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Abstract 
The spatial organization of cell types in tissues fundamentally shapes cellular interactions and 
function, but the high-throughput spatial mapping of complex tissues remains a challenge. We 
present сell2location, a principled and versatile Bayesian model that integrates single-cell and 
spatial transcriptomics to map cell types in situ in a comprehensive manner. We show that 
сell2location outperforms existing tools in accuracy and comprehensiveness and we 
demonstrate its utility by mapping two complex tissues. In the mouse brain, we use a new 
paired single nucleus and spatial RNA-sequencing dataset to map dozens of cell types and 
identify tissue regions in an automated manner. We discover novel regional astrocyte 
subtypes including fine subpopulations in the thalamus and hypothalamus. In the human 
lymph node, we resolve spatially interlaced immune cell states and identify co-located groups 
of cells underlying tissue organisation. We spatially map a rare pre-germinal centre B-cell 
population and predict putative cellular interactions relevant to the interferon response. 
Collectively our results demonstrate how сell2location can serve as a versatile first-line 
analysis tool to map tissue architectures in a high-throughput manner. 
 

Introduction 

The cellular architecture of tissues, where distinct cell types are organized in space, 
underlies cell-cell communication, organ function and pathology. Emerging spatial genomics 
technologies hold considerable promise for characterising tissue architecture, providing key 
opportunities to map resident cell types and cell signalling in situ, thereby helping guide in vitro 
tissue engineering efforts. Despite existing proof of concept applications1–5, it remains a 
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challenge to define versatile and broadly applicable spatial genomics technologies and 
workflows. One reason is the enormous variation in tissue architecture across organs, ranging 
from the brain with hundreds of cell types found across discrete anatomical regions to immune 
organs with continuous cellular gradients and dynamically modified microenvironments. To 
create and map comprehensive tissue atlases, experimental and computational methods need 
to be aligned to cope with this variation and in particular, enable mapping numerous resident 
cell types across diverse and complex tissues in situ.  

Strategies that generate coupled single-cell and spatially resolved transcriptomics offer 
a scalable approach to address these challenges. The key principle is to first identify resident 
cell types based on single-cell RNA-sequencing (scRNA-seq) from dissociated tissues, to then 
map the identified cell types to their tissue positions in situ based on spatial transcriptomic 
profiles6. Amongst spatial transcriptomic technologies, cyclic RNA imaging achieves single-
cell resolution but is often limited to multiplexing a few hundred genes7–9. While longer cyclic 
imaging protocols can resolve more transcripts, imaging time limits the practical number of 
profiled genes, and hence the ability for unbiased cell type characterisation10. Alternatively, 
spatially resolved RNA-seq methods like Visium Spatial Transcriptomics11, HDST12 and Slide-
sequencing13, where mRNAs are positionally captured from thin tissue sections using 
microarrays or bead-arrays, enable high-throughput data acquisition and rely on simple 
histology and molecular biology protocols.  

In the above workflow, the step of mapping cell types using spatial transcriptomics 
poses several analytical challenges. First, spatial RNA-seq measurements (i.e. locations) 
combine multiple cell types as array-based mRNA capture currently do not match cellular 
boundaries in tissues. Thus, each spatial position corresponds to either several cell types 
(Visium, Tomo-Seq)11,14 or fractions of multiple cell types (Slide-Seq, HDST)13. Second, spatial 
RNA-seq measurements are confounded by different sources of variation as 1) cell numbers 
vary across tissue positions, 2) different cells and cell types differ in total mRNA content15, and 
3) thin tissue sectioning captures variable fractions of each cell’s volume16. Computational 
approaches need to appropriately model and account for all of these factors. 

Here, we present cell2location, a principled and versatile Bayesian model for 
comprehensive mapping of cell types in spatial transcriptomic data. Cell2location uses 
reference gene expression signatures of cell types derived from scRNA-seq to decompose 
multi-cell spatial transcriptomic data into cell type abundance maps. The model accurately 
maps complex tissues, including rare cell types and fine subtypes, and it identifies tissue 
regions and co-located cell types downstream in an automated manner. Besides, cell2location 
applies to different spatial RNA-seq technologies (Visium, Slide-Seq) and outperforms 
recently proposed methods in both accuracy and throughput. We demonstrate the power of 
cell2location to comprehensively map two model tissue types. In the mouse brain, we 
demonstrate a paired single nucleus and spatial transcriptomics workflow to discover novel 
regional astrocyte subtypes across the hypothalamus and thalamus. In the human lymph 
node, we resolve spatially interlaced cellular compartments, mapping rare B cell states and 
predicting putative cellular interactions relevant to the interferon response. These results 
present cell2location as a versatile tool for comprehensive mapping of tissue architecture.  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.15.378125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.15.378125
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Results 

Cell2location: a Bayesian model for spatial mapping of cell types 
Cell2location maps the spatial distribution of cell types by integrating single-cell RNA-

seq (scRNA-seq) and multi-cell spatial transcriptomic data from a given tissue (Fig 1A). The 
first step of our model is to estimate reference cell type signatures from scRNA-seq profiles, 
for example as obtained using conventional clustering to identify cell types and subpopulations 
followed by estimation of average cluster gene expression profiles (Suppl. Methods, Fig S1). 
Cell2location implements this estimation step based on Negative Binomial regression, which 
allows to robustly combine data across technologies and batches (Suppl. Methods). In the 
second step, cell2location decomposes mRNA counts in spatial transcriptomic data using 
these reference signatures, thereby estimating the relative and absolute abundance of each 
cell type at each spatial location (Fig 1A, Fig S1).  

Cell2location is implemented as an interpretable hierarchical Bayesian model, thereby 
(1) providing principled means to account for model uncertainty, (2) accounting for linear 
dependencies in cell type abundances, (3) modelling differences in measurement sensitivity 
across technologies, and (4) accounting for unexplained/residual variation by employing a 
flexible count-based error model. Finally, (5) cell2location is computationally efficient, owing 
to variational approximate inference and GPU acceleration. For full details and a comparison 
to existing approaches see Suppl. Methods. The cell2location software comes with a suite of 
downstream analysis tools, including the identification of groups of cell types with similar 
spatial locations.  

To validate cell2location, we initially used simulated data that reflects diverse cell 
abundance and spatial patterns (Fig 1B). Briefly, we simulated a spatial transcriptomics 
dataset with 2,000 locations, based on reference cell-type annotations obtained from a mouse 
brain snRNA-seq reference dataset including 46 cell types (Methods). Multi-cell gene 
expression profiles at each location were derived by combining cells drawn from different 
reference cell types, using one of four cell abundance patterns with variable density and 
sparsity distribution that mimics the patterns observed in real data (Fig 1B; Methods). 
Assessing the concordance between estimated and simulated (true) cell proportions, we 
observed that cell2location mapped cell types with high accuracy across all considered cell 
abundance patterns (Fig 1B), including low abundant and sparsely located cell types.  

Next, we compared cell2location to recently proposed alternative methods for the 
inference of relative cell-type abundance from spatial transcriptomics (Stereoscope1, Seurat2, 
RCTD4, NNLS (Autogenes)17,18, SPOTlight3, Fig S2). We found that cell2location was 
substantially more accurate in detecting the presence/absence of cell types across locations 
(Fig 1C, Fig S2), but the model also yielded more accurate estimates of relative cell type 
abundances (Fig 1D). Additionally, we note that cell2location is computationally more efficient 
than related model-based approaches for this task (Stereoscope: 14.8 hours on GPU versus 
cell2location: 8.66 minutes on GPU; Suppl. Methods). SPOTlight did not yield accurate results 
on the simulated data (Fig S2) and therefore we did not consider the model in our comparison. 
Finally, we note that unlike existing methods, cell2location not only provides estimates of 
relative cell type fractions but additionally estimates absolute cell type abundance, which can 
be interpreted as the number of cells that express a reference cell type signature at a given 
location, which again were highly concordant with the simulated ground truth (Fig 1E, Fig S3). 

Collectively, these results support that cell2location can accurately estimate cell 
abundance across diverse cell types.  
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Figure 1. Cell2location model for spatial mapping of comprehensive cell type references. 

