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Competing endogenous RNA (ceRNA) regulations and crosstalk
between various types of non-coding RNA in human is an im-
portant and under-explored subject. Several studies have
pointed out that an alteration in miRNA:target interaction
can result in unexpected changes due to indirect and complex
interactions. In this paper, we defined a new network-based
model that incorporates miRNA:ceRNA interactions with ex-
pression values and then calculates network-wide effects after
perturbation in expression level of element(s) while utilizing
miRNA interaction factors such as seed type, binding energy.
We have carried out analysis of large scale miRNA:target
networks from breast cancer patients. Highly perturbing genes
identified by our approach coincide with breast cancer associ-
ated genes and miRNAs. Our network-based approach helps
unveiling the crosstalk between node elements in miRNA:target
network where abundance of targets leading to sponge effect
is taken into account. The model has potential to reveal
unforeseen and unpredicted regulations which are only evident
when considered in network context. Our tool is scalable and
can be plugged in with emerging miRNA effectors such as
circRNAs, lncRNAs and available as R package ceRNAnet-
sim https://www.bioconductor.org/packages/
release/bioc/html/ceRNAnetsim.html.

ceRNAs | network biology
Correspondence: selcenay@yildiz.edu.tr

Introduction
MicroRNAs (miRNAs) are a family of short non-coding
RNAs which are key regulator of gene expression through
various post-transcriptional mechanisms (1). Although the
mechanisms by which miRNA effects are not fully under-
stood, miRNAs predominantly repress their targets. Repres-
sive activities of miRNAs vary depending on many factors
that are significant to miRNA:target interactions. These fac-
tors include miRNA:target binding energy, binding location
in target sequence, base pairing types between miRNA and
target, abundance of miRNAs and targets (2). For example,
a proteomics study have investigated the importance of seed
pairing type between miRNAs and their targets and target site
location and proposed that the characteristics of binding be-
tween miRNA and target drastically affect miRNA efficiency
(3). Similarly, another study revealed that affinity is corre-
lated with seed pairing of miRNA:target pairs and suggested
that affinity is correlated with length of canonical seed base
pairing (4). Binding energies of miRNA:target complexes
vary based on nucleotide context and determine folding sta-
bility of miRNA:target complex (5). It has been demon-
strated that the binding energy between miRNA and target

indicates stability or affinity of complex (6, 7) and does not
directly determine repressive activity of miRNA (5). Early
studies have argued that 2-8 nt sequence located in 5’end
of miRNA, known as seed, bind to specific sequence lo-
cated in 3’UTR of its target (8, 9). In recent studies, it has
been shown that miRNAs can interact with targets via se-
quences located in various regions such as 5’UTR or CDS
(6, 10, 11). These studies also showed that binding loca-
tion either dictates affinity of miRNA:target interaction or
affects level of target degradation. It has been shown that
miRNAs exhibit repressive activity via 6-8 nt long sequence
that is perfectly complementary with seed region of their tar-
gets (2, 12). On the other hand, some researchers have re-
ported that seed sequence of miRNA can have mismatches or
bulged/wobble nucleotides (13). On top of all these factors,
abundance of miRNAs and targets and miRNA:target ratio in
cells predominantly affect efficiency of miRNA:target inter-
action (4, 14, 15).

