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Abstract11

Generalization of transcriptomics results can be achieved by comparison across experiments,12

which is based on integration of interrelated transcriptomics studies into a compendium. Both13

characterization of the fate of the organism under study as well as distinguishing between generic14

and specific responses can be gained in such a broader context. We have built such a com-15

pendium for plant stress response, which is based on integrating publicly available data sets16

for plant stress response to generalize results across studies and extract the most robust and17

meaningful information possible from them.18

There are numerous methods and tools to analyze such data sets, most focusing on gene-wise19

dimension reduction of data to obtain marker genes and gene sets, e.g. for pathway analysis.20

Relying only on isolated biological modules might lead to missing of important confounders21

and relevant context. Therefore, we have chosen a different approach: Our novel tool, which22

we called Plant PhysioSpace, provides the ability to compute experimental conditions across23

species and platforms without a priori reducing the reference information to specific gene-sets.24

It extracts physiologically relevant signatures from a reference data set, a collection of public25

data sets, by integrating and transforming heterogeneous reference gene expression data into a26

set of physiology-specific patterns, called PhysioSpace. New experimental data can be mapped27

to these PhysioSpaces, resulting in similarity scores, providing quantitative similarity of the new28

experiment to an a priori compendium.29

Here we report the implementation of two R packages, one software and one data package,30

and a shiny web application, which provides plant biologists convenient ways to access the31

method and a precomputed compendium of more than 900 PhysioSpace basis vectors from 432

different species (Arabidopsis thaliana, Oryza sativa, Glycine max, and Triticum aestivum).33

The tool reduces the dimensionality of data sample-wise (and not gene-wise), which results34

in a vector containing all genes. This method is very robust against noise and change of platform35

while still being sensitive. Plant PhysioSpace can therefore be used as an inter-species or cross-36

platform similarity measure. We demonstrate that Plant PhysioSpace can successfully translate37

stress responses between different species and platforms (including single cell technologies).38

39

Keywords— crop science, stress analysis, single cell, computational method, web-tool40

1 Introduction41

As a consequence of their non-motile nature, plants developed a peculiarly organized yet labyrinthine re-42

sponse system to external biotic and abiotic stresses. Exploiting this complex system has been playing43

an important role in achieving sustainable plant protection in agriculture. Instances of tweaking the plant44

defense system for obtaining better crops are numerous. For instance, priming, i.e. promoting plants to a45

primed state of defense, has been known, investigated and utilized for decades if not centuries [1, 2]. By46

exposure to biotic stresses (e.g. microbe-, pathogen-, herbivore-associated molecular patterns) or abiotic47

stresses (for instance harsh temperatures, drought or damage-associated molecular patterns), plants switch48
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to a primed reinforced defense state. In this primed state, they can display sharper stress response, which49

in turn results in more robust and resilient organisms. By artificially exposing plants to biotic and abiotic50

stresses directly, or to some natural or synthetic chemicals which provoke the same defense response, it is51

possible to engineer tougher plants [3]. Another example of crop engineering is by genetically modifying52

(GM) plants to attain higher tolerance to stress [4]. Introducing a single gene encoding C-5 sterol desat-53

urase (FvC5SD) from Collybia velutipes to tomato is an instance of GM crop research, and it brings about54

a drought-tolerant and fungal resistant crop [5, 6]. Obtaining resistance to papaya ringspot virus (PRSV)55

in transgenic papaya is another famous example. The resistant papaya gains the protection by expressing56

the PSRV coat protein transgene [7].57

In research experiments aiming to modify the plant’s defense system, such as the examples mentioned58

above, the stress responses of plants under study are to be thoroughly examined and contrasted to wild59

types. We argue that a tool, which is capable of quantitatively and dependably measuring the speed and60

intensity of stress responses in plants, can be of great assistance in this field of research. Hence, we present61

Plant PhysioSpace, an advanced computational tool based on PhysioSpace [8], for quantitative analysis of62

stress responses in plants.63

Sequencing technologies are commonly used for studying the changes in the plants under examination.64

However, analysis of the results mostly focuses on gene-wise dimension reduction of data to obtain a list of65

genes, with the rest of the analysis pipeline fixating on the genes in the list. By design, Plant PhysioSpace66

extracts physiologically relevant information out of intricately convoluted gene expression data without67

reducing dimensions, providing a direct link from sequencing data to physiological processes. Since it is68

computationally cheap, the tool is able to train on a vast amount of retrospectively available data, allowing69

explicit integration of established knowledge and data, eventuating in robust results when testing the method70

on small data sets generated in specific experiments.71

Plant PhysioSpace comprises two compartments: the space generation, the algorithm which elicits in-72

formation from big data, and the physio-mapping, the process with which new data can be analyzed by73

comparison to the extracted information (Fig.1). Compared to the machine learning nomenclature, space74

generation is analogous to training and physio-mapping to testing.75

In this study, we focused on the application of our novel method in stress response analysis. As one of76

the fiercest adversaries of plants, biotic and abiotic stresses take a toll on commercial agriculture. Plant77