A. Overview of the spatial mapping approach and the workflow which are enabled by cell2location. 
From left to right: Single-cell RNA-seq and spatial transcriptomics profiles are generated from 
the same tissue (1). Cell2location takes reference cell type signatures derived from scRNA-seq 
and spatial transcriptomics data as input (2, 3). The model then decomposes spatially resolved 
multi-cell RNA counts matrices into the reference signatures, thereby establishing spatial maps 
of cell types (4). 

B. Model validation using simulated data. A benchmark dataset is constructed by combining cells 
drawn from 46 reference cell types (obtained from mouse brain scRNA-seq, Fig 2B) according 
to a synthetically generated cell type abundance map. Top: 4 alternative cell type abundance 
patterns considered for data simulation. Bottom: 2D histogram plots, displaying the 
concordance between simulated (X-axis) and estimated (Y-axis) cell-type proportions across 
2,000 locations and cell types (Methods). Colour denotes 2D histogram count (50 bins along 
both X- and Y-axis). R2 denotes Pearson correlation and JSD denotes Jensen–Shannon 
divergence.  

C. Assessment of cell2location and alternative methods for detecting locations with non-zero cell 
abundance across all four cell type abundance patterns (2,000 locations, 46 cell types). Shown 
are precision-recall curves for considered methods with the corresponding areas under the 
curve stated in the legend. 
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D. Assessment of cell2location and alternative methods for estimation of cell-type proportions 
across all four cell type abundance patterns (2,000 locations, 46 cell types). Shown are 2D 
histogram count plots (colour, 50 bins along both X- and Y-axis) between simulated (X-axis) 
and estimated (Y-axis) cell-type proportions for three alternative methods (left to right).   

E. Assessment of absolute cell abundance estimates obtained by cell2location. Shown is a 2D 
histogram count plot (colour, 50 bins along both X- and Y-axis) between simulated (X-axis) and 
estimated (Y-axis) cell abundance. 

Cell2location accurately maps mouse brain cell types 
To illustrate how cell2location enables mapping a highly complex tissue, we examined 

the adult mouse brain, a tissue that contains highly diverse neuronal and glial cell types across 
stereotyped anatomical regions. We generated matched single nucleus (sn) and Visium 
spatial RNA-seq (10X Genomics) profiles of adjacent mouse brain sections that contain 
multiple regions from the telencephalon and diencephalon (Fig 2A). To assess the biological 
and intra-organ technical variation in spatial mapping, we assayed two mouse brains and 
serial tissue sections from each brain (total of 3 and 2 matched sections from two animals, 
respectively, and an extra section for snRNA-seq), creating a rich multi-modal and replicated 
transcriptomic dataset. 

We pooled snRNA-seq data across replicate animals and tissue sections (40,532 
nuclei) and applied a conventional scRNA-seq analysis workflow followed by Louvain 
clustering to define reference cell-type signatures (Methods). This identified 59 cell clusters, 
which were well represented across replicate animals and sections (Fig S4). 43 clusters could 
be annotated as known putative cell types (Fig 2B, Fig S5, Methods), including excitatory or 
inhibitory neuron or glia subtypes, defined by markers from prior literature15,19,20. Additionally, 
we identified 6 previously known and 4 novel astrocyte subtypes (see next section). 
Importantly, our snRNA-seq dataset included cell types from all profiled brain areas (Fig S5), 
thus providing a regionally comprehensive and high-quality cell type reference for the analysis 
of the paired spatial data.  

We applied cell2location to map these reference cell-type signatures to spatial 
locations of the mouse brain Visium data across replicate animals and sections (Fig S6). The 
resulting cell-type mapping was highly consistent with anatomical locations expected from 
prior literature (Fig 2C-F, Supp. Files 1-6). First, cell2location mapped abundant neuroglial cell 
types to their expected major brain regions, such as excitatory neurons of the cortex and 
thalamus21, inhibitory neurons of the striatum and hypothalamus, and oligodendrocytes of the 
white matter (Fig 2D)20. Second, cell2location mapped rare cortical inhibitory neurons to 
sparse locations, also as expected (Fig 2E)22,23. Third, cell2location spatially resolved fine 
anatomical subtypes within brain regions, such as excitatory neuronal subtypes across cortical 
layers and hippocampal divisions (Fig 2F, Fig S6E)15,20. To globally assess cell-type mapping 
across the full cell type reference, we used the output of cell2location across all 59 reference 
cell types and defined tissue regions based on clustering of locations with similar cell type 
abundance (Methods). This identified regions that correspond to anatomical brain structures, 
with the reference cell types mapping to the expected tissue regions (Fig S7). Finally, the 
cell2location estimates across manually annotated cortical layers were highly concordant 
across adjacent tissue sections and replicate animals (Fig 2G, Fig S8). 

Next, to quantitatively assess the spatial cell-type mapping by cell2location, we used 
scRNA-seq (Smart-seq V4) datasets sampled from 5 manually dissected cortical layers and 
the hippocampus24 (Fig 2I). We generated corresponding reference signatures of 121 cell 
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types, derived from the somatosensory cortex (n=98), as well as cell types that are exclusively 
present in the hippocampus (n=23). When using cell2location to map these cell types to the 
somatosensory cortex in our Visium data, the model almost exclusively mapped the cell types 
from the corresponding brain region (Fig S9), indicating high mapping specificity. Additionally, 
we selected the 23 most prevalent somatosensory cell types and assessed the consistency 
between relative cell-type abundance estimates across the five annotated layers estimated by 
cell2location and derived from scRNA-seq study24, finding a high overall concordance (Fig 2J, 
Fig S9C). 

Finally, to demonstrate the versatility of cell2location across spatial transcriptomic 
technologies, we mapped our mouse brain snRNA-seq reference to a Slide-Seq dataset of 
the mouse brain that offers 10-micron spatial resolution25. Cell2location resolved cell types in 
Slide-Seq spatial data including fine anatomical subtypes across hippocampal divisions and 
cortical layers (Fig 2H, Fig S10A, Suppl. Files 7,8). Moreover, cell2location revealed that 50% 
of Slide-Seq “beads“ (i.e. 10-micron diameter spatial locations) contained more than 1 cell 
type (Fig S10B), consistent with the previous observations4.  

Collectively, our results demonstrate that cell2location maps diverse brain cell types 
with high accuracy and reproducibility; and that the method is broadly applicable to spatial 
transcriptomic technologies. 
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Figure 2. Comprehensive and accurate spatial mapping of cell types in the mouse brain  

A. Experimental workflow. Adjacent tissue sections from two mice were used to generate single 
nucleus and spatial data, across a total of five pairings of Visium and snRNA-seq respectively 
(and an extra section for snRNA-seq). 

B. UMAP representation (X- and Y-axis) of broad cell classes (left) and 59 cell subtypes (right), 
as identified by Louvain clustering of the integrated snRNA-seq dataset across sections from 
(a).  

C. Mouse brain regions present in the assayed. H&E image of the tissue section from a postnatal 
day 56 (P56) brain and the outlines of brain regions are shown. Scale bar: 1 mm. 

D. Estimated cell densities (colour intensity) of major cell types (colour) across regions. 
E. Estimated cell densities (colour intensity) of sparse inhibitory neurons (colour). 
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F. Estimated cell densities (colour intensity) of cortical excitatory neurons (colour). Small panels 
show the estimated cell density (colour) for two select subtypes on the region indicated with the 
white bounding box. 

G. Consistency of cell2location cell density estimates between replicate slides (X- and Y-axis), 
either considering replicate animals (left) or serial sections from the same animal (right). 
Considered are cell density estimates across 59 reference cell types across cortical layers; R2 
denotes Pearson correlation.  

H. Spatial mapping in the Slide-Seq V2 data. Left: Estimated cell densities (colour intensity) of 
hippocampal neuron types (Hpc subtypes) and a thalamic habenular neuron type (Inh_6). 
Right: Estimated cell densities (colour intensity) of cortical excitatory neurons. 

I. Quantitative validation workflow based on scRNA-seq from manually dissected layers. Cortical 
layer neurons were mapped to SSp cortex region. Cell2location cell mapping accuracy was 
assessed by comparing estimated cell-type proportions for each subtype in each layer to 
estimates based on the scRNA-seq reference of neurons from manually dissected layers (Yao 
et al, 2020). 

J. Heatmap of relative cell subtype proportion (within each layer; colour, log10 scale) in each 
cortical layer in Allen reference (top) and the map of those cell types in Visium using 
cell2location (bottom).  