As it is possible for miRNAs to suppress multiple targets, an
individual mRNA molecule can also be targeted by multiple
miRNAs. In that case, the targeted mRNAs exhibit competi-
tor behavior, hypothesized as competing endogenous RNAs
(ceRNAs) against their miRNAs (16, 17). Briefly, (16) have
explained the ceRNA hypothesis as disturbance of the other
target when one of the targets was perturbed with expression
change on a steady-state system that included one miRNA
and two targets (16). Regarding interaction between miRNAs
and their targets in a cell, explaining and predicting aftermath
of an individual perturbation is difficult due to complexity of
interactions. Various computational and experimental stud-
ies have tackled the problem of unraveling ceRNA:miRNA
interactions. For instance, when abundance of one of the tar-
gets of miR-122 increases, the expression levels of remaining
targets also slightly increase as a result of decreasing repres-
sive activity of miR-122 on remaining targets (15). (4) have
developed a mathematical model for changes on total target
pool concentration after grouping targets according to affin-
ity and demonstrated that miRNA activity correlated with
affinity between miRNA and target (4). Cooperative effi-
ciency of miRNAs as well as competitor behaviors of tar-
gets were also studied and it has been demonstrated to be
crucial for regulating available mRNA levels of targets (18).
MiRNA:target interactions have been modeled as stoichio-
metric and catalytic mechanisms and (19) have recommended
handling models in network context. Models that can explain
miRNA target interactions through topological features has
been applied to bipartite networks considering direct interac-
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tions only (20) or considering both direct and indiract inter-
actions (21). Through common miRNAs and genes, all miR-
NAs and targets in the network were shown to interact with
each other in bipartite fashion. More recently, an approach
to detect ceRNA pairs by using the miRNA expression, gene
expression and common miRNAs between gene targets was
developed (22) which is effective in analyzing genes through
miRNAs. The authors have concluded that existing miRNA
based approaches may not be suitable for understanding reg-
ulations of ceRNA interactions. Additionally, miRmapper
package (23) utilizes an adjacency matrix to associate miR-
NAs using differentially expressed genes and identifies sig-
nificant nodes using topological properties of network.

Results

Network with miRNA:ceRNA expression level.
We have developed a network-based approach to assess ef-
fects of expression level changes in ceRNA regulation. The
basic mode of miRNA repression activity has been estab-
lished based on miRNA and target abundance in various re-
searches (14, 15). Our approach can easily calculate effects
of expression changes to whole network when expression
level is only available factor. In Sample network given in
Figure1 and Table1, after an increase in expression level of
a gene (G2), expression values of other genes also changed
due to redistribution of miRNA among its targets. Previ-
ous studies have shown that if abundance of a gene increases
in a ceRNA network, expression levels of remaining targets
are affected due to shared targets of multiple miRNAs (24–
26). Accordingly, effect of perturbation in a single gene can
spread though the whole miRNA:target network.
Genes targeted by multiple miRNAs act as a trigger for
adjacent local neighborhood of targeting miRNAs, causing
changes in expression levels of genes outside the local neigh-
borhood of initial trigger gene. Therefore, primary expres-
sion change in gene (G2) causes changes in other group of
genes (G5 and G6) even though initial trigger gene (G2) and
genes in other group are not targeted by common miRNA
(Figure 1D). In addition, as shown by an earlier ceRNA hy-
pothesis model (16), after the increase of gene expression
level of G2, the miRNA that is found in the same group (M1)
becomes less repressive on its remaining targets (G1, G3 and
G4). It’s important to note that the changes in gene expres-
sion levels will have more pronounced effect if miRNA:target
ratio is high, i.e., more miRNA available per target, which
was reported in previous findings (4, 14, 15). Our findings
showed that more repressive activity occurred on genes tar-
geted by more than one miRNAs.

ceRNA:Target networks with interaction factors.
Our approach can calculate miRNA reppression activity more
accurately, by integrating seed type, region and energy pa-
rameters. To demonstrate this capability, we generated Sam-
ple+ network, summarized in Table1 and Table S1, for fur-
ther calculations. Proportional distribution of miRNA on
targets is determined in accordance with equations Eq. (1)