PhysioSpace can aid in engineering impervious crops, by quantitatively analyzing the effect of a new mutation78

or treatment on plant’s resistance.79

Another long-lasting question in the field of stress response research is the potential heterogeneity in80

response among cell types under the stress. Generally, sequencing is done on thousands to millions of cells,81

revealing only the average effect on the bulk tissue, thus lacking the direct assessment of cells. The individual82

and unique role of cell types shape the function of their parent tissue. Hence, by careful examination of83

stressed tissue cells, the difference between their behavior, and the in-between interplay among them, one84

can gain new insights into the complex mechanisms shaping the plant stress response.85

Since 2009, more and more single cell data sets are becoming available publicly. As with other new86

technologies, the focus is mainly on human and animal tissue sequencing. Lack of data availability is espe-87

cially true for plant studies on account of processing tissues with cell walls has been a bothersome obstacle88

for single cell technologies, as they mostly result in low capture rates. But recent leaps in single cell se-89

quencing technologies, e.g. the 10X platform, increased the resolution of single cell data, eventuating in a90

few plant single cell experiments [9, 10, 11, 12, 13]. Mostly, scRNA-seq studies follow the same analysis91

pipeline [14, 15]. In a nutshell, the highest variable genes are selected and gone through principal com-92

ponent analysis (PCA) and t-distributed stochastic neighborhood embedding (tSNE) or uniform manifold93

approximation and projection (UMAP) to demonstrate the underlying structure. Subsequently, Clustering94

or regression algorithms are used to identify biologically relevant groups (e.g. groups of cells with a similar95

response), or trends (e.g. pseudotemporal axis of cell development), from the underlying data structure [16].96

Although such technologies as 10X made plant single cell sequencing possible, they are far from perfect. For97

instance, compared to bulk sequencing technologies, technical noise has a higher interference on single cell98

reads, which calls for developing sophisticated bioinformatic analysis tools to handle those interferences.99

This paper has been organized in the following way: It begins with a brief explanation of the Plant Phys-100

ioSpace algorithm, which includes a review of the already published method, plus the modifications adapting101

the method to the field of plant stress research. The paper will then go on to the benchmarking section,102

in which the method’s performance is assessed in translating stress response among different experiments,103

platforms, and species. Benchmarking is followed by two application showcases, in which we demonstrate104

two Plant PhysioSpace use-cases: investigating time-series data from biotic-stressed wheat, and analyzing a105

heat-stressed single cell data set. Finally, the discussion gives a brief summary and critique of the findings.106

2 Method107

2.1 Data Preparation108

While setting up a PhysioSpace matrix, our method requires extensive training data for achieving adequate109

robustness. This training data can be retrieved from retrospective data sets. To that end, we curated more110
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than 4000 plant stress response gene expression samples from GEO1 and SRA2. More specifically, 2480 A.111

thaliana (Arabidopsis thaliana) array samples, 967 A. thaliana RNA-seq samples, 146 Oryza sativa array112

samples, 172 Glycine max array samples, and 104 Triticum aestivum array samples were used for space113

generation. Each sample is annotated with a label from a stress set. In this study, samples are divided into114

Aluminum, Magnesium, Biotic, Cold, Drought, FarRed, FeDeficiency, Genotoxic, Heat, Herbicide, Hormone,115

Hypoxia, Light, LowPH, Metabolic, Mutant, Nitrogen, Osmotic, Radiation, Salt, Submergence, UV and116

Wounding stress groups. For samples which underwent more than one stress, new labels were generated by117

concatenating existing labels from the stress set. For example, ’Biotic.Drought’ designates a sample which118

sustained both Biotic and Drought stresses.119

Samples corresponding to each species are normalized in bulk to remove the batch effect. We used robust120

multi-array average or RMA [17] for normalizing microarray RAW data files and a pipeline consisting of121

Fastq-dump, Trimmomatic [18], Star aligner [19] and featureCounts [20] to derive counts from SRA records.122

2.2 PhysioSpace Method123

PhysioSpace is a supervised dimension reduction method, which aims to extract relevant physiological124

information from big data sets and store it in a mathematical space [8]. The method can be divided into125

two main steps: space generation and physio-mapping (Fig.1).126

2.2.1 Space Generation127

After preparing the data, we derive the physiologically relevant information from normalized data and128

store this information in a mathematical space. This step is comparable to training in machine learning129

terminology. Space generation is done in two stages: space extraction and space trimming. The former130

stage is identical to the method described previously in [8]. However, the latter, space trimming, is a novel131

addition for adapting the method for studying plant stress response.132

Space Extraction In the PhysioSpace method, all samples are analyzed contrastively, i.e. using differ-133

ential expression analysis. ”Space” is a matrix which is built upon reference data. In this paper, reference134

data contains all Arabidopsis array samples that are measured by the Affymetrix Arabidopsis ATH1 Genome135

