExperient object - colData, rowData, 
reducedDims, altExps - into text files, while the metadata slot of the object is exported as an RDS file in a list 
data structure. All exported files can be optionally zipped into a “gz.txt” format. The exportSCEtoAnnData 
function exports the data into a Python annotated data matrix (AnnData) object, which is analogous to the 
SingleCellExperiment object in the Python language. The function calls the AnnData.write_h5ad function, 
which exports the SingleCellExperimentObject into a .h5ad file format which can subsequently be compressed 
in a “gzip” or “lzf” format. Additionally, the user can specify which assay to set as the primary matrix in the 
output AnnData object. 
 
Example quality control of PBMC datasets using SCTK_QC 
To demonstrate the utility of SCTK-QC, we used the 10x Genomics 1K healthy donor Peripheral Blood 
Mononuclear Cell (PBMC) dataset obtained using both v2 and v3 Chromium chemistries. We downloaded the 
raw reads in the FASTQ format from the 10x Genomics Dataset portal and the human reference genome 
sequence GRCh38 release versions 27 and 34 in the FASTQ and GTF formats from the GENCODE website. 
We then followed instructions from the 10x Genomics portal to build custom references for Gencode GRCh38 
v27 and v34 separately. Read counts for both PBMC 1k v2 and v3 samples were then obtained by aligning the 
raw reads to the reference genomes using CellRanger v3.1.0 running bcl2fastq v2.20. The resulting four count 
matrices (Gencode v27 PBMC 1K v2, Gencode v27 PBMC 1K v3, Gencode v34 PBMC 1K v2, Gencode v34 
PBMC 1K v2) were then imported into SCTK using the importCellRanger function and their quality metrics 
were obtained by running the SCTK runCellQC method. The general QC metrics and decontX decontamination 
score for four 10x PBMC 1k data sets was visualized as violin plots across 4 data sets. (Figure 3) No 
significant difference was observed in the total read counts and the number of features detected per cell 
between the PBMC datasets aligned to different versions of Gencode references. However, the median counts 
and features detected in the alignments from v3 chemistry PBMC datasets were almost double than those 
detected from v2 chemistry, indicating the higher capture sensitivity of the 10x v3 chemistry. Additionally, 
SCTK-QC revealed the improved ability of the v3 chemistry in controlling ambient RNA contamination as 
evidenced by the lower DecontX contamination scores. 
 
Discussion  
 
With SCTK-QC, we have sought to streamline and standardize the quality control and visualization steps that 
are vital to triaging the health of single-cell sequencing runs. The wide applicability of single-cell approaches 
has led to the development of novel computational tools that allow for clustering and identification of new cell 
types and trajectory inference of cell populations in development. However, limitations of scRNA-seq platforms 
create technical artifacts and challenges such as empty or multiplet droplets, ambient RNA, and poor quality 
cells. Thus, rigorous quality control measures are needed to evaluate the quality of individual experiments. 
Tools like Fastqc and MultiQC have previously enabled extensive quality assessment of preceding genomic 
data types. Similarly, SCTK enables a holistic approach to single-cell data analysis by integrating several 
publicly available tools to provide a common entry point for performing the critical task of estimating and 
visualizing droplet and cell quality metrics. 
Here, we present a novel pipeline within the singleCellTK R package, SCTK-QC, that provides comprehensive 
sets of QC metrics for scRNA-seq analysis. This pipeline introduces a set of import functions that are able to 
import scRNA-seq data output generated with different preprocessing tools. SCTK-QC integrates a vast 
number of existing tools and provides various QC metrics, including general summary statistics of data quality, 
doublet detection and ambient RNA contamination and correction.  
 
By leveraging the widely adapted SingleCellExperiment object, SCTK-QC provides a standardized method to 
compute, store, visualize, and export QC metrics and associated metadata, which can subsequently be 
interfaced with other downstream tools by exporting the sample data and the metrics produced by SCTK-QC in 
R and Python-compatible data structures. SCTK-QC also offers rich reporting of results that includes 
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publication-ready figures and tabulated summaries from the outputs of various functions in the HTML format.  
 
We have created several vignettes and in-depth walkthroughs for installation and analysis workflows for 
multifarious use-cases, including a comprehensive reference library on Bioconductor and the accompanying 
singleCellTK website (https://www.sctk.science/). For convenient portability of the pipeline between operating 
systems, we have included scripts to set up the Conda or Python virtual environments that meet all cross-
platform dependency requirements. Because SCTK-QC integrates numerous tools written in different 
languages, we have worked to resolve potential package dependency and versioning issues by building 
Docker and Singularity images of SCTK-QC, freely available through DockerHub.  
 