and Eq. (2), when the model run based on expression val-
ues of miRNAs and ceRNAs (genes). In that case, the sys-
tem reaches a steady-state shown in Figure 2A. However, if
interaction factors are taken into account, specified interac-
tion factors (i.e, binding factors such as seed type and energy
shown in Table S1) affect distribution of miRNA on targets as
calculated in equation Eq. (3) and described in Figure S5C.
After affinity based proportional distribution of miRNA ex-
pression, degradation factor is considered to specify amount
of repressive miRNA in pairs because not all miRNA:target
binding events result in degradation (Figure S5D). For in-
stance, proportional distribution of G1:M1 interaction in Fig-
ure 1A is calculated higher than the same pair (G1:M1) in
Sample+ network (Figure S5C) (286 vs. 6.58). On the other
hand, calculations with interaction paramaters could cause
increasing miRNA repression activity like in miRNA2:Gene4
interaction (Figure 2A). When expression of Gene2 (G2)
increased (Figure 2B and Figure S7), expression values of
all genes also changed at various levels because of contri-
bution of efficiency factors (Figure 2B-D and Figure S7-
8). These results suggest that the unexplained regulations in
miRNA:target interactions can be revealed by converting the
interaction parameters into numerical expressions.
When the factors were taken into account in the system,
miRNA efficiencies varied as shown in Figure 2A (also re-
fer to Figure S6). Although the miRNA:target expression ra-
tios in steady-state were same in comparison with the Sample
dataset, efficiency of binding and repression have changed.
On the other hand, changes in expression levels of G4 and
G1 differ although they have same expression levels at ini-
tial conditions. This is due to fact that G4 is targeted by two
miRNAs, M1 and M2 (Figure 2D) and additional interaction
parameters.
When Sample+ network is triggered with two fold increase
in expression level of common target (G4), more prominent
changes were observed in gene expression levels in network
compared to changes caused by G2 over-expression (Figure
S9). Furthermore, change in expression level of target gene
that has strong miRNA repression efficiency resulted in evi-
dent perturbation in interaction network. On the other hand,
it was observed that Gene2 was weakly affected by changes
in expression level of Gene4 due weak interaction factors. Fi-
nally, our function screens each gene in the network for their
perturbation efficiencies, while considering various ceRNA
interaction parameters. When we applied the method on the
Sample+ dataset, Gene4 has been found to be the most ef-
fective node in terms of number of perturbed elements and
miRNA2 (M2) has been found to be causing the highest mean
in expression changes (see Section 1 in Supplementary Ma-
terials and Methods).

Compiling Realistic Network and Identifying Nodes
That Cause Widespread Perturbation.

For large scale analysis, we constructed the Real network
with miRNA:target pairs from miRTarBase comprising of
3265 genes and 581 miRNAs (Table1). Many instances of the
Real network were constructed by overlaying expression data
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Fig. 1. Schematic presentation of mechanism of network based model. (A) In steady state, miRNAs (M: triangles) repress targets (G: circles) according to proportion of
target expression level. (B) Two fold increase in transcript level of Gene2 (G2) acts as trigger (shown with thick red arrow). (C) Distribution of miRNA1 (M1) changes due to
increased distribution of M1 over G2 (286 to 444 units) hence decreasing its distribution to lower levels for G1, G4 (both from 286 to 222) and G3 (from 143 to 111.1), updated
distribution levels are shown in blue and red numbers. Due to less miRNA targeting, genes G1, G3 and G4 show increased levels of availability, from 10000 to 10064 or from
5000 to 5032. (D) The change at expression of common target, G4 which pulls more M2 hence decreasing availabilty of M2 for both G5 and G6, consequently levels of G5
and G6 increase due to decreased repression by M2. Expression values are rounded to integers for simplicity. Values on edges indicate initial distribution, red and values
indicate increase and decrease in distribution, respectively. Shades of circles indicate different levels of increase.

for each patient. We constructed 174 networks from 87 pa-
tients who had both normal and cancer expression data avail-
able. Subsequently, perturbation efficiency of each node in
each network was calculated. As a result, 70 of 3265 genes
and 27 of 581 miRNAs were found to have high number
of perturbing node in both tissues, normal and cancer (Fig-
ure 3A). It has been observed that 29 genes and 1 miRNA
had tumor tissue specific perturbing activity. Additionally, in
normal tissue samples of these 87 patients, 46 genes and 4
miRNA have showed robust perturbation efficiency. Please
note that tumor-specific perturbing genes not necessarily ex-
hibit differential expression between normal and cancer tis-
sues (shown at Figure S11).

Our findings accord with results from different tools and
databases. Considerable number of these genes, exactly 44,
were enriched (p-value < 0.05) in critical pathways in can-
cer such as PI3K-Akt signaling pathway (4.69 fold enrich-
ment, p-value 2.04e-08), proteoglycans in cancer (6.07 fold,
p-value 1.03e-07), FoxO signaling pathway ( 6.64 fold, p-
value 4.55e-06). It has been observed that 122 of these
genes have enriched in biological processes and molecular
functions, including negative regulation of apoptotic process
(GO:0043066, 4.75 fold and p-value 5.15e-07), cellular re-
sponse to epidermal growth factor stimulus (GO:0071364,
23.12 fold and p-value 5.33e-06), cadherin binding involved
in cell-cell adhesion (GO:0098641, 8.25 fold, p-value 1.35e-
11), transcription factor binding (GO:0008134, 5.32 fold,
p-value 1.54e-05). Interestingly, tumor specific perturbing
genes show enrichment in cancer associated pathways and