Array3. For each stress group in each data set, gene-wise fold changes are calculated between stressed plants136

and their corresponding controls. The fold changes fill one column of the space matrix. This generated ma-137

trix, which we call reference space (Sr), contains all stress-relevant information represented in the reference138

data. In addition to Sr, we calculated the mean reference space (Sr). For constructing Sr, for each stress139

group, the gene-wise mean value of fold changes in Sr is calculated and stored in a column in Sr. More140

detailed information, as well as a step-by-step guide for creating Sr and Sr, are provided in supplementary141

file 1.142

Space Trimming The stress grouping in this study is done based on the expert annotation provided143

alongside public data sets. Therefore, this grouping doesn’t necessarily reflect the different classes of biolog-144

ical mechanisms that shape the plant response spectrum. There are groups of biologically-related stresses,145

which in turn make some stress responses very similar in their full genome signature. Logically, stresses146

to which plants respond using the same common mechanisms and pathways, have similar gene expression147

fingerprints. On the other hand, stresses have significantly different gene expression patterns when few to148

no common genes are involved in their corresponding stress responses.149

From the mathematical point of view, the distance between distinct stress responses manifests itself in150

the collinearity of axes of the extracted space. Collinearity in a mathematical space is a source of redundancy,151

and in our application, can result in lower accuracy and robustness.152

We came up with a new algorithm named space trimming: an unsupervised approach which in combina-153

tion with space extraction, makes up a hybrid method that can detect new groups of stress responses. We154

call these new-found groups meta-stress groups.155

Space trimming uses a consecutive combination of hierarchical clustering and leave-one-out cross-validation156

(LOOCV) to remove the aforementioned redundancy from a space. Space trimming consists of three steps:157

1. Clustering and cross-validation analyses are done on the space under study, and a dendrogram based158

on the calculated similarities is constructed.159

2. Groups of stresses that are close and have low accuracy are combined to make meta-stress groups.160

Groups that merge under the 50% of the maximum height in the dendrogram (i.e. groups with the161

distance of 50% of the maximum distance or lower) are considered close, and groups of stresses that162

mostly have an accuracy of less than 0.7 are considered low in accuracy.163

3. Any newly-generated meta group that has at least the same performance as its subgroups is kept. All164

other meta groups are reverted back to their former groups.165

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.ncbi.nlm.nih.gov/sra/
3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL198
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We applied the Space trimming algorithm to the reference space Sr, generated in the last section, from166

Arabidopsis microarray data (Fig.2).167

In LOOCV, by definition, one sample is left out for testing. In our LOOCV scheme though, we left out168

one GSE (GEO4 series) data set in each cycle. Due to batch effects, even with proper preprocessing, samples169

from the same GSE set tend to be similar. With leave-one-GSE-out cross-validation, we make sure that the170

stress response from different data sets could be successfully matched together.171

In each iteration, one GSE data set is chosen as the test set, it is mapped to the rest of the data sets,172

the training set, and it is counted as a successful match if the analyzed test data and its most similar data173

set from training set undergone the same stress group. Using the confusionMatrix function from the caret174

package [21] in R5, matching accuracy and robustness of the method is evaluated (Fig.2A). With an overall175

balanced accuracy of 0.43, a Cohen’s kappa of 0.385, and an accuracy p-value of 7.35× 10−42, PhysioSpace176

could successfully match the samples going through the same stress group.177

As expected, clustering analysis exposed the similarities among different stress responses. For instance,178

responses to Osmotic, Drought and Salt stresses seem to have common underlying activated gene groups. Or179

regarding Biotic, Hormone, and Biotic.Hormone (double stress), their close proximity points toward a very180

similar stress response. They also predominantly have lower accuracy comparable to other stress groups181

(Fig.2A). This led us to the assumption that these groups of stress responses share one or few underlying182

defensive mechanisms, such as an innate immune response.183

Merging the similar stress groups and constructing the meta-stress groups result in an improved perfor-184

mance of the method (Fig.2B). We constructed three new meta-stress groups: BioMone, which comprises185

of Biotic, Hormone, and Biotic.Hormone stress groups, DrouSaTic, that was built by combining Drought,186

Salt, and Osmotic stresses, and LighUV, which is made by merging Light and UV stresses (Fig.2B). Redoing187

the LOOCV on the new grouped space demonstrates the performance gain, with an accuracy of 0.57 and188

Cohen’s kappa of 0.49, which increased 0.14 and 0.105 respectively in comparison to the classical grouping189

of stresses. And accuracy p-value stays significant, as it is equal to 2.91× 10−39.190

The resulted space, which we call meta-reference space or Smr, and its successive mean space which we191

denote by Smr, are the spaces we use as reference throughout the result section.192

2.2.2 Physio-mapping193

After acquiring a space from known training data, we can map new data from any technology or species194

back into the space and find similarities between the new unknown information and the known training data.195

Physio-mapping is a nonlinear, model-free mapping, designed to take advantage of omics data structures and196

to compensate biases from heterogeneous assessment protocols. Omics are mostly framed in high-feature197

low-sample arrangements. In most cases, the majority of features in these types of data sets are intrinsically198

dominated by noise rather than physiologically informative facts about the samples under study. Results199

commonly acquired by differential expression analysis are great examples of this phenomenon; in most cases200

of differential expression analyses, only a small proportion of features in an omics data set can be found to201

be significantly different, i.e. correlated with circumstances that are being studied.202

Presuming this assumption, the mapping is done by taking the following steps:203

1. Either204

(a) A new space is extracted from the new data. This means that for each gene in each stress case,205

a fold change is calculated by modeling the gene behavior under the respective stress given the206

control. We call this new input space Si.207

(b) For each stress type γ, genes are sorted from the lowest to highest fold change.208

(c) N percent lowest and highest genes are selected as LL(γ) and LH(γ) for each γ. N is a user-209

defined parameter. In this paper, it is between 3 to 5 percent.210

or211

Differential expression analysis is done on the input data, and for each stress type γ, down- and212

up-regulated gene sets are calculated, which are called LL(γ) and LH(γ), respectively.213

2. For each axis on the reference space (i.e. each column in Smr), a statistical test is performed between214

LL(γ) and LH(γ) gene groups to form the PS matrix:215

PS =


ps11 ps12 . . . ps1t
ps21 ps22 . . . ps2t

...
...