Novel regional astrocyte subtypes   
Next, we assessed cell2location for mapping closely related cell types in the mouse 

brain. We focused on the heterogeneity of astrocytes, the largest class of glial cells that 
intimately regulate neuronal circuit development and function26. While astrocytes were long 
considered a homogeneous cell type, recent evidence suggests that astrocytes are regionally 
diversified across the brain26, including fine anatomical divisions such as cortical layers27–29. 
However, the extent of the regional heterogeneity of astrocytes is largely unknown, as existing 
studies have primarily compared select brain areas30,31 or described broad astrocyte subtypes 
across major brain divisions (e.g. telencephalon versus diencephalon)20,32.  

To identify regionally enriched astrocytes, we annotated and spatially mapped refined 
reference signatures of astrocyte subpopulations. Briefly, we considered 3,013 cells annotated 
as astrocytes from the initial analysis (Fig 2B), as identified based on the expression of 
canonical markers (e.g. Aldoc, Slc1a3). We then applied BBKNN33 to refine the integration of 
these cells across all 6 snRNA-seq datasets (Methods), followed by Leiden clustering, which 
identified 17 astrocyte subclusters (Fig S11). Next, we performed an initial mapping with 
cell2location and merged clusters that were not sufficiently distinct in their location and marker 
genes (Fig S12; Methods). This resulted in 10 molecularly and spatially distinct astrocyte 
subtypes (Fig 3A-D), which we considered for further analysis.  

We identified grey matter astrocyte subtypes that were spatially enriched in the 
thalamus (THAL), hypothalamus (HYPO), cortex (CTX), amygdala (AMY), hippocampus 
(HPC) and striatum (STR) as well as white matter (WM) astrocytes (Fig 3C, D). These 
subtypes expressed expected regional astrocyte markers20, such as Foxg1 in the 
telencephalon (CTX, AMY, HPC, STR) and Slc6a11 and Agt in the diencephalon (THAL, 
HYPO) (Fig 3B). Moreover, they stratified to finer regional subtypes based on the expression 
of new subtype-specific genes such as Angpt1 and combinatorially expressed markers such 
as Gria1 (Fig 3B, see below).  

 We focused on diencephalic astrocyte subtypes as only one type of grey matter 
astrocyte subtype has been described in this brain area to date20. Notably, our data revealed 
4 regionally distinct grey matter astrocyte subpopulations across the diencephalon (Fig 3E, 
Fig S13). HYPO astrocytes were mainly located in the hypothalamus and, to a lesser extent, 
in the midline thalamic nuclei and the lateral habenula, and were marked by Ttll3 expression. 
Three THAL subtypes occupied different regions of the thalamus. THAL_hab astrocytes, a 
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highly rare cell population in our reference (Fig S4), were restricted to the medial habenula 
and ventral white matter tracts, and specifically expressed Angpt1 (Fig 3E). THAL_med 
astrocytes were enriched in the medial thalamic nuclei, and were marked by Lgr6 expression. 
Finally, THAL_lat astrocytes, while present throughout the thalamus and the subthalamus, 
were most prevalent in ventrolateral thalamic nuclei, and were marked by elevated Aldh1a1 
expression compared to other subtypes (Fig 3E).  

We validated the identity and distribution of diencephalic astrocyte subtypes using 
single molecule fluorescent in situ hybridization (smFISH)27. We used Agt smFISH to 
specifically label and segment astrocytes throughout the diencephalon20 (Fig S14, Fig S15), 
then quantified the expression of co-stained subtype markers at single astrocyte resolution 
(Fig 3F). Ttll3 showed the highest expression in hypothalamic astrocytes, while Angpt1 was 
highly enriched in astrocytes of the medial habenula. Lgr6 expression peaked in astrocytes in 
medial thalamic nuclei while Ald1ha1 expression was enriched in the lateral thalamus in a 
complementary manner, both genes did not express in habenular astrocytes. These results 
validate diencephalic astrocyte subtypes and demonstrate that cell2location can spatially map 
closely related cell types. 
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Figure 3. Spatial discovery of regional astrocyte subtypes 

A. UMAP representation (X- and Y-axis) of 10 molecularly and spatially distinct astrocyte subtypes 
(colour) identified in our snRNA-seq data. 

B. Astrocyte subtype markers. Dot size corresponds to the fraction of cells in each astrocyte 
subtype cluster (rows) that express a given marker gene (count > 0; columns). Dot colour 
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denotes the relative expression of each gene in each cluster, normalised by the maximum 
values for each gene (scaled between 0 and 1). Marker genes are grouped by subtypes. 

C. Estimated cell densities (colour intensity) of selected regional astrocyte subtypes (left 
hemisphere) and brain regions as identified using clustering of locations (right hemisphere). 

D. Estimated cell densities of astrocyte subtypes across brain regions (as in C). Dot plot, with dot 
size and colour corresponding to the relative cell density for each astrocyte subtype (rows) 
across regions (columns), scaled between 0 and 1 by normalising by the maximum values for 
each subtype. Colour bars denote broad brain areas (top) and subregion (bottom, matching 
panel C).  

E. Estimated cell densities (colour intensity) of 4 diencephalic astrocyte subtypes. Thal_med and 
Thal_lat are shown from a better representative section from the same mouse brain. 

F. smFISH validation. (Top panels) Small map shows locations of diencephalic astrocytes 
segmented based on Agt smFISH. Large maps show quantified subtype marker expression 
(colour intensity) at a single astrocyte level (dots). Yellow dashed line indicates the medial 
boundary of high Aldh1a1 expression. (Bottom panels) Close-up images of diencephalic 
astrocyte subtypes. First columns show smFISH for astrocyte marker Agt and subtype markers. 
Second columns show astrocyte segmentation masks (blue) transparently overlaid on subtype 
genes. Scale bar: 10 microns. 

 

Mapping the cellular compartments of the human lymph node  
To further explore the application of cell2location to complex tissue architectures, we 

applied the model to spatially map the human lymph node. Unlike the mouse brain, the human 
lymph node is characterised by dynamic micro-environments with many spatially interlaced 
cell populations. We analysed a publicly available Visium dataset of the human lymph node 
from 10X Genomics34, spatially mapping a comprehensive atlas of 34 reference cell types 
derived by integration of scRNA-seq datasets from human secondary lymphoid organs 
composed of 73,260 cells35–37 (Fig 4A-B; Methods).  

Histological examination of the lymph node Visium sample revealed multiple germinal 
centres (GCs). Correspondingly, following mapping with cell2location, the expected major 
regions within the lymph node tissue could be readily identified, including T-cell and B-cell 
zones, and GC reactions with follicular dendritic cells (FDC) (Fig 4C, right panel, Suppl. Files 
9-10). 

Next, we set out to explore the downstream analysis of cell2location mapping results 
to identify the spatial co-occurrence of cell types, which can aid the discovery of tissue 
organisation and prediction of cellular interactions. We performed non-negative matrix 
factorization (NMF) of the cell type abundance estimates from cell2location (Fig 4D). Similar 
to the known benefits of NMF applied to conventional scRNA-seq38,39, this analysis provides 
an additive decomposition of the spatial cell type densities into components that correspond 
to groups of co-localised cell types across locations. This matrix decomposition naturally 
accounts for the fact that multiple cell types and microenvironments can co-exist at the same 
Visium locations (Fig S16), while sharing information across tissue areas (e.g. individual 
germinal centres).    

We observed that the groups of cell types identified by NMF corresponded to known 
functionally relevant cellular compartments of the lymph node (Fig 4D). Furthermore, the NMF 
output enabled the dissection of the spatial compartments of B cell maturation. Specifically, 
naive B cells were mapped to a B-follicle zone distinct from germinal centres (Fig 4E, panel 
1). Before GC entry or formation, B cells are activated through acquiring antigen from antigen-
presenting cells such as macrophages and dendritic cells - these interacting cell types were 
consistently co-located (Fig 4D, factor #5). We also identified the GC dark zone where B cells 
clonally expand and proliferate (Fig 4E, panel 2) as well as the GC light zone where they 
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undergo selection by T follicular helper cells and FDCs to differentiate into antibody-producing 
plasmablasts (Fig 4E, panel 3).  