biological processes (Figure 3B) while normal tissue spe-
cific perturbing genes were not enriched significantly in same
pathways or processes. Enriched perturbing genes have been
illustrated in perturbing node network in Figure 4. While four
of top five enriched KEGG pathways were evidently asso-
ciated with cancer, remaining pathway (focal adhesion) has
been shown to be associated with adhesion, migration and
invasion in breast cancer (27). Additionally, regulation of
amino acid metabolism (28) and apoptotic processes which
play significant role in tumor progression, were found en-
riched by tumor-specific perturbing genes in these process
(Figure 3B). Also, negative regulation of transcription regula-
tion from RNA polymerase II is important in manipulating tu-
mor microenvironment and communications of cancer cells.
In utero embryonic development process (GO:0001701) was
found to be enriched in our results and it was shown to play
role in breast cancer metastasis and mammary development
in utero (29).

DisGeNet platform (30), a database listing critical genes for
numerous diseases, was used to analyze critical genes in our
findings. We found that 29 of 99 genes in tumor tissue have
breast cancer disease association score greater than 0.1, with
6.95e-08 hypergeometric p-value and 2.9 fold enrichment.

In order to characterize highly perturbing miRNAs they were
examined via HMDD, a database compiling miRNA and
disease relationships regardless of isoform differences (31).
While 481 of 1208 miRNAs are associated with breast can-
cer in whole HMDD database, nearly all highly perturbing
miRNAs (28 of 29) in our study were denoted as breast

Ari Yuka et al. | ceRNA interaction network modelling bioRχiv | 3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384826
http://creativecommons.org/licenses/by/4.0/


M1 M2

G1

G2

G3

G4

G5

G6

10000

10000

5000

10000

10000

1000 2000

263

117

6.58

91.5

52

94

1777

5000A

M1 M2

G1

G2

G3

G4

G5

G6

10000
20000

5000

10000

10000

1000 200010000

5000B

M1 M2

G1

G2

G3

G4

G5

G6

10029

19996

5022

10065

1000 2000

10

198

88

69

5000

10000

C

M1 M2

G1

G2

G3

G4

G5

G6

10028

19997

5022

10064

1000
2000

9

88

69

5000.

10000.

1778

51.7

93.8

D

199

Fig. 2. Target regulations with interaction parameters. (A) In the steady-state the repression activity of miRNAs on the targets after binding and repression efficiency. (B)
The changes the repression activities after increasing of G2 expression. (C) Perturbation of primary neighborhoods of M1 miRNA (M1 miRNA group). (D) Regulation of gene
expression of other gene group via triggering target (common target between M1 and M2)

cancer associated (2.42 fold enrichment with p-value 7.12e-
11). 28 high perturbing miRNAs have been associated with
breast cancer, 20 of them were attributed with causality. The
remaining non-breast cancer associated miRNA, miR-99b,
may play a regulatory role on proliferation and migration
processes in breast cancer by affecting the TGF-β signaling
pathway (32).
We also evaluated miRNA significance by comparing per-
turbing node counts for each miRNA across all samples (Fig-
ure 3 C and D). For example, miR-30a-5p isoform which
suppresses proliferation, migration and tumor growth (33)
has been observed as highly effective in almost all normal
tissue samples but not in all tumor tissue samples. As an-
other example, miR-183 which is commonly up-regulated in
tumor samples and one of the key regulators of metastatic
process in breast cancer tissues (34), exhibited diverse per-
turbing efficiencies between normal and tumor tissues in our
analysis. miR-182-5p and miR-21-5p have been found as
highly efficient in tumor tissues, but not in all normal tis-
sues. These results indicate that our approach suggests a new
perspective to ceRNA network analysis and can contribute
to disease-therapy studies with ceRNA network topology de-
pendent method.

Detecting Perturbation Efficiency of Nodes in Pres-
ence of Interaction Parameters.