. . .
...

psp1 psp2 . . . pspt

with pskγ = signed log2(MWWp-value(sLH (γ)k, sLL(γ)k)) (1)

In equation 1, pskm is the physio score between the mth sample and the kth column of reference space216

Smr. pskm physio score value shows how similar the mth sample of Si is to the kth column in Smr.217

MWWp-value(a, b) is a function that calculates the p-value of a Mann–Whitney–Wilcoxon statistical test218

4https://www.ncbi.nlm.nih.gov/geo/
5https://www.r-project.org/
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(also known as Mann–Whitney U test or Wilcoxon rank-sum test) between a and b. sLH (γ)k and sLL(γ)k219

are the sets of values in kth column, and i ∈ LH and i ∈ LL rows of Smr, respectively. And signed log2(x)220

is

{
−log2(x), if mean(sLH (γ)k) ≥ mean(sLL(γ)k)

log2(x), otherwise
221

PS is a physio score matrix, containing similarity values of all input samples to all axes (i.e. columns)222

in the reference space.223

For inter-species mapping, for instance in analyzing new data from Oryza sativa using a space gener-224

ated from A. thaliana, we resorted to orthologous genes. By using the ideal assumption of orthologs to225

have identical biological roles in all species, we mapped genes to their orthologs in cases with interspecies226

translation.227

3 Results228

3.1 Stress Space Verification by GO Analysis229

For substantiating the authenticity of stress information collected using our space generation process, we230

utilized the gene list analysis section of PANTHER [22, 23]. For each stress group in our generated mean231

meta-stress space Smr, we selected the genes with an absolute score value of more than one and a half6,232

and tested this gene list by PANTHER overrepresentation Test, against Gene Ontology (GO) biological233

processes (Fig.3 and supplement files 2 and 3). From 15 different stress groups, 11 were found to have the234

GO terms corresponding to the same stress enriched, with significant corrected p-values of less than 0.001.235

3.2 Inter-Technology Translation236

Next generation sequencing (NGS) has revolutionized the biological sciences. Its speed, cost and data237

quality outpaced the older DNA-microarray technology, which is why NGS became the standard method to238

study transcriptomes. Yet, microarrays were used for RNA quantification for decades. The vast microarray239

backlogs have the potential to grant an invaluable resource for new biological studies. Unfortunately, the240

measurement technology has an inevitable impact on the transcript measurement levels and the distribution241

of the resulting data.242

Data derived from different platforms are distinctly different. Hence, there are numerous methods to243

translate measurements from one technology to another [24, 25]. Moreover, with the third generation se-244

quencing right around the corner (PacBio and Nanopore, to name a few [26]), there is a high demand for245

computational methods capable of transferring useful information between different measurement technolo-246

gies.247

Since PhysioSpace utilizes the differential expression relations of the genes and not absolute values for248

space generation and mapping, it can translate between each and any technology, as long as there exists a249

proper method for detecting the differentially expressed genes in the mentioned technology. As proof for250

this claim, we mapped more than 900 RNA-seq samples into the microarray space Smr (Table 1). Our251

method can map the same stress type from microarray to RNA-seq data with 78 percent accuracy. We252

also calculated the probability of acquiring this accuracy by chance, by randomly permuting the sample253

labels and calculating the random accuracy. The performance of our method is significantly higher than any254

random accuracy we acquired7, with a p-value of less than 10−7.255

3.3 Inter-Species Translation256

Although not agriculturally relevant, Arabidopsis is arguably the most investigated species in plant sciences.257

Its availability, compact size, and fast growth made it an ideal model species. Nevertheless, there are258

significant differences between the Arabidopsis plant model and crop plants, necessitating procedures for259

converting well-studied physiological knowledge, e.g. regarding plant response to different types of stress,260

from Arabidopsis to crops. In this section, we show how Plant PhysioSpace can be utilized for this purpose.261

We chose three of the most commercially relevant crops to study: Oryza sativa (rice), Glycine max262

(soybean) and Triticum aestivum (wheat). For each crop, more than 100 microarray samples of stress263

response experiments were curated, normalized, preprocessed and mapped to the Arabidopsis space Smr. For264

Oryza sativa and Glycine max, Plant PhysioSpace achieved respective accuracies of 59 and 57 percent, both of265

which were significantly higher than any accuracy earned by chance. On the other hand, translation of stress266

response from Triticum aestivum DNA array data to A. thaliana, with an accuracy of 23 percent and a p-267

value of 0.015, was not successful (Table 1). In section 3.5 of this paper, we provided a thorough investigation268

into wheat to Arabidopsis translation, hypothesized and examined the reason behind the translation failure,269

and provided solutions for fixing it.270

6For BioMone and FeDeficiency stresses with cutoff of 1.5, less than 10 genes were selected, which is too small of
a set for list enrichment analysis. Hence in these two cases, cutoff is reduced to one.

