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Introductory paragraph 22 

Mosaic variants (MVs) reflect mutagenic processes during embryonic development1 23 

and environmental exposure2, accumulate with aging, and underlie diseases such as 24 

cancer and autism3. The detection of MVs has been computationally challenging due 25 

to sparse representation in non-clonally expanded tissues. While heuristic filters and 26 

tools trained on clonally expanded MVs with high allelic fractions are proposed, they 27 

showed relatively lower sensitivity and more false discoveries4-9. Here we present 28 

DeepMosaic, combining an image-based visualization module for single nucleotide 29 

MVs, and a convolutional neural networks-based classification module for control-30 

independent MV detection. DeepMosaic achieved a higher accuracy compared with 31 

existing methods on biological and simulated sequencing data, with a 96.34% (158/164) 32 

experimental validation rate. Of 932 mosaic variants detected by DeepMosaic in 16 33 

whole genome sequenced samples, 21.89-58.58% (204/932-546/932) MVs were 34 

overlooked by other methods. Thus, DeepMosaic represents a highly accurate MV 35 

classifier that can be implemented as an alternative or complement to existing methods. 36 

Main text 37 

Postzygotic mosaicism describes a phenomenon whereby cells arising from one zygote 38 

harbor distinguishing genomic variants1, 10. MVs can act as recorders of embryonic 39 

development, cellular lineage and environmental exposure. They accumulate with aging, play 40 

important roles in human cancer progression3, 10, and are implicated in over 200 non-41 
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cancerous disorders11, 12. Collectively, estimates are that MVs contribute to 5-10% of the 42 

‘missing genetic heritability’ in more than 100 human disorders11, 13. 43 

 44 

Compared with the higher allelic fractions (AF) of 5-10% found in clonal tumors or pre-45 

cancerous mosaic conditions, AFs found in non-clonal disorders, or neutral variants used for 46 

lineage studies, are typically present at much lower AFs. Existing methods, however, based 47 

on classic statistical models like Mutect29 and Strelka27 and heuristic filters are often 48 

optimized for the high fraction variants in cancer with relatively high variant AFs. Similarly, 49 

because of their conceptual origin in cancer, most existing programs including the more recent 50 

NeuSomatic14, also require matched control samples. This can be problematic when 51 

mutations are present across different tissues (‘tissue shared’ mosaicism), or when only one 52 

sample is available. 53 

 54 

Newer methods that aim to overcome these limitations, such as MosaicHunter5 or 55 

MosaicForecast4, are based conceptually similarly on the use of features extracted from raw 56 

data, rather than the sequence and alignment themselves, or replace the filters with traditional 57 

machine-learning methods. While these are a useful proxy, they only represent a limited 58 

window into the sheer wealth of information. Because of these limitations, researchers often 59 

resort to visual inspection of raw sequence alignment in a genome browser, a so-called 60 

‘pileup’, to distinguish artifacts from true positive variants15. This is a laborious and low-61 

throughput process that allows spot checking, but cannot be implemented on a large scale 62 

for variant lists numbering in the thousands for programs like MuTect2. 63 
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 64 

Image-based representation of pileups and the application of deep convolutional neural 65 

networks represents a potential solution for these limitations. Previous attempts like 66 

DeepVariant14 were successful in detecting heterozygous or alternative homozygous single 67 

nucleotide variants (SNVs) from direct representation of aligned reads by using deep neural 68 

networks. The DeepVariant genotype model, unfortunately, did not consider a mosaic 69 

genotype, and lacked orthogonal validation experiments. Here we introduce DeepMosaic 70 

comprising two modules: a visualization module for image-based representation of single 71 

nucleotide variants, which forms the basic input for a convolutional neural network (CNN)-72 

based classification module for mosaic variant detection. Five different biological and 73 

computationally simulated dataset as well as amplicon validation were used to train and 74 

benchmark DeepMosaic. 75 

 76 

To automatically generate a useful visual representation similar to a browser snapshot, we 77 

developed the visualization module of DeepMosaic (DeepMosaic-VM, Fig.1a-d). The input for 78 

this visualization is short-read WGS data, processed with a GATK current best-practice 79 

pipeline (insertion/deletion, or INDEL, realignment and base quality recalibration). 80 