For more accurate analysis we generated a network with
experimental data. The interactions in the Real+ network
originated from CLEAR-CLiP and CLASH datasets as op-
posed to the Real network which is comprised of predicted
miRNA:target interactions. 1348 genes and 284 miRNAs as-
sociated with these genes were compiled as the Real+ net-

work, see Table1. While significant factors such as energy,
seed type, and location of seed on the target sequence in
miRNA target interaction in the template network are same
for each patient dataset, expression levels of miRNA and
gene differ in each dataset. We found the perturbation effi-
ciencies for each node in each patient by simulating pertur-
bation in expression level of every miRNA and gene in the
network.

By fitting mixed distribution model to simulated networks
with mean expression values from random patient data sets,
a node is defined as "perturbing node" if it effects at least 216
nodes in at least 18 samples. It has been observed that 475
of 1348 genes were with high perturbation efficiency in nor-
mal and tumor tissue samples. While 12 of these genes were
highly effective in tumor tissues specifically, no genes were
detected showing normal tissue-specific effect.

On the other hand, 83 of 284 miRNAs were found to be high
perturbing node in both tissues and only one miRNA per
tissue group have been found specific to that tissue group.
KEGG or GO term enrichment analysis of 475 perturbing
genes by DAVID tool (35, 36) (Figure S10) showed that 60 of
these genes were enriched in signal pathways like FoxO sig-
naling pathway (p-value 0.0058 and 2.78 fold enrichment).
Also 399 of perturbing genes were significantly enriched
in cancer associated biological process and molecular func-
tions such as cadherin binding involved in cell-cell adhesion
(GO:0098641 with p-value 1.19e-08 and 3.68 fold enrich-
ment), cell-cell adhesion (GO:0098609 with p-value 5.30e-
08 and 3.65 fold enrichment), microtubule cytoskeleton or-
ganization (GO:0000226 with 5.23e-04 p-value and 4.82 fold
enrichment), negative regulation of Ras protein signal trans-
duction (GO:0046580 with p-value 3.80e-03 and 7.61 fold
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Fig. 3. Analysis of highly perturbing genes and perturbed node counts for all miRNAs in Real network. (A) Number of highly perturbing nodes (genes in orange, miRNAs
in blue) with miRNA:gene target pairs, 99 perturbing genes were analyzed at DisGeNet. Number of breast cancer associated genes are indicated in parenthesis. DisGeNet
analysis was not performed for normal specific perturbing genes. (B) Top five enriched KEGG pathway (teal) and Gene Ontology (red) terms using all tumor-specific highly
perturbing genes, (C) Comparison of perturbed node counts in tumor and normal tissues for each miRNA. Represented as log2 of affected node count ratio between tumor
and normal samples, (D) Affected node number of critical miRNAs in tumor and normal tissues. Represented as log2(affected node count).

enrichment). When we analyze the critical genes associated
with breast cancer from the DisGeNET database (30), 32 of
the disease related genes with a score greater than 0.1 were
observed (1.50 fold enrichment with p-value 0.0051).

Regardless of the isoform difference, 67 of 79 miRNAs (2.13
fold enrichment with p-value 2.05e-17) have been associ-
ated with breast cancer in the HMDD database (Version 3.2)
(31) and 40 of these miRNAs reported as having potential to
cause breast cancer. Remaining 12 miRNAs not associated
with breast cancer in HMDD were explored further in litera-

ture. There are numerous studies that associate breast cancer
with miR-28 (37), miR-1287 (38), miR-3065 (39), miR-500a
(40) and miR-99b (32). They have the potential to be used
for biomarker, therapeutic or regulatory purposes. Addition-
ally, miR-501, miR-532 and miR-589-3p, which have pertur-
bation efficiency in tumor tissue, were not associated with
breast cancer in HMDD. Several researches about miR-589-
5p association with drug response (41) and abnormal regula-
tion of miR-532-5p (42) in breast cancer were reported. miR-
577 have been reported as potential target for breast cancer
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Fig. 4. Network of miRNA:genes in enriched KEGG pathways and GO terms. Highly perturbing genes (circles) and miRNAs (triangles) in Real network have been illustrated.
Tumor-specific genes enriched in top 5 KEGG or GO terms are colored in orange. Top ten genes that have highest degree centrality are labeled.

therapy in an earlier study due to its function as suppressor of
metastasis which induced by epithelial-mesenchymal transi-
tion (43). On the other hand, at the time of writing this study
there were no reports that directly associate hsa-mir-2116,
miR-3127 and miR-501-3p with breast cancer.
Compared to simulations made with networks constructed
with miRTarBase (44) data set, results from Real+ network
showed that high number of genes/miRNAs perturbed large
number of nodes. This finding emphasizes the importance
of integrating miRNA:target interaction parameters as they
profoundly effect the proportional distribution of miRNA ex-
pression. As more miRNA:gene interaction parameters be-
come available in future studies by novel experimental meth-
ods, our method has the potential to integrate them and thus
providing more accurate depiction of ceRNA network and its
consequences.