7The highest acquired accuracy from 10,000,000 random runs for RNA2DNA translation was 52% (minimum =
12.08%, first quartile = 28.12%, median = 30.87%, third quartile = 33.56% and maximum = 52.35%).
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Plant PhysioSpace
Accuracy 0.78 0.59 0.57 0.23
p-value < 10−7 3× 10−7 0.002 0.015

GSEA
Accuracy 0.68 0.30 0.10 0.06
p-value < 10−7 3× 10−4 0.42 0.97

WTCS
Accuracy 0.69 0.57 0.12 0.13
p-value < 10−7 < 10−7 0.21 0.28

Pearson correlation
Accuracy 0.73 0.48 0.32 0.14
p-value < 10−7 < 10−7 0.12 0.17

Spearman correlation
Accuracy 0.62 0.49 0.29 0.27
p-value < 10−7 < 10−7 0.21 4.79× 10−5

Euclidean distance
Accuracy 0.30 0.27 0.21 0.39
p-value 0.83 0.03 0.62 < 10−7

Table 1: Stress translation between platforms and Species. In each column, the best performer is marked in
red.

3.4 Benchmarking Plant PhysioSpace against Other Methods271

We used the results from inter-technology and -species stress response translation to benchmark our method.272

Plant PhysioSpace is compared to the most common approaches used in bioinformatics for measuring rela-273

tions between two or more gene expression samples: Gene Set Enrichment Analysis (GSEA) [27], Weighted274

Connectivity Score (WTCS), which is an advanced version of GSEA used in connectivity map [28], Pearson275

and Spearman correlations, and Euclidean distance. For each method, fold change values of samples, from276

different technologies and species, are calculated and used for finding the similarities between samples. Based277

on our results in inter-species and -platform mapping, Plant PhysioSpace could outperform other methods278

in all scenarios, except in mapping from wheat to Arabidopsis (Table 1).279

3.5 In Depth Investigation of Wheat Stress Response280

The poor performance of our method in translating stress response from Triticum aestivum to A. thaliana281

may have potentially derived from the microarray used to measure the wheat gene expressions. All microar-282

ray samples of Triticum aestivum in this study are generated by using Affymetrix Wheat Genome Array8.283

Not only the aged technology could potentially deter the accuracy of transcription measurements, but also284

as a polyploid, the complex genetics of wheat would make the task of measuring its RNA levels troublesome.285

Fortunately, advances in NGS gave rise to wheat stress response data sets with higher precision. In this286

section, we repeated the wheat-to-Arabidopsis translation from inter-species analysis, except with wheat287

RNA-seq instead of microarray data.288

We turned to the Wheat Expression Browser [29, 30] as the source of Triticum aestivum RNA-seq data.289

From this source, we queried all data sets which study stress response, contain more than 30 samples, and290

include controls. We mapped these data sets into mean meta-reference space Smr, and plotted Physio scores291

of three stress groups with the highest values (Fig.4).292

In the experiment set ERP013829, wheat response after inoculation with fungal pathogen Fusarium293

graminearum is measured through time [31]. For this experiment, Plant PhysioSpace correctly predicts that294

wheat is experiencing BioMone (Biotic and Hormone) stress. In addition, the diachronic rise in the response295

indicates how Physio scores are quantitatively comparable (Fig.4A).296

In the data set ERP013983, responses of two different mutants of wheat are studied to wheat yellow297

rust pathogen Puccinia striiformis f.sp. tritici (PST). The authors focused on the pathogen suppression of298

basal defense in plants [32]. From their results, they deduced the pathogen overcame the defense by rapidly299

suppressing the genes involved in chitin perception on day 2 after inoculation. In the susceptible interaction,300

this provides the possibility of invasion and colonization, while in resistant plants, this suppression is quickly301

reverted. Plant PhysioSpace results expose this mechanism correctly: Both plant types are inducing a302

BioMone response on day 1, followed by a suppression of the plant defense response on day 2. Eventually,303

8https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3802
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the quick resurgence of intense BioMone response in resistant wheat helps it in withstanding PST, while the304

reaction of the susceptible trait might be too slow to deflect the pathogen (Fig.4B).305

Plants in ERP009837 went through the infection cycle of the hemibiotrophic fungus Zymoseptoria tritici.306

Similar to ERP013829, plants respond to the pathogen with a dominant BioMone response (Fig.4C). Al-307

though unlike ERP013829, in which the experiment spanned a few hours, in ERP009837 plants were studied308

for a longer period. Physio scores suggest that wheat responds to the presence of the pathogen by increasing309

its BioMone response. This response starts to degrade from day 14, which is in alignment with the original310

publication of the data set [33], in which the authors state that on day 21, plant tissue is completely defeated.311