Beyond confirming known biology, the NMF analysis enabled the fine-grained spatial 
mapping of a rare and putatively novel secondary activation B cell state, which has been 
recently reported as primed to undergo class switch recombination preceding the GC 
entry37,40. Our data indicate that this population (termed here “preGC”) occupies a different 
tissue compartment from the upstream activated cells and downstream GC cells (Fig 4E, panel 
4), suggesting it is more likely to initiate new GC reactions rather than joining existing ones. 
Finally, our analysis was capable of distinguishing blood vessel zones containing endothelial 
and vascular smooth muscle cells (Fig 4F, panel 5) from the adjacent perivascular zone 
enriched in T helper and B memory cells (Fig 4F, panel 6). 

We noted that rare B cells with a distinct interferon response gene signature (B IFN) 
were spatially segregated from all other B-cell and germinal centre zones (Fig 4G), suggesting 
they might represent virally infected B-cells or autoreactive B cells41. Spatial enrichment 
indicated the recruitment of cytotoxic T cells and NK cells to this zone (Fig 4H), including 
TIM3+ T cells expressing markers of T cell exhaustion and acute viral infection42,43. Hence, we 
hypothesise that these cytotoxic cells are responding to a viral infection in B-cells and are 
becoming exhausted after attempting to contain the infection.  

Taken together, our results show that cell2location can map complex tissues with 
spatially interlaced cell types and aid biological interpretation by identifying putatively 
interacting cell types.  
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Figure 4. Mapping the cellular compartments of the human lymph node  

A. Cell2location analysis workflow. 
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B. UMAP representation (X- and Y-axis) of 34 immune and non-immune cell subtypes (colour), 
combining scRNA-seq data from 3 studies used to define reference gene expression signatures 
of cell types.  

C. Major tissue zones of the lymph node, including T-cell and B-cell zones, and GC reactions with 
FDCs. Left: H&E image of the tissue section. Right: Estimated cell density (colour intensity) of 
cell types (colour) shown over the H&E image of the lymph node sample. 

D. Identification of lymph node cell compartments using non-negative matrix factorization. Shown 
is a dot plot of the NMF weights of cell types (rows) across NMF components (columns), which 
correspond to cell compartments (normalized across components per cell type by dividing by 
maximum values).  

E. Location patterns of cell types that are associated with highlighted cell compartments from Fig 
4D. Spatial plots (X, Y-axis) show cell density (colour) for each cell type (subpanels). Dashed 
boxes highlight the tissue regions shown in inset panels. Dashed circles indicate GCs. 

F. Location patterns of the blood vessel and perivascular cell types that are associated with 
highlighted cell compartments from Fig 4D. Plotted as in above. 

G. Co-localisation of cytotoxic NK, T cells and exhausted T cells with B cells expressing interferon 
response genes (B IFN). Spatial plots show cell density (colour) for each cell type (subpanels). 
Dashed lines indicate regions shown in inset boxes.  

H. Quantifying enrichment cytotoxic NK, T cells and exhausted T cells in proximity of B IFN cells. 
Dot plots show average cell density (colour and size) of each cell type (rows) across B_IFN 
abundance quantile bins (columns). 

Discussion 
Cell atlassing efforts are generating increasingly complex single cell and spatial 

transcriptomic datasets of diverse tissues. Here, we presented cell2location, a Bayesian 
model that integrates single-cell and spatial transcriptomics to map cell atlases in a scalable 
manner. The model can cope with complex tissues, handling large numbers of cell types 
including subtypes characterized by subtle transcriptional differences. Owing to a number of 
technical innovations, we find that cell2location is more accurate than existing methods, 
enabling efficient spatial mapping of tens to hundreds of reference cell types. 

We demonstrated that cell2location can integrate scRNA-seq and coarse spatial 
resolution transcriptomic data such as Visium to map tissue atlases with high resolution. 
Applied in this workflow, cell2location can accurately pinpoint rare reference cell types like 
habenula-specific astrocytes to few locations in spatial data. We envision that our approach 
will be applied to spatially map the “first generation” cell type atlases of large tissues, such as 
the whole mouse brain20,44, at moderate cost and high throughput.  

We show that cell2location spatial mapping can aid the discovery of new cell types, as 
illustrated by 4 regionally distinct astrocyte subtypes we describe in the mouse diencephalon. 
We can only speculate about the regionalized functions of these astrocytes. Astrocyte-neuron 
signalling in the lateral habenula regulates neuronal circuits implicated in depression45. 
Similarly, diencephalic astrocytes could shape the activity of local neuronal circuits, such as 
the lateral thalamic circuitry for sensory relay or medial thalamic circuits involved in attention 
control46.  
 In an application to the human lymph node, we demonstrated that cell2location can 
disentangle spatially intermixed cell types. We have combined cell2location with NMF to 
provide a principled strategy for resolving tissue compartments with stereotyped cell 
composition, such as germinal centre zones. This approach can elucidate the wiring diagram 
of cell types in complex tissues by spatially mapping putatively interacting cell types and help 
prioritise interactions predicted from single cell data47.  

We expect future developments of cell2location and related models to spatially map 
large tissues, scaling up to hundreds of thousands or millions of spatial locations. Future 
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extensions will also provide adaptations to specific spatial technologies, thereby accounting 
for differences in the noise characteristics such as background probe binding or variable 
capture areas (e.g. Nanostring48, LCM-RNA-seq49).  

A major future frontier for cell atlas projects is the 3D mapping of tissues at cellular 
resolution. The spatial mapping approach described here can lay the foundations for 3D tissue 
atlases. Single cell, spatial RNAseq and imaging can be applied to consecutive tissue sections 
across an organ, integrating data from all technologies to build a multi-scale atlas. Regional 
cell type maps generated with cell2location can also guide gene selection for intact tissue 
volume imaging50, leading to 3D models of cells in their native tissue context with whole 
transcriptome information.  

In summary, we have here introduced a versatile and flexible approach for spatial 
mapping of tissues. We expect that cell2location will have diverse applications in mapping 
tissue architecture across development, health and disease. Spatial cell type maps coupled 
with cell interaction analysis can help decipher developmental processes such as cellular 
differentiation and how it is regulated by extrinsic cues. These developmental cues can be 
recapitulated in vitro to refine tissue engineering approaches. Similarly, understanding how 
tissue architecture is perturbed in response to disease can enrich our understanding of 
pathological processes and aid the design of therapeutic interventions.  
 

Methods 

Cell2location model 
For a complete derivation of the cell2location model, please see supplementary 

computational methods. Briefly, cell2location is a Bayesian model, which estimates absolute 
cell density of cell types by decomposing mRNA counts 𝑑",$ of each gene 𝑔	 = 	 {1, . . , 𝐺} at 
locations 𝑠 = {1, . . , 𝑆} into a set of predefined reference signatures of cell types 𝑔/$. 

 
Estimation of cell type reference signatures from scRNA-seq. Given cell type 

annotation for each cell, the corresponding reference cell type signatures 𝑔/$, which represent 
the average mRNA count of each gene 𝑔 in each cell type 𝑓 = {1, . . , 𝐹}, can be estimated 
using a negative binomial regression model, which allows for combining data across batches 
and technologies (Suppl. methods).  

 
Cell2location model. An untransformed spatial expression count matrix 𝑑",$ is used 

for input, as obtained from the 10X SpaceRanger software (10X Visium data). Cell2location 
models the elements of 𝑑",$ as Negative Binomial (NB) distributed, given an unobserved gene 
expression level (rate) 𝜇",$ and a gene-specific over-dispersion 𝛼$:  

 
𝑑",$ ∼ 𝑁𝐵(	𝜇",$, 𝛼$).	

The expression level of genes 𝜇",$ in the mRNA count space is modelled as a linear 
function of expression signatures of reference cell types: 
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𝜇",$ = 𝑚$:
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, 

 
where, 𝑤",/ denotes regression weight of each reference signature 𝑓 at location 𝑠, which can 
be interpreted as the number of cells at location 𝑠 that express reference signature 𝑓; 𝑚$ is a 
gene-specific scaling parameter, which adjusts for global differences in sensitivity between 
technologies; 𝑙" and 𝑠$ are additive variables that account for gene- and location-specific shift, 
such as due to contaminating or free-floating RNA. 
 