Evaluation of Performance and Runtime .
Our tool can successfully simulate perturbations in large net-
work despite complex behaviors where reaching the steady-
state is a challenge. Simulations show that change in expres-
sion level of single gene has potential to affect whole net-
work, perturbing many distant nodes. These observations are
in accordance with competing endogenous RNA hypothesis
where genes targeted with many common miRNAs subse-
quently transmit perturbation to neighboring groups.

Discussion
Compared to earlier attempts of analyzing miRNA:target in-
teractions, our approach can operate on large-scale networks

while integrating interaction parameters on top of expression
level data. In order to process large scale networks, steady
state approach was taken in our approach. Although kinetic
modeling is more appropriate and accurate for modeling ex-
pression levels, its calculation for large networks is impracti-
cal. Thus we used steady-state approach to process large net-
works. Transcription, degradation or binding rates of miR-
NAs or mRNAs are ignored during calculations. Although
miRNAs are known to be stable, the transcription and degra-
dation rates of miRNAs change depending on cellular condi-
tions (45). Additionally, other regulation parameters such as
gene-gene interactions and activations by transcription fac-
tors are ignored as well.

Although we considered only mRNAs as ceRNAs in our ap-
proach, other non-coding RNA (ncRNA) types are known
to compete for miRNA interaction, consequently acting as
sponges for miRNAs. Such ncRNAs play role in regulation
of crucial genes. For instance, critical genes extracted from
lncRNA-miRNA-mRNA interactions overlap with genes im-
portant for cancer (46). More specifically, involvement
of lncRNA-miRNA-mRNA interactions with breast cancer
(47, 48) and involvement of circRNA-miRNA-mRNA inter-
actions with cervical cancer (49) has been shown in recent
studies. Our calculations can easily integrate expression level
and miRNA targeting data for various ncRNAs as they be-
come available. Our approach is not only capable of integrat-
ing various players, but also various parameters. Yet to be
discovered interaction parameters affecting binding and post-
binding repression by miRNAs can easily be integrated into
calculations. For instance, recent findings show that not all
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F Construction of miRNA:target network

miRNA:target binding events result in functional repression
(50). As soon as its data becomes available such a parameter
can be included in our calculations.
It’s noteworthy that our findings about tumor specific per-
turbing genes are derived from ceRNA expression levels in
context of network topology not from differential expression
analysis. Some of the genes that are detected as perturbing
genes have comparable expression levels between normal and
tumor samples (Figure S11).
Differential expression analysis is commonly used for identi-
fying genes or miRNAs that are important between two con-
ditions, usually normal vs disease. Our approach has poten-
tial to reveal critical genes even though their expression does
not change. By harnessing the complexity of ceRNA net-
work, we observe that a gene or miRNA might become criti-
cal if the expression level of gene(s) in its local neighborhood
changes. As an example, we evaluated miRNA significance
by comparing perturbed node counts for each miRNA across
all samples (Figure 3 C and D). Although miR-30a-5p has
comparable expression between normal and tumor samples
(Figure S12), it was shown to be effective in normal sample
only. Considering the fact that miR-30a-5p suppresses prolif-
eration, migration and tumor growth (33), our finding might
explain how miR-30a-5p loses it suppression without chang-
ing its expression level.
In small datasets, finding perturbation efficiency of each ele-
ment, determination of iteration number to reach steady-state
have relatively short runtimes (51). However, networks in-
tegrating all miRNA:target interactions require immense cal-
culation which increases the runtime significantly. Although
we took advantage from parallel processing capabilities of
various R packages, the runtime for perturbation efficiency
calculation is still longer than anticipated.