In SRP048912, the responses of two different traits of resistant and susceptible wheat to Fusarium crown312

rot are studied [34]. Only two different time points are included in this experiment: 3 and 5 days after313

inoculation (dai). Plant PhysioSpace results correctly suggest the most dominant stress response present in314

plants is BioMone, with the resistant wheat having a stronger response than the susceptible (Fig.4D).315

Among the Wheat data sets we analyzed in this section, ERP003465 is arguably the most complex, and316

consequently most interesting as a testing scenario for our method. ERP003465 examined the behavior of317

5 different genotypes under the disease pressure of Fusarium graminearum [35]. Two well-validated and318

highly reproducible QTLs (quantitative trait loci), Fhb1 and Qfhs.ifa-5A, are studied from samples taken319

30 and 50 hours after inoculation (hai). Five different genotypes were investigated: CM-82036, a progeny320

of the resistant Sumai-3, and four near-isogenic lines (NILs) bearing either, both, or none of the resistant321

alleles Fhb1 and Qfhs. Among the four, NIL1 is a mutant with both QTLs, expected to have the highest322

resistance after CM-82036, NIL2 and NIL3 are mutants harboring Fhb1 and Qfhs QTLs respectively, with323

both predicted to behave moderately resistant, and NIL4 missing both QTLs, and is likely to be susceptible.324

Data analysis in the original paper was mainly based on differential expression analysis. As a first325

step, the total number of differentially expressed genes for each genotype at each time point was taken as326

a surrogate for stress response intensity to Fusarium graminearum. In the next steps, the weighted gene327

co-expression network analysis (WGCNA) was used to detect clusters of genes with similar patterns, and328

Gene Ontology analysis was utilized to infer the role of each cluster in the stress response.329

Being able to quantify the intensity of each stress type at each time point, Plant PhysioSpace can330

provide much more insight into the characteristics and dynamics of the stress responses that are at play in331

the ERP003465 experiment (Fig.4E). As this data set encompasses a high number of samples distributed332

between only two time points, we plotted the results as a bar graph. And because the results cover a wide333

range of values for this experiment, we used log-scaled PhysioScores in the graph, and replaced values smaller334

than one by one (i.e. zero in log-scale).335

Among the concluding remarks in the original paper, some are in concordance with the results from our336

method. For example, lines lacking Qfhs.ifa-5A are regarded as “slow responders” by the original authors,337

since they lack resistance against initial infection inferred by Qfhs.ifa-5A. This lack of early response can be338

seen in our results (Fig.4E): lines lacking Qfhs.ifa-5A, i.e. NIL2 and NIL4, have no BioMone (Biotic and339

Hormone) stress response at the early time point, while NIL1 and NIL3 show a considerable BioMone stress340

response at the same time point. Another remark from the original paper suggested that a lack of timely341

defensive reaction could result in a higher infection in a later time, and consequently stronger response,342

and vice versa: a quick response may reduce the intensity and infection at a later time. This can be seen343

in the contrasting response dynamics of NIL1 versus the other lines (Fig.4E). NIL1 possesses both QTLs:344

Qfhs.ifa-5A ensures an early and fast stress response, evident on 30 hai time point. And a strong follow up,345

courtesy of Fhb1, results in a non-existent BioMone response at 50 hai. NIL3 contains Qfhs.ifa-5A, so it346

benefits from a quick response at 30 hai, but due to the absence of Fhb1, it cannot be rid of infection at 50347

hai, evident by the high BioMone response at that time point. As mentioned, lines NIL2 and NIL4, which348

lack Qfhs.ifa-5A, do not have an early response and have to play catch up with other lines on the later time349

point.350

Although many conclusions that could be derived from our method are similar to the ones from the351

original publication, there are some discrepancies between the two groups as well. For instance, in most352

samples, Wounding stress response is not only present, but it is even stronger than BioMone response in353

some cases. This is in contrast with the original paper, in which it is mentioned that inoculation was done354

cautiously without wounding the tissue. Interpretation of CM-82036 defensive behavior is another point of355

difference between our method and the results from the original paper. Kugler et al. construed the high356

number of differentially expressed genes (DEG) at 30 hai as a sign of strong early response for CM-82036,357

even stronger than NIL1 and NIL3. They followed up by studying specific gene families that are relevant to358

defense mechanisms, such as UGTs and WRKYs, and showed more DEGs from these families can be found359

at 30 hai in CM-82036 versus other lines. This finding is different from what we can interpret using our360

method: Although CM-82036 exhibits BioMone response at 30 hai, the magnitude is somewhere between361

fast responder lines, that is NIL1 and NIL3, and slow responders, i.e. NIL2 and NIL4.362

We speculate the main reason for the aforementioned inconsistencies is the particular way the prepro-363

cessing was done in the original paper. In their preprocessing, Kugler et al. mapped the reads to a list of364

barley high confidence genes and only used the reads with a possible match. This step drastically reduces365

the number of analyzed transcripts, and also discards wheat-specific genes with no barley homologs. Our366

method is designed for high-dimensional data, preferably data from the whole genome, therefore the specific367

preprocessing of this data set might have reduced the performance of Plant PhysioSpace. We should also368
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mention that stress responses are not mutually exclusive; A plant can display multiple different responses369

at the same time, some of which may even share part of their biological pathways. Fusarium graminearum370

could have damage plant tissue at some point, which explains the existence of wounding response alongside371