To account for the similarity of location patterns across cell types, 𝑤",/ is modelled 
using another layer of decomposition (factorization) using 𝑟 = {1, . . , 𝑅} groups of cell types, 
that can be interpreted as cellular compartments or tissue zones (Suppl. Methods). Unless 
stated otherwise, 𝑅 is set to 50.  
 

While the scaling parameter 𝑚$ facilitates the integration across technologies, it leads 
to non-identifiability between 𝑚$ and 𝑤",/, unless the informative priors on both variables are 
used. To address this, we employ informative prior distributions on 𝑤",/ and 𝑚$, which are 
controlled by 4 used-provided hyper-parameters: 1) 𝑁X, the expected number of cells per 
location; 2) 𝐴Z, the expected number of cell types per location; 3) 𝑌\, the expected number of 
co-located cell type groups per location; 4) mean 𝜇 and variance 𝜎^ that define hyperprior on 
gene-specific scaling parameter 𝑚$, allowing the user to define prior beliefs on the sensitivity 
of spatial technology compared to the scRNA-seq reference. For guidance on selecting these 
hyper-parameters see Suppl. Methods (Section 1.3) and the methods section on spatial 
mapping of the mouse brain cell types below. 
 

Approximate Variational Inference is used to estimate the parameters, implemented in 
the pymc3 framework 51, which supports GPU acceleration. For full details see Suppl. 
Methods. 

 
Note on constructing reference cell type data. It is important to aim for a 

comprehensive and detailed cell type reference which includes the cell types and sub-
populations that are present in-situ, for example, by generating a paired snRNA-seq reference 
from the same tissue sample. However, imperfect matching of cell populations is often 
acceptable (see Fig 4 as an example). In such instances, the stability of the model fit, which 
can be assessed multiple random restarts, can be used as diagnostics (see Suppl. Methods). 

Mouse brain tissue processing for matched snRNA-seq and Visium 
Mouse work was carried out at the Wellcome Sanger Institute in accordance with UK 

Home Office regulations and UK Animals (Scientific Procedures) Act of 1986 under a UK 
Home Office license, which were regularly reviewed by the institutional Animal Welfare and 
Ethical Review Body. 

Brains of wild-type adult C57BL/6 mice (postnatal day 56, 1 female and 1 male) were 
dissected, snap frozen, embedded in optimal cutting temperature compound (Tissue-Tek) and 
stored at -80oC. Brain hemispheres were cryosectioned at -20oC using a cryostat (Leica, 
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CM3050S). To assess tissue quality, RNA was extracted from test tissue sections from each 
animal using the RNeasy Pico Kit (Qiagen) and yielded high RIN values (9.6 and 9.7) on an 
Agilent Bioanalyser, indicating high RNA quality.   

For matched single nuclei and Visium RNA-seq experiments, brain hemispheres were 
cryosectioned to adjacent thick (200 µm) and thin (10 µm) coronal sections, respectively, and 
processed the same day. In total, four consecutive sets of thick and thin tissue sections were 
collected from each brain. Five sets of tissue sections yielded both good quality single nuclei 
and Visium data (three adjacent sections from mouse 1 and two sections from mouse 2) while 
one additional section from mouse 2 yielded good single nuclei; these were considered for 
analysis in this study.  

Single nucleus RNA-sequencing 
Thick (200 µm) mouse brain sections were cryosectioned, dissected from OCT and 

kept in a tube on dry ice until subsequent processing. Nuclei were extracted from each section 
as described previously52. Briefly, nuclei were released from sections via Dounce 
homogenisation, Hoechst-stained, and isolated via fluorescence-activated cell sorting (FACS). 
Nuclei were then loaded into the 10X Chromium Single Cell 3′ Kit (v3) to obtain 3000-7000 
nuclei per well, and library preparation was done per manufacturer’s protocol. Libraries were 
sequenced on an Illumina NovaSeq S4 system.  

Visium spatial transcriptomics 

Thin (10 µm) mouse brain sections were cryosectioned and mounted directly onto 
separate capture areas on 10X Visium Spatial Gene Expression slides (beta product version). 
Processing was done per manufacturer’s protocols. Briefly, sections were methanol-fixed, 
hematoxylin and eosin (H&E)-stained, and imaged on a NanoZoomer 2.0 slide scanner 
(Hamamatsu). Sections were then permeabilized and further processed to obtain cDNA 
libraries that were quality controlled using the Agilent Bioanalyser. The cDNA libraries were 
sequenced on the Illumina HiSeq 4000 system, aiming 300 million raw reads per section with 
read lengths 28cy R1, 8cy i7 index, 0cy i5 index, 91cy read 2. 

Single nucleus data processing and cell-type annotation 
Sequencing data were processed using 10X CellRanger version 3.0.2, aligned to 

mouse pre-mRNA genome reference version mm10 and mRNA count matrices were 
generated by adding intronic and exonic unique molecular identifier (UMI) counts for each 
gene in each cell. snRNA-seq counts were processed using standard Seurat V3 workflow 
without correcting batch effects between 6 individual samples. Specifically, 10X CellRanger 
output, expression matrices filtered to include droplets containing cells, was imported into the 
Seurat object. Cells were filtered using the following quality control criteria: number of detected 
genes per cell < 5000, fraction of nuclear-encoded mitochondrial genes < 0.10, doublet scores 
(scrublet53) < 0.2. The data was then subjected to normalisation with scale-factor of 10000 and 
log1p-transformed (Seurat::NormalizeData), scaled gene-wise by subtracting the mean and 
dividing by standard deviation (Seurat::ScaleData). Following that, 50 principal components 
were found (Seurat::RunPCA) and used as input to UMAP algorithm (Seurat::RunUMAP), 
which was also used for K-nearest-neighbour graph (KNN) construction with k=100 
(Seurat::FindNeighbors). To generate a comprehensive cell annotation, joint Louvain 
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clustering with resolution 7 was performed (Seurat::FindClusters) on all samples. Clusters 
were subsequently annotated using marker genes from the literature and existing mouse brain 
single cell reference datasets15,19,20. To annotate the regional identity of cell types, we used 1) 
known regional marker genes15,19,20, 2) the spatial expression patterns of these genes on in-
situ hybridization data from the Allen Brain Atlas (https://mouse.brain-map.org/), 3) the 
regional localization of cell types estimated by cell2location (Fig 2, Suppl. Files 1-5). The 
marker genes of regional cell types reported in Fig S5 were obtained from Zeisel et al20 
(http://mousebrain.org/downloads.html, L5_All.agg.loom file). The resulting clusters and cell 
annotations are reported in Fig 2B, Fig S4, Fig S5 and were used as input to cell2location.  

Visium data processing 
 10X Visium spatial sequencing data was aligned to mouse pre-mRNA genome 
reference version mm10 using 10X SpaceRanger and mRNA count matrices were generated 
by adding intronic and exonic reads for each gene in each location. The paired histology H&E 
images were processed using 10X SpaceRanger to select locations covered by tissue by 
aligning pre-recorded spot locations with fiducial border spots in the histology image. This 
allowed evaluating the correspondence between cell maps produced using our method and 
the known brain anatomy. This also enabled the quantification the number of nuclei in each 
spot using image segmentation as described in Suppl. methods and reported in Fig S6A-D. 
The histology image was used to manually annotate cortical layers in the primary 
somatosensory cortex (SSp) region using the lasso tool in the 10X Loupe browser. 

Constructing synthetic spatial transcriptomics data set  
 Simulated spatial transcriptomics data were generated by combining expression 
profiles of cells, drawn from each of the 46 reference cell types in the mouse brain snRNA-
seq reference data, according to simulated abundance at 2000 locations. The snRNA data for 
the two most homogenous mouse brain snRNA-seq samples was split into the dataset used 
to generate the synthetic data (50% of cells) and the dataset used to evaluate cell2location 
and alternative approaches (50% of cells), similarly to the strategy proposed by Andersson et 
al1. The number of cell types present in each simulated location as well as their absolute 
abundance (the number of cells per location) were simulated according to four cell type 
sparsity and abundance patterns profiles - uniform and sparse, low and high average 
abundance (Fig 1B, see below). The specific parameters of each pattern were chosen to mimic 
those observed in real data (low cell count of each cell type, low total number of cells, high 
sparsity). The code used to generate simulated data can be obtained from 
https://github.com/emdann/ST_simulation/. 
 