Conclusion

Our study has ability to integrate expression values of mRNA
and miRNAs along with their interaction parameters into a
life-size miRNA:target network. Consequences of a pertur-
bation can be simulated for a node in whole network. More-
over, perturbation analysis can be performed for each node,
which reveals nodes with high perturbation efficiency. Con-
sidering the competition between mRNAs provides more ac-
curate analysis of ceRNA networks. The ceRNAnetsim pack-
age is extensible by integrating various interaction parame-
ters as more experimental data becomes available. Moreover,
additional players in ceRNA network such as non-coding
RNAs can be integrated into calculations as soon as their ex-
pression levels and miRNA targeting data becomes available.
Our package is able to reveal critical genes which are not
discovered by conventional approaches such as differential
gene expression analysis. Consequently, our package may
help researchers tackle complex interactions in ceRNA net-
works with a novel approach, leading to better understanding
and predictions of abnormal regulations and pathways under-
lying diseases or conditions.

Methods and Materials

Construction of miRNA:target network.
For Sample network minimum required information, expres-
sion level of genes and miRNAs, was used. The Sample+
network had additional columns on top of Sample network
(Table1). miRNA:gene pairs from miRTaRBase, expres-
sion values of miRNA and genes from TCGA were fed into
SPONGE for sparse partial correlation analysis (22). Result-
ing miRNA:gene pairs were used to construct the Real net-
work. In comparison, edge data of the Real+ network was re-
trieved from CLASH and CLEAR-CLiP (6, 11). Additional
parameters for the Real+ network were curated from liter-
ature (see section 2 in Supplementary Materials and Meth-
ods). Table 1 summarizes each network. While constructing
custom networks, users can plug additional custom parame-
ter(s) and indicate its effect (degradation, affinity or both) to
be considered.

Triggering Perturbation and Subsequent Calculations.

Initially, the network, Sample network at Table1, is assumed
in steady-state (Figure 1A and Figure S2) condition and
needs least one trigger for initiating calculations. The trigger
can be a change in expression level of one or more genes (Fig-
ure 1B and Figure S3). After trigger, the network undergoes
iterative cycle of calculations at each of which distribution
of miRNA in local neighborhood is recalculated (Figure 1C).
Based on new miRNA distribution, expression level of each
node (i.e. ceRNA) is updated (Figure S4). Due to common
targeted elements, the change in one neighborhood spreads
to other neighborhoods (Figure 1D), consequently have po-
tential to affect whole network due to "ripple effect".
During calculations, following assumptions were adopted; 1)
Transcription and degradation rates of miRNAs are steady
and equal. 2) All available miRNAs are recycled as in
miRNA:ceRNA binding, target is degraded and miRNA is
unaffected. 3) ceRNA targets also have stable transcription
and degradation rates and these rates are equal.
The repression efficiency of a miRNA on the individual target
(Effij) is calculated according to equation Eq. (1); where
miRNA expression (Cj) in local neighborhood is distributed
among targets using individual gene expression levels (Ci),
k number genes targeted by jth miRNA . For the genes
targeted by multiple miRNAs, n number of targeting miR-
NAs for ith gene, cooperative activity of miRNAs on a tar-
get gene, Ri, is calculated by summing repression activity of
each miRNA Equation Eq. (2).

Effij = Cj ×Ci∑k
i=1Ci

(1)

Ri =
n∑
j=1

Effij (2)

Multifactorial calculations in miRNA:target network.
Interactions between miRNAs and their targets can be af-
fected from various factors. So, our model integrates multiple
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Table 1. Summary of tables used in this study.

Network name and
description

Number of genes /
Expression source

Number of miRNAs /
Expression source

Source of gene:miRNA
Interactions

Interaction
factors

Sample |
Sample Network

6
Hypothetical

2
Hypothetical Hypothetical None

Sample+ |
Sample Network w/ interaction factors

6
Hypothetical

2
Hypothetical Hypothetical

STEa : Hypothetical
REb : Hypothetical
Ec : Hypothetical

Real |
Large network w/ experimental expression levels

3265
RNA-Seqd

581
miRNA isoform quantificationd

Predicted (miRTaRBase)
and SPONGE None

Real+ |
Large network w/ experimental expression levels

and more acurate pairings

1348
RNA-Seqd

284
isoform quantificationd

Experimental (CLASH,
CLEAR-CLiP)
and SPONGE

STE: Deducede

RE: Deducede

E: Calculatedf

a Seed Type Effect, b Region Effect, c Energy, d downloaded from The Cancer Genome Atlas, d obtained by compiling the variables presented by the
experimental datasets into their numerical values, f retrieved from experimental sources, please see Supplementary Materials and Methods.