The modular architecture of SCTK-QC will allow for easy integration of new tools as they are made available. 
Further, we envision SCTK-QC enabling multi-modal quality, as single-cell approaches capacitate 
simultaneous quantitative measurements of RNA with proteins and other cellular moieties. We therefore aim to 
expand the capabilities of SCTK-QC to support the newer flavors of single-cell sequencing, including but not 
limited to scATACseq, CITEseq, and SMARTseq. SCTK-QC was developed with the needs of the non-
computational scientist in mind. While the command-line workflow is flexible and simple to use, future versions 
of SCTK-QC will also include an R Shiny-based graphical user interface with intuitive plug-and-play modules.  
 
Methods 
 
Accessibility and Reproducibility 
The SCTK-QC pipeline is executable on the R console, Rstudio or on the Unix command-line with an Rscript 
command. The singleCellTK package and quality control pipeline is open sourced through GitHub 
(https://github.com/compbiomed/singleCellTK) or Bioconductor 
(https://www.bioconductor.org/packages/release/bioc/html/singleCellTK.html). Additionally, we have included 
scripts to set up the Conda or Python virtual environments that meet all cross-platform dependency 
requirements for convenient portability of the pipeline between operating systems. To encourage reproducibility 
and make the computing environment independent, the singleCellTK package and SCTK-QC pipeline is 
included in Docker image (https://hub.docker.com/r/campbio/sctk_qc)16. All dependencies of the singleCellTK 
package are included in the Docker image and the quality control pipeline can be executed with a single 
docker run. Users  may specify parameters used for each QC function by providing a YAML file to the pipeline 
with argument -y. In addition, the same docker image is deployed on Terra to enable computation on cloud 
clusters.  
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Figure 1. The SCTK-QC pipeline is developed in R and can take as input datasets generated from 
preprocessing tools. The pipeline incorporates various third-party softwares to perform quality control
includes calculation of general quality control metrics and the detection of empty droplets, double
ambient RNA contamination. Data visualization, and report generation can be subsequently performed
imported dataset based on user specified parameters. SingleCellTK utilizes the SingleCellExperiment R
to store the imported data and the metrics thus computed, which may be exported as a Python A
object, or as .txt flat files.  
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runCxds scds cxds 
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runCxdsBcdsHybrid scds cxds_bcds_hybrid 
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runDecontX 

Detect ambient 

RNA 

contamination 

celda decontX 

 
Table 1. The diverse algorithms and their corresponding SCTK-QC wrapper functions that are used to 
generate quality control metrics in SCTK-QC pipeline.  

 
 
 
 
 

  SCTK PIVOT Seurat ascend scRNABatchQC Adobo SCONE SCHNAPPs iS-CellR Ganatum 
ASAP 

browser 

Input format                       

  •SCE Object ✓       ✓   ✓ ✓ ✓     

  •Seurat Object ✓    ✓                 

  •h5 ✓                   ✓ 

  •LOOM                     ✓ 

  •BUStools ✓                     

  •SEQC ✓                     

  •STARSolo ✓                     

  •Optimus ✓                     

  •DropEst ✓                     

  •10x Genomics ✓   ✓   ✓       ✓     

  •Count matrix ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

  •RSEM             ✓         

Ambient droplets detection ✓                     

General QC Metrics                       

 •Total counts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

•Number of 

features 

detected 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
•Mitochondrial 

gene count 
✓ ✓ ✓ ✓ ✓ ✓     ✓   ✓ 

Doublet detection                      

  •doubletCells ✓                     

  •Scrublet ✓                     

  •doubletFinder ✓                     

  •scds ✓                     

Shiny App / interactive ✓ ✓         ✓ ✓ ✓ ✓ ✓ 

docker ✓ ✓             ✓   ✓ 

HTML Report ✓     ✓ ✓           ✓ 

Output format                       

  •RDS ✓     ✓ ✓     ✓       

  •hdf5 ✓                   ✓ 

  •.txt Flatfile  ✓             ✓       

  •pickle           ✓           

  •joblib           ✓           

Table 2. Comparison of singleCellTK quality control pipeline with other popular QC tools. SCTK-QC pipeline 
supports various types of input, full scRNA-seq quality control pipeline and supports common data structures 
for data storage.  
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Figure 2. Reporting architecture in singleCellTK. The functions runDropletQC() and runCellQC() apply the 
corresponding algorithms on the input data. The functions reportDropletQC(), reportCellQC() generate the 
reports in the .html format. Examples of runDropletQC (on the left) and runCellQC (on the right) reports are 
presented.  
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Figure 3. Violin plots of QC metrics generated by SCTK-QC from the 10x Genomics 1K healthy
Peripheral Blood Mononuclear Cell (PBMC) datasets. SCTK-QC reveals the higher capture sensitivity
10x v3 Chromium chemistry as well as its ability to minimize ambient RNA contamination in comparis
the v2 Chromium chemistry. 
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Supplementary Figure 1. Import strategies of the SCTK-QC pipeline used to import data. The last 
demonstrates folder structure that is recognized by SCTK-QC pipeline for the dataset generated b
preprocessing tool. The first column shows the command-line implementation of the pipeline. The 
column shows the script used to run the pipeline in the R console.  
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