DeepMosaic-VM processes this input into an ‘RGB’ image, representing a pileup at each 81 

genomic position. In contrast to a regular browser snapshot, we encode sequences as 82 

different intensities within one channel, and use other channels for base qualities and strand 83 

orientations. We further split the pileup of reference reads and alternative reads based on the 84 
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reference genome information (Fig. 1a-d), to improve visualization and allow assessment of 85 

mosaicism at a glance. 86 

 87 

The classification module of DeepMosaic (DeepMosaic-CM) is a CNN-based classifier for 88 

MVs. We trained 10 different CNN models with more than 180,000 image-based 89 

representations from both true-positive and true-negative biological variants in several 90 

recently published high-quality experimentally validated public datasets16, 17, and 91 

computationally simulated reads with added MVs (employing Illumina HiSeq error models) 92 

across a range of AFs and depths (Fig. 1e, Methods and Supplementary Fig. 1a-b) to select 93 

a model with optimal performance. To ensure its resemblance of real data, we controlled the 94 

distribution of AFs in the training set (Supplementary Fig. 1c). In addition, a range of expected 95 

technical artifacts, including multiple alternative alleles, homopolymers, and alignment 96 

artifacts, were manually curated and labeled negative in the training set to represent expected 97 

pitfalls that often result in false positive mosaic calls for other programs (Supplementary Fig. 98 

1d). 99 

 100 

To further expand training across a range of different read depths, the biological training data 101 

were also up- and down-sampled to obtain data at read depths ranging from 30x to 500x 102 

(Supplementary Fig. 1e), which includes the most commonly used depths for WGS in current 103 

clinical and scientific settings. In addition to the output from DeepMosaic-VM, we further 104 

incorporated population genomic and sequence features (e.g. population allele frequency, 105 

genomic complexity, ratio of read depth), which are not easily represented in an image, as 106 
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input for the classifier (Fig. 1f). Depth ratios were calculated from the expected depth and 107 

used to exclude false positive detections from potential copy number variations. gnomAD 108 

population allelic frequencies were used to exclude common variants. Segmental duplication 109 

and repeat masker regions were used to exclude 24% of low complexity regions genome-110 

wide. 111 

 112 

Ten different CNN architectures were trained on 180,000 training variants described above. 113 

The CNN models included Inception-v318, which was used in DeepVariant; Deep Residual 114 

Network19 (Resnet) which was used in the control-dependent caller NeuSomatic; Densenet20 115 

and 7 different builds of EfficientNet21, for its high performance on rapid image classification 116 

(Methods, Supplementary Fig. 2a). Each model was trained on the data described above with 117 

5 to 15 epochs to optimize the hyper-parameters until training accuracies plateaued (>0.90). 118 

 119 

To compare the different models after training, we employed an independent gold-standard 120 

validation dataset of ~400 MVs from one brain sample22 (Methods). On these, EfficientNet-121 

b4 showed the highest accuracy, Matthews’s correlation coefficient, and true positive rate 122 

when trained for 6 epochs (Supplementary Fig. 2b). We thus select this model as the default 123 

model of DeepMosaic-CM (Supplementary Fig. 3 and Fig. 1f). 124 

 125 

To uncover the information prioritized by the selected default model, we used a gradient 126 

visualization technique with guided backpropagation23 to highlight the pixels with guiding 127 

classification decisions (Supplementary Fig. 4). The results suggested that the algorithm not 128 
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only recognized the edges for reference and alternative alleles, but also integrated additional 129 

available information, such as insertion/deletions in the sequences, overall base qualities, 130 

alignment artifacts, and other features which may not be extracted by digested feature-based 131 

methods. 132 

 133 

We evaluated the performance of DeepMosaic using 20,265 variants from the above training 134 

data that was hidden from model training and selection. The receiver operating characteristic 135 

(ROC) curve and precision-recall curves on the hidden validation dataset showed >0.99 area 136 

under curve for a range of coverage (30x ~500x, Fig. 2a and 2b) across a range of AFs 137 