BioMone.372

Albeit the mediocre results of the last experiment, in this section we showed how, in 4 out of 5 data sets,373

Plant PhysioSpace could:374

1. correctly identify the type of stress plants are going through.375

2. accurately relate the response from RNA-seq test data to DNA-array trained models.376

3. rightly translate T. aestivum stress response to A. thaliana.377

3.6 Plant PhysioSpace Application in Single Cell Analysis378

Single cell technologies facilitate investigating transcription profiles in single cell resolution, in order to379

perceive the genetic basis of each cell type and its function. Although relatively new, more and more plant380

single cell data sets are becoming available to the community [9, 10, 11, 12, 13]. For now, most sequence381

data sets are focused on Arabidopsis roots. They try to gain an in-depth understanding of transcription382

patterns of different cells in different developmental stages of wild-type non-stressed plant roots. To our383

knowledge, the only publication in which stressed single cells were sequenced is the paper by Jean-Baptiste384

et al. [12]. In this work, 38◦C heat stress was applied to 8-day-old seedlings for 45 minutes. Subsequently,385

roots of the seedlings were harvested, along with the roots of age- and time-matched control seedlings. The386

authors could capture and sequence 1,009 cells from the stressed group and 1076 from the control group.387

For processing the sequencing results, they followed the usual single cell analysis pipeline: PCA, UMAP388

and clustering, followed by differential gene expression analysis on clusters and enrichment tests on genes389

related to heat-shock. The results show the ”promise and challenges inherent in comparing single cell data390

across different conditions and treatments”. In this section, we demonstrate how a dedicated method, such391

as Plant PhysioSpace, can bring forth more benefits than using the methodological norms.392

To analyze the single cell data set, we used the gene-wise mean value of all control cells as the reference,393

calculated fold changes for each single cell, and fed those fold change values into the Plant PhysioSpace394

pipeline (Fig.5). Regardless of the cell type, heat-stressed single cells had significantly higher heat stress395

scores, compared to control single cells (Fig.5A). For studying the heat-induced cell type disparity, we overlaid396

heat stress scores on UMAP and tSNE plots (Fig.5B&5C). In both tSNE and UMAP plots, coordinate values397

calculated in the original paper of Jean-Baptiste et al. were used. As a result, cells are bundled in cell type398

clusters in the UMAP plot, while in the tSNE plot, cells are clearly separated into two big clusters of control399

and stressed. Although, inside these two big clusters, sub-clusters of different cell types are evident (Fig.S1).400

On the UMAP plot on the other hand, big clusters represent cell types (Fig.S2), and inside each cell type401

cluster, groups of control and stressed cells may or may not be distinct, depending on the cell type. For402

example, in Hair and Non-hair clusters, control and heated cells are separated, while the separation is less403

pronounced in Stele cells (Fig.S2).404

To look into the distinct behavior of different cells under stress, we also plotted cell heat scores grouped405

by the corresponding cell types (Fig.5D&S3). The results show how Hair and Non-hair cells have higher406

heat scores, which demonstrates how the outer layers of roots are sharper in their response to heat. This407

finding is in concordance with one of the conclusions in the original paper, in which based on the behavior408

of the heat-relevant genes, they concluded the three outermost cell layers of the root went through higher409

levels of changes caused by the heat stress. The authors hypothesized this may be because of more direct410

exposure of the outer layers to the heat shock, resulting in a quicker and stronger response.411

Although resulting in generally the same conclusions, in this analysis Plant PhysioSpace provided an412

advantageous experience for the end-user, through providing:413

1. convenience: unlike the original paper, there was no need for search and curation of heat stress gene414

clusters, as they are already available in Plant PhysioSpace, as well as clusters for other common415

stresses.416

2. precision: not only the stress type but also the magnitude of the stress response could be quantified by417

our method, something which is lacking in traditional gene list enrichment approaches. For example,418

Plant PhysioSpace results suggest a stronger response in Hair response, compared to Non-hair response419

(Fig.5D). This inference could not be concluded by the results of traditional methods.420

3. optimization: in one run, our tool calculated responses of 20 different stresses for 2085 single cells, in421

less than 3 minutes on a 2-core laptop CPU. This swift performance is accomplished by precalculating422

the stress space, in combination with an optimized mapping algorithm, all of which is readily available423

for the community to use.424

3.7 Availability425

To provide the community with an easy-to-use implementation of our method, we built Plant PhysioSpace426

into two different R packages: a method package (https://git.rwth-aachen.de/jrc-combine/PhysioSpaceMethods)427
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containing functions for generating new spaces and Physio-mapping, and a data package (https://git.rwth-428

aachen.de/jrc-combine/PlantPhysioSpace) comprising plant stress spaces such as Smr and Sr that were used429

in this paper.430

In addition, we made a shiny9 web application of Plant PhysioSpace (Fig.6). We hosted the web app on431

shinyapp.io (http://physiospace.shinyapps.io/plant/), to be freely available to use (under the terms of GPL-3432

license). We also built a docker image of the ready-to-use tool (https://github.com/usadellab/physiospace shiny).433