1. Generating per cell-type sparsity and density patterns (assemble_design tool). 
a) Uniform and low density: 40% of cell types present in 𝑁	 ∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇 = 2000	 ⋅
	0.8, 𝜎^ 	= 	𝜇	/	0.3) locations at density 𝐷	 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 0.8, 𝜎^ = 𝜇). 
b) Uniform and high density: 10% of cell types present in 𝑁	 ∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇 = 2000	 ⋅
	0.8, 𝜎^ 	= 	𝜇	/	0.3) locations at density 𝐷	 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 2.5, 𝜎^ = 𝜇). 
c) Sparse and low density: 40% of cell types present in 𝑁	 ∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇 = 2000	 ⋅
	0.1, 𝜎^ 	= 	𝜇	/	0.3) locations at density𝐷	 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 0.8, 𝜎^ = 𝜇). 
d) Sparse and high density: 10% of cell types present in 𝑁	 ∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇 = 2000	 ⋅
	0.1, 𝜎^ 	= 	𝜇	/	0.3) locations at density 𝐷	 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 2.5, 𝜎^ = 𝜇). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.15.378125doi: bioRxiv preprint 

https://mouse.brain-map.org/
http://mousebrain.org/downloads.html
https://github.com/emdann/ST_simulation/
https://doi.org/10.1101/2020.11.15.378125
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

By following this procedure, sparsity and density parameters for each cell type were 
generated to produce an average number of cells per location close to 10, mimicking 
cell count observed by nuclear segmentation of the mouse brain histology images 
(Fig S6; Suppl. Methods). 

2. Assembling abundance of each cell type in each location (assemble_composition 
tool). For each cell type, N random locations (N determined in step 1) are chosen from 
all 2000 locations, and for each of those positive locations, the number of cells M was 
generated by sampling from a Poisson distribution with a rate equal to the density 
parameter D selected in step 1. The cell number for remaining locations was set to 0. 

3. Assembling mRNA counts of each gene in each location. Multi-cell mRNA count 
profiles for every gene in a given location were derived by combining M cells drawn 
from reference cell types in the snRNA-seq data (using M determined for every cell 
type and location in step 2).  

4. Applying gene-specific scaling to mimic the difference in sensitivity between 
technologies. A dataset with lower sensitivity was generated by taking samples from 
the Poisson distribution with a rate equal to the mRNA counts in the synthetic dataset 
generated in step 4 multiplied by the gene-specific scaling parameter. This parameter 
L was randomly generated from 𝐿	 ∼ 	𝐺𝑎𝑚𝑚𝑎(𝛼 = 0.41885602, 𝛽	 = 	0.9527432), with 
parameters selected to mimic those estimated by cell2location in the mouse brain data. 
Gene-specific L parameters were divided by 2 to mimic reduction in sensitivity. 

Validation of cell2location using synthetic data and comparison to alternative 
methods 

Synthetic gene expression data were constructed as described above and were used 
to assess the performance of cell2location in comparison to alternative methods. Synthetic 
data came with ground truth numbers of cells and mRNA count of each cell type for each 
location, which were used to benchmark estimates obtained from alternative methods. The 
models were provided with the snRNA-seq reference data (evaluation subset, 8137 cells by 
12281 genes, see above) as well as the synthetic mRNA count matrices for all locations. 
 
 Cell2location. Signatures of reference cell types were derived using a negative 
binomial regression model (Suppl. Methods) with default parameters, except the L2 penalty 
for overdispersion parameter:  'gene_overdisp_weight' = 0.1. Cell2location was used in the 
single-experiment mode with the following priors and parameters:  

- Training iterations: 30000,  
- Cells per location 𝑁X = 9; Cell types per location 𝐴Z = 5; Co-located cell type groups per 

location 𝑌\ = 4; 
- Prior on the difference in sensitivity between technologies: 𝜇 = 	1/2, 𝜎^ = 1/8;  

A simplified version of the cell2location model, which does not account for linear dependencies 
in the abundance of cell types was considered for comparison, using otherwise identical 
hyperparameters (Fig S2). 
 
 Stereoscope1. This method utilises a similar model-based approach to estimating both 
the cell type signatures and the relative cell abundance across locations (see the comparison 
in Suppl. Methods). In the Stereoscope model (version 0.2), Negative Binomial distribution is 
parameterised using the gene- and cell type-specific log-odds parameter and gene-specific 
total count parameter. This custom signature estimation method is hard-coded into the 
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workflow and both estimated parameters are used as input to the model for estimating relative 
cell abundance. Stereoscope was used with the following hyperparameters as suggested in 
the tutorial on GitHub 
(https://github.com/almaan/stereoscope/tree/f42a0a26305963e587b372c44094db108b26b6
e8#3-analysis): 

- Highly variable gene selection: 5000 genes 
- Estimating expression signatures of cell types: 75000 iterations, 1000 mini-batch 

training size 
- Estimating relative cell abundance: 75000 iterations, 1000 mini-batch training size 

 
 RCTD4. This method utilises a similar model-based approach to the estimation of 
relative cell abundance across locations (see the comparison in Suppl Methods). It estimates 
reference cell type signatures by computing expression average per cluster (hard-coded). 
RCTD was used in default mode (not doublet mode) with the hyperparameters selected as 
suggested in the tutorial on GitHub, including filtering down to 2763 genes based on log-fold-
change 
(https://github.com/dmcable/RCTD/tree/7a895ed1666269784cc472fa0a6e4abbd3d2ccb2). 
 
 Seurat V3 (PCA, anchor method, MNN classifier)2. Seurat V3 workflow was used to 
project synthetic locations into the PCA space constructed using snRNA-seq reference data 
(Seurat V3 with anchor selection, Seurat::FindTransferAnchors), with subsequent transfer of 
cell type labels onto synthetic locations using a mutual nearest neighbour (MNN)-classifier 
(Seurat::TransferData). For the purpose of this comparison, the label transfer scores were 
interpreted as a relative cell abundance of each cell type in each location. Prior to integration 
both snRNA-seq reference and synthetic spatial datasets were subjected to SCTransform 
normalisation (Seurat::SCTransform)54. PCA method (with default 30 components) was used 
for integration (Seurat::FindTransferAnchors) as advised in Seurat package documentation 
and spatial mapping tutorial. All functions were used with default parameters. 
 
 SPOTlight3. SPOTlight uses a seeded topic model to find expression signatures of 
reference cell types and a modified non-negative least squares method (denoted NMFreg) to 
estimate relative cell abundance. The topic model is initialized in a way that guides the topics 
to resemble expression signatures of cell types. SPOTlight workflow was followed with 
recommended parameters  
(https://github.com/MarcElosua/SPOTlight/tree/fb5e7c7de3e6d0ac7618c4b1a55aea06e5f47
2ea).  

Briefly, to improve computational efficiency the snRNA-seq data size was reduced by 
randomly selecting at most 100 cells per cell type (when a cell type is represented by less than 
100 cells all cells are kept), and highly variable genes (5000 genes) were selected using 
Seurat::FindAllMarkers tool. Untransformed expression counts for both snRNA-seq reference 
and synthetic locations were used as input to `spotlight_deconvolution` function in SPOTlight 
package with the following hyper-parameters: transf = "uv", method = "nsNMF", min_cont = 
0.09. 
 
 Non-negative least squares (NNLS, autogenes)17,18. NNLS was used to estimate 
the absolute cell abundance of each cell type in each synthetic location given the reference 
signatures of cell types, which were derived by computing average expression of each gene 
across cells of each type. Untransformed expression counts of the synthetic locations were 
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used as input to NNLS implementation in autogenes package. Similarly to cell2location, the 
output was normalized to produce relative cell abundance. 
 

The estimates of relative cell abundance from all methods were compared to the 
ground truth using 2D histogram plots, Pearson R2 (numpy.corrcoef) and Jensen–Shannon 
divergence (scipy.spatial.distance.jensenshannon) and reported in Fig 1B, Fig 1D, Fig 1E, Fig 
S2C, Fig S3. In addition, the accuracy was assessed using precision-recall quantified on all 
46 cell types jointly (micro-average). Relative cell abundance was used as a predictor and cell 
count > 0 as a gold standard label. Precision-recall results are reported in Fig 1C, Fig S2A.  