factors when calculating overall miRNA activity. We classi-
fied factors into two categories. Binding factors determine
interaction between miRNA and target and they alter amount
of miRNA sequestered to target. Efficiency factors dictate
degradation efficiency of sequestered miRNA on its target.
In other words, binding factors exert their influence before or
during binding, efficiency factors exert their influence after
binding.
From the literature, binding free energy (5, 6), seed type (52)
and binding region (e.g, 5’UTR, 3’UTR, CDS) (6, 10) data
has been retrieved and plugged into Real+ network. For Sam-
ple+ at Table1 network we used arbitrary values.
The normalized values of factors are used to determine bind-
ing activity and miRNA efficiency on targets (Figure S5) us-
ing equations 3 and 4. Binding affinities (activity, Eff ) of
miRNAs on each individual gene are calculated as shown in
equation Eq. (3) where STE, seed type effect; RE, Region
Effect; E, Energy; ′, normalized values of these factors, k
number genes targeted by jth miRNA; Cj , miRNA expres-
sion; Ci, individual gene expression (Figure S5C).

Effij =
Cj ×E′

ij ×STE′
ij ×Cij∑k

i=1E
′
ij ×STE′

ij ×Cij
(3)

Ri =
n∑
j=1

Effij ×RE′
ij (4)

Not all miRNA:target binding events result in degradation of
target. The degradation of target by bound miRNA depends
on efficiency factors such as binding region. Exact repres-
sion efficiency of miRNA is calculated according to equation
Eq. (4) (Figure S5D); RE′

ij , normalized values of region ef-
ficiency coefficient between miRNA and gene, n number of
targeting miRNAs for ith gene, Ri cooperative activity of
miRNAs on a target gene. The cooperative repression ac-
tivity of miRNAs to their common targets is figured out as
shown in Figure S5E.

Analysis of Real Breast Cancer Networks and Deter-
mining Node Efficiencies.
Expression levels of miRNA and genes in tumor and nor-
mal tissues of 87 patients are retrieved from TCGA; https:
//www.cancer.gov/tcga. We used sparse partial cor-
relation method, SPONGE, offered by the (22) to filter out
genes with weak association. SPONGE R package (53)

was used on log transformed miRNA and gene expression
datasets of breast cancer patients and selected genes with p-
adj less than 0.2, as suggested by authors. For Real network,
predicted miRNA:target interactions from miRTarBase (44)
and for Real+ network, experimental miRNA:target dataset
(i.e. CLEAR-CLIP and CLASH datasets) (6, 11) have been
used as binary matrix for correlation analysis.
Our package has functions to calculate perturbed count and
perturbation efficiency for each gene by using each gene as a
trigger. Perturbed count is number of affected nodes pertur-
bation efficiency is defined as mean of percent change in ex-
pression level of perturbed nodes. Through parallel process-
ing, we evaluated the perturbation efficiencies in Real and
Real+ networks of all nodes in breast cancer tissue samples.
Throughout the study we used two fold increase in expres-
sion level as trigger. Please note that two fold decrease as a
trigger gave same results. Perturbing nodes that show high
efficiency in tumor and normal tissues were analyzed further
(KEGG pathway, Gene Ontology etc.).

Calculating Threshold Values for Affected Nodes and
Patients.
We used mixed model to fit distribution of perturbation ef-
ficiencies of nodes in patient data sets and to determine ap-
propriate cut-off values for number of perturbed nodes and
number of patients (54). To test accuracy of cut-off value,
we performed simulations on randomly selected nodes with
mean miRNA and gene expression values of random 10 pa-
tient’s data sets. We considered that nodes which have per-
turbation efficiency at least 1 patient with 78 perturbed nodes
are effective in Real network of samples. Based on results
from mixed distribution model, nodes that perturbed at least
216 nodes in 18 samples were considered as perturbing node
in Real+ network.
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