4 Discussion434

Gaining proper insight into stress response mechanisms in plants is not only a must for the future of435

agricultural research, but will prompt advances in the plant research field in general. In this study, we436

developed an advanced computational method, designed to aid in understanding stress response in plants.437

The lightweight algorithm allows it to run on either personal computers, or as a web application, making it438

an ideal tool for experimental quality control, data set annotation, to draw conclusions considering thousands439

of genes, et cetera.440

We built the new method upon a previously published method in humans, called PhysioSpace. We441

achieved this conformity by curating a multitude of Arabidopsis stress response samples to have a rich442

training data set, adapting the space generation algorithm, i.e. training, to acclimate to the specific char-443

acteristics of stress response data in plants, and thoroughly testing against other species and types of data.444

The results of this study demonstrated that Plant PhysioSpace can be a convenient and practical tool for445

analyzing new stress response data sets, to apprehend, contrast to state of the art, or to simply quality446

control.447

Notably, our tool could perform adequately even when it was mapping information between different448

platforms and species. Although, it is crucial to bear in mind these cross translations necessitate for some449

conditions to be true. In cross-platform translation, it was assumed that with the same experimental setup450

and samples, there are computational pipelines available which roughly compute the same differentially451

expressed gene lists regardless of the platform used. And in cross-species mapping, we assumed orthologous452

genes have the same biological function across all species; evidently impossible to be consistently true for all453

genes, but a sizable portion of genes have to pass this criterion for the inter-species translation to work.454

We demonstrated how Plant Physiospace can provide insights when used for analyzing single cell data455

sets. Recent advances in single cell technology call for suitable bioinformatic analysis tools, for example for456

reducing the interfering technical noise [16]. The clear, factual results derived from single cell data analysis457

in this paper bring a spectrum of applications to mind for the future, especially in the light of approaching458

plant single cell atlas projects [36, 37].459

To our knowledge, Plant PhysioSpace is the only computational tool available capable of quantitizing460

stress response in plant cells. Therefore, it can be used to assess each cell under stress, to grasp an under-461

standing of the complex responses and interplay of cells in plants under stress, and to achieve a comprehensive462

characterization of plant response to stress as a whole.463

5 Data Availability Statement464

All the scripts that generate the results of this paper can be found in https://git.rwth-aachen.de/jrc-465

combine/PlantPhysioSpacePaper.466

References467

[1] Kenneth S Chester. The problem of acquired physiological immunity in plants. The Quarterly Review468

of Biology, 8(3):275–324, 1933.469
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Figure 2: Space Trimming. Stress groups are clustered and for each group, leave-one-out cross-validation accuracy
is calculated, written in parenthesis, as shown in panel A. Close groups with low accuracy, written in red, are combined
to form new stress groups, called meta-groups, as shown in panel B. Groups are considered close if they merge in
the dendrogram in a height lower than 0.5 (50% of maximum height). This cut-off height is shown in the figure with
a dashed red line. In this figure, Salt, Drought and Osmotic stress groups, marked with brown color, merge into
DrouSaTic meta-group, Hormone, Biotic and Biotic.Hormone groups form BioMone meta-group, written in green,
and Light and UV groups combine into LiUV, shown in yellow.
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Figure 3: GO Analysis of Mean Stress Space. Results of GO analysis on three stress groups are demonstrated
using bubble plots. In the plots, each enriched GO term is represented by a circle, with adjusted p-values as y-axis and
enrichment ratio as x-axis. The size of the circle shows the size of the gene list of the corresponding GO term. And
enrichment ratio here means the ratio between the actual number of differentially expressed genes and the expected,
in each GO group. For each plot, 5 most significant GO terms are labeled on the plot and listed in a table beside each
plot. Complete set of bubble plot and set of significant GO terms for all 15 stress groups are provided in supplement
files 2 and 3. Plots were generated using the GOplot package in R [38].
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Figure 4: Time Series Analysis of Biotic Stress Response of Wheat RNA-seq data. 5 different biotic-
stressed data sets from Wheat Expression Browser are mapped to the Arabidopsis space Smr, and the three groups
with highest stress values are plotted for each data set. In 4 out of 5 cases, BioMone (Biotic and Hormone) stress group
has the highest similarity value, with resistant mutants having higher responses than the susceptible ones (panels A,
B, C, and D).
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Figure 5: Single Cell Analysis Results of Plant PhysioSpace. Stress scores were calculated for each cell. For
demonstrating the outcome, we plotted the heat score of the two big groups of control and stressed, shown in panel
A. This box plot proves how Plant PhysioSpace could correctly detect and quantify stress response in single cell data.
On panels B and C, we overlaid the heat scores on UMAP and tSNE plots, respectively. On panel D, boxplot of heat
scores, on y-axis, were plotted against different cell types, on x-axis. Cell types on the x-axis are ordered based on
the morphological anatomy, starting from inner cell types to outermost cell layers (excluding Ambiguous cells, which
come at the end).

A. B.

Figure 6: Plant PhysioSpace Web-application
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