Spatial mapping of mouse brain cell types to 10X Visium data 
 Expression signatures of 59 mouse brain reference cell types (Fig 2B, see above) were 
derived using a negative binomial regression model (Suppl. Methods). Mouse brain 10X 
Visium data was processed as described above to untransformed mRNA counts (filtered to 
12,809 genes shared with scRNA-seq, 14,968 locations), which were used as input to 
cell2location using the following parameters:  

- Training iterations: 30000. 
- Cells per location 𝑁X = 8, estimated based on comparison to histology image; Cell types 

per location 𝐴Z = 9, assuming that most cells in a given location belong to a different 
type and that many locations contain cell processes rather than complete cells; Co-
located cell type groups per location 𝑌\ = 5, assuming that very few cell types have 
linearly dependent abundance patterns, except for the regional astrocytes and 
corresponding neurons such that on average about 2 cell types per group are expected 
𝐴Z/𝑌\ = 1.8. 

- Prior on the difference in sensitivity between technologies: 𝜇 = 	1/2, 𝜎^ = 1/8, 
reflecting that the average total mRNA count in snRNA-seq is about 2 times greater 
than the average total mRNA count in 10X Visium data which is divided by 𝑁X = 8. 

Cell2location estimates described in this section were reported in Fig 2D-G, Fig 3C-E, Fig 
S6C-E, Fig S7, Fig S8, Fig S10B-C, Fig S12A, Fig S13, Suppl. Files 1-6. 
 
 Region identification: Estimated absolute cell abundance was used to calculate a KNN 
graph (N neighbours=38) followed by Leiden clustering of locations (resolution=1.3), yielding 
31 clusters. The clusters were annotated by comparing the paired histology images and 
clusters marking anatomically similar regions were merged, yielding 29 distinct clusters 
annotated as tissue regions and reported in Fig 3C-D and Fig S7. 

Analysis of Slide-Seq V2 data 

 Expression signatures of 59 mouse brain reference cell types (Fig 2B) were derived 
using the negative-binomial regression model as described above. Slide-Seq V2 data of the 
mouse brain originating from the region containing the hippocampus, parts of the cerebral 
cortex and thalamus, was downloaded from the data portal for Stickels, Murray et al25: 
https://singlecell.broadinstitute.org/single_cell/study/SCP815. Genes with mRNA count > 0 in 
at least 500 locations were retained to reduce data size. One Slide-Seq V2 section with the 
largest number of spatial locations (9,069 genes shared with the scRNA-seq dataset, 53,208 
locations) was used as input to cell2location using the following parameters:  

- Training iterations: 30000,  
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- Cells per location 𝑁X = 1, Cell types per location 𝐴Z = 1, Co-located cell type groups per 
location 𝑌\ = 1, assuming that most locations have only one cell and one cell type on 
average, accounting for much smaller location size which is similar to the size of single 
cells (10 microns). 

- Prior on the difference in sensitivity between technologies: 𝜇 = 	1/10, 𝜎^ = 1/400. 
Cell2location estimates described in this section were reported in Fig 2H, Fig S10, Suppl. Files 
7-8. 

Validation mouse brain cell type locations with region-specific scRNA-seq 
reference  
 For quantitatively validating the cell type maps produced by cell2location, we 
considered a publicly available24 gold-standard reference of cortical and hippocampal cell 
locations. In that data, individual layers of the cortex and the hippocampus are dissected and 
subjected to scRNA-seq using SmartSeq 4 protocol (Fig 2I). Data from this study was obtained 
from https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-
hippocampus-smart-seq. Cells originating from the primary somatosensory cortex (SSp, n=98) 
as well as exclusive to the hippocampus (the subiculum areas indicated as PAR-POST-PRE, 
n=23) were selected, discarding cell types that contribute less than 3 cells. The count of cells 
in this scRNA-seq data was used to compute the proportion of each reference cell type in each 
cortical layer. We derived corresponding reference signatures of 121 cell types as per-cluster 
average expression, as the negative-binomial regression model is not suitable for SmartSeq 
data (Supp. Methods). 

We mapped cell types from this reference to a subset of the mouse brain 10X Visium 
data, restricted to the primary Somatosensory cortex (which was annotated based on 
histology). Data was processed as described above and the untransformed mRNA counts 
(13566 genes shared with scRNA-seq dataset, 1393 locations) were used as input to 
cell2location using the following parameters (the rest selected as for the primary mouse brain 
analysis):  

- Cell types per location 𝐴Z = 7; 
- Prior on the difference in sensitivity between technologies: 𝜇 = 	1/20, 𝜎^ = 1/1600, 

reflecting that the average total mRNA count in a highly sensitive Smart-Seq 4 scRNA-
seq is about 20 times greater than the average total mRNA count in 10X Visium data 
divided by 𝑁X = 8. 

 To quantitatively assess the consistency of the estimated relative cell abundance (Fig 
2J, Fig S9C), cell2location estimates of absolute cell density were averaged and normalised 
per cortical layer to obtain the proportion of cells per cell type within each cortical layer. These 
estimates were then compared to the cell proportions in the reference scRNA-seq data (Fig 
2J), considering 23 most prevalent cell types exclusive to the somatosensory cortex (cell count 
in SSp > 15, cell count in the hippocampal region = 0 in the scRNA-seq data). 

To quantitatively assess the specificity and sensitivity of cell2location at excluding cell 
types that should be absent in the spatial data, the precision-recall was quantified on all 121 
cell types and 5 Visium tissue sections jointly. The 99.5% quantile of mRNA abundance 
distribution for each cell type and experiment was used as a predictor. The cell count > 0 in 
the somatosensory cortex region was used as a gold standard label (Fig S9A left panel). 
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Identification and spatial mapping of astrocyte subtypes in the mouse brain 
To identify regionally enriched astrocytes, we annotated and spatially mapped refined 

reference signatures of astrocyte subpopulations. Cells annotated as astrocytes were selected 
from the initial analysis (Fig 2B), as identified based on the expression of canonical markers 
(e.g. Aldoc, Slc1a3). These cells were subjected to analysis workflow in scanpy55 as follows: 
First, untransformed count matrix was filtered to select expressed genes at 2 cut-offs:  
1) selecting genes detected at mRNA count > 0 in > 5% of cells;  
2) selecting genes detected at mRNA count > 0 in a few cells (5% > cell count > 0.4%) but 
with a mean expression across non-zero cells >1.122018.  
 The filtered data was then log1p-transformed and scaled. PCA was performed (30 
components) and the first component, which was strongly associated with total mRNA count 
per cell, was removed. Next, BBKNN33 was used to refine the integration across all 6 snRNA-
seq datasets with the default parameters except, neighbors_within_batch = 3. The corrected 
KNN graph was used to perform UMAP dimensionality reduction and Leiden clustering with 
resolution 2.4 identified 17 astrocyte subclusters (Fig S11). Marker genes of these subtypes 
were identified using differential expression tools in the scanpy package and markers known 
from the literature.  
 Next, an initial mapping with cell2location was performed using hyperparameters 
described above in the mouse brain Visium section. Reference cell type signatures for initial 
mapping included 17 astrocyte subclusters as well as all other non-astrocyte cell types shown 
in Fig 2B. Clusters that were not sufficiently distinct in their location (Fig S12) and marker 
genes (Fig S11) were merged. This resulted in 10 molecularly and spatially distinct astrocyte 
subtypes (Fig 3A-D). Resulting in 10 merged subtypes were incorporated into cell annotation 
used throughout the paper. Clustering of locations demonstrated in Fig 3D was performed as 
described above. 

Analysis of lymph node data 

 Construction of single cell reference data. Published scRNA-seq datasets of lymph 
nodes have typically lacked an adequate representation of germinal centre-associated 
immune cell populations due to age of patient donors56,57. We, therefore, included scRNA-seq 
datasets spanning lymph nodes, spleen and tonsils in our single-cell reference to ensure that 
we captured the full diversity of immune cell states likely to exist in the spatial transcriptomic 
dataset (Fig 4A-B). The scRNA-seq reference was combined from 3 studies35–37. Integration 
was performed using Scanpy55 including removal of doublets with scrublet53, regressing out 
batch from PC space and performing BBKNN. The integrated reference was used to 
harmonise cell type and subtype labels between datasets, yielding 34 annotated cell 
populations represented across 73,260 cells.  
 
 Spatial data. 10X Visium spatial transcriptomics data of human lymph nodes was 
downloaded from the 10X Genomics website: https://support.10xgenomics.com/spatial-gene-
expression/datasets/1.0.0/V1_Human_Lymph_Node.  
 
 Spatial mapping using cell2location. Expression signatures of 34 cell populations 
(Fig 4B) were derived using the negative binomial regression model (Suppl. Methods) 
accounting for the effect of different batches as well as technologies (Fig S17). Prior to model-
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based estimation, untransformed count matrix was filtered to select expressed genes at 2 cut-
offs:  

1) selecting genes detected at mRNA count > 0 in > 3% of cells;  
2) selecting genes detected at mRNA count > 0 in a few cells (3% > cell count > 0.1%) 
but with a mean expression across non-zero cells > 1.122018.  

The untransformed mRNA counts from a single Visium experiment (10,241 genes shared with 
the scRNA-seq dataset, 4039 locations) were used as input to cell2location using the following 
parameters:  

- Training iterations: 30000,  
- Cells per location 𝑁X = 30, derived by examining histology images of lymph node tissue 

(paired image had insufficient image quality), Cell types per location 𝐴Z = 15, 
representing a high degree of spatial interlacing of cell type locations in this tissue, Co-
located cell type groups per location 𝑌\ = 5, representing a high degree of linear 
dependencies - that many cell types co-locate and form tissue zones.  

- Prior on the difference in sensitivity between technologies: 𝜇 = 	1/3, 𝜎^ = 1/36. 
 
 NMF: Cell abundance estimated by cell2location were used as input for non-negative 
matrix factorization to identify spatially interlaced tissue zones/compartments of lymph nodes 
(Fig 4D). Cell abundance estimates 𝑤",/ are modelled as an additive decomposition:   
 

𝑤",/ 	= 	∑ 𝑧",O	𝑥O,/	O ,  
 

where 𝑥O,/ represents NMF weight describing the contribution of each cell type group 𝑟 to the 
abundance of cell types 𝑓; 𝑧",O represents NMF weight describing the abundances of each cell 
type group 𝑟across locations 𝑠. 
NMF was trained for a range of 𝑅 = {8, . . , 28} and the decomposition into 14 factors was 
chosen as a balance between capturing fine tissue zones and splitting known compartments 
such as Light Zone of the Germinal Center into several distinct factors (Fig 4E, panel 3) into 
separate zones. NMF weight 𝑥O,/ is shown in Fig 4D and Fig S16C. 
Cell2location estimates from this section are reported in Fig 4, Fig S10B, Fig S16.  

Single-molecule fluorescent in situ hybridization 
A wild-type adult C57BL/6 mouse (postnatal day 63, male) was transcardially perfused 

with ice-cold phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA) in 1X PBS. 
The brain was dissected and post-fixed in 4% PFA at 4°C overnight and cryoprotected in 30% 
sucrose for 48 h at 4°C. The brain was then embedded in OCT (Tissue-Tek) and frozen on 
isopentane-dry ice slurry and stored at −80°C. Coronal cryosections (12 μm) were collected 
on a cryostat (Leica), mounted onto superfrost glass slides (VWR) and stored at -80oC. 

RNAScope smFISH was performed as previously described58. Tissue slides were 
thawed at room temperature for 15 min and baked at 60°C for 30 min. Afterwards, slides were 
post-fixed for 15 min in chilled 4% PFA, and serially dehydrated through 50%, 70%, 100%, 
and 100% ethanol for 5 minutes each. 4-plex RNAScope smFISH was automated using a 
Leica BOND RX (LS Multiplex Assay, Advanced Cell Diagnostics (ACD), Bio-Techne). Tissue 
sections were permeabilized using heat (5 minutes in Leica BOND ER2 buffer at 95°C) and 
protease digestion (ACD Protease III for 20 minutes). The probes in C1, C2 and C3 channels 
were labeled using Opal 520, 570 and 650 fluorophores (Perkin Elmer, diluted 1:1500) 
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respectively. The C4 probe was developed using TSA biotin (TSA Plus Biotin Kit, Perkin 
Elmer, 1:500) and streptavidin-conjugated Atto-425 (Sigma Aldrich, 1:400). Nuclei staining 
was performed with DAPI (Life Technologies Ltd, 1:50,000).  

Imaging was performed on an Opera Phenix High-Content Screening System (Perkin 
Elmer) in spinning disk confocal mode using a 20× water-immersion objective (NA 0.16, 
298.99 nm/pixel) with a 1 μm z-step size. The excitation (Ex) laser and emission (Em) filter 
wavelengths were: DAPI (375 nm; 435-480 nm), Atto-425 (425 nm; 463-501 nm), Opal 520 
(488 nm; 500-550 nm), Opal 570 (561 nm; 570-630 nm), Opal 650 (640 nm; 650-760 nm). 
Illumination correction and stitching were performed on maximum z-projection images using 
Acapella scripts provided by Perkin Elmer.  

Astrocyte segmentation and smFISH quantification 
The segmentation of astrocytes was performed on the Agt image channel with pixel 
classification of Ilastik59. The Agt channel was gaussian blurred with a sigma of 2 pixels and 
the astrocyte mask was subsequently generated by the trained pixel classifier. The 
performance of this classifier was evaluated by using visual inspection and a metric called out-
of-bag(oob) error which measures prediction error by using bootstrap aggregating. The oob 
error of the classifier was 2.857% measured on a training image of dimension 402 * 2010 
pixels. As Agt is expressed at low levels in astrocytes outside the diencephalon27, we manually 
traced the diencephalon to filter all astrocyte signals outside. 

Two rounds of "closing" operations were then executed to connect as many major 
astrocyte cellular processes to the cell bodies as possible. As a consequence, some cells 
were erroneously fused together. To split these fused cells, we performed six rounds of 
opening on large cells (>10,000 pixel2). Finally, all small partially segmented cells (<250 pixel2) 
were filtered out and the mean pixel intensities (sum intensity/area) of target gene channels 
were quantified per cell.  

Data availability 
snRNAseq data are publicly available via cellxgene portals60 at   
https://cell2location.cellgeni.sanger.ac.uk/mouse-brain (full dataset, annotation_1_print 
column denotes cell types) and  
https://cell2location.cellgeni.sanger.ac.uk/mouse-brain-astrocytes (astrocyte subclusters). 
snRNA-seq and Visium data of the mouse brain as well as the integrated secondary lymphoid 
organ scRNA-seq data are publicly available for download through S3 buckets at 
https://cell2location.cog.sanger.ac.uk/browser.html (mouse brain - /tutorial/; lymph nodes  - 
/paper/integrated_lymphoid_organ_scrna/).  

Code availability 

The cell2location package is available at https://github.com/BayraktarLab/cell2location/. 
Documentation and tutorials are available at https://cell2location.readthedocs.io/. Singularity 
environment for cell2location is available from 
https://cell2location.cog.sanger.ac.uk/browser.html?shared=singularity/. Code used to 
generate synthetic data is available in https://github.com/emdann/ST_simulation/. Code used 
to segment nuclei in histology images is available in 
https://github.com/yozhikoff/segmentation. Jupyter notebooks covering the analysis in this 
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paper will be made available at https://github.com/vitkl/cell2location_paper/ and upon 
request.  
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Supplementary data 
Supplementary figures S1 to S17.  

Supplementary files 1-5 show spatial cell abundance (colour) maps of 59 cell types 
(panels) estimated by cell2location across 5 mouse brain tissue sections in 10X Visium data. 

Supplementary file 6 shows spatial mRNA abundance (colour) maps of 59 cell types 
(panels) estimated by cell2location in the mouse brain section #1 from mouse #1 in 10X 
Visium data. 

Supplementary files 7-8 show spatial cell and mRNA abundance (colour) maps, 
respectively, of 59 cell types (panels) estimated by cell2location in Slide-Seq V2 data of the 
mouse brain. 

Supplementary files 9-10 show spatial cell and mRNA abundance (colour) maps, 
respectively, of 34 cell types (panels) estimated by cell2location in the human lymph node 
tissue section in 10X Visium data.  

Supplementary files can be accessed at 
https://github.com/vitkl/cell2location_paper/tree/master/paper/Supplementary_files 
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