(Supplementary Fig. 3a and 3b), demonstrating high sensitivity and specificity. 138 

 139 

Next, we benchmarked DeepMosaic’s performance relative to other detection software and 140 

used data generated from a distinct sequencing error model to test for its utility on general 141 

sequencing data. We compared the performance of DeepMosaic with the widely used 142 

Mutect2 (paired mode), Strelka2 (somatic mode) with heuristic filters, MosaicHunter (single 143 

mode), and MosaicForecast (Methods). We generated an additional computationally 144 

simulated dataset of 439,200 variants based on the error model of a different Illumina 145 

sequencer (NovaSeq, Methods), with AF ranges from 1% to 25%, and depth ranges from 50x 146 

to 500x. Mutect2 paired methods and Strelka2 somatic mode used simulated mutated 147 

samples as “tumor” and simulated reference samples as “normal” for their paired modes. 148 

DeepMosaic showed equal or better performance than all other methods tested, especially 149 

for low allelic fraction variants (Fig. 2c), noticeably, even for low read depth data; and it 150 
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performed better than methods that have additional information from paired samples. Overall 151 

DeepMosaic showed almost a 1.5-3 fold increase of the detection sensitivity for AFs under 3% 152 

compared with other methods (Fig. 2c). This is likely because our models integrate additional 153 

genomic sequence and quality information from the original BAM file (Supplementary Fig. 4), 154 

and are capable of distinguishing mosaic variants from different Illumina error models. 155 

 156 

To exclude limitations resulting from benchmarking with simulated data and demonstrate that 157 

models trained on PCR-amplified libraries are also useful for PCR-free sequencing libraries, 158 

we extended benchmarking to biological data. We performed the same comparison on our 159 

recently published 200x WGS dataset12 with 16 samples (blood and sperm) from 8 healthy 160 

individuals24. Paired methods compared two samples from the same individual, and control-161 

independent samples used a published dataset of a panel of normals25. Variants detected by 162 

Mutect2 (paired mode), Strelka2 (somatic mode) and MosaicHunter (single mode) were 163 

subjected to a series of published heuristic filters24, 25. As we had access to the biological 164 

samples, we also performed orthogonal validation, using deep amplicon sequencing of 241 165 

randomly selected MVs with a representative AF distribution compared to the complete 166 

candidate variant list (Methods, Fig. 3a and 3b, Supplementary Table 1). 167 

 168 

As expected from the test of the computationally generated data, DeepMosaic showed the 169 

highest overall validation rate (96.34%, 158/164) among all 5 methods (Fig. 3c), 170 

demonstrating the power of DeepMosaic that models trained on PCR-amplified biological data 171 

and simulated data can accurately classify these PCR-free biological data. Of the 932 MVs 172 
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detectable by DeepMosaic, 21.89% (204/932, 33/34 experimentally validated) were 173 

overlooked by MosaicForecast, 58.58% (546/932, 96/98 validated) overlooked by 174 

MosaicHunter, 50.32% (469/932, 90/94 validated) overlooked by Strelka2 (somatic mode) 175 

with heuristic filters, 43.13% (402/932, 81/85 validated) overlooked by Mutect2 (paired mode) 176 

with heuristic filters24. DeepMosaic also accurately detected variants with relatively low AFs 177 

(Fig. 3d). Finally, DeepMosaic outperformed other methods across most of the AF bins (Fig. 178 

3e). 179 

 180 

In current practice, researchers often combine multiple programs in one variant detection 181 

pipeline to detect different categories of MVs24-26. We thus further compared DeepMosaic with 182 

different pipelines used in recent publications, using data from 200x WGS of the 16 samples24: 183 

1] With the MosaicForecast pipeline4, which uses Mutect2 single mode (each sample 184 

compared with the publicly available panel of normal) as input; 2] With what we call the 185 

M2S2MH pipeline, which we recently published24, combining Mutect2 paired mode (i.e. 186 

compared between different samples from a same individual), Strelka2 somatic mode and 187 

MosaicHunter single mode followed by a series of heuristic filters (Supplementary Fig. 5a). 188 

Of the 932 MVs identified by DeepMosaic, 78.11% (728/932, 125/130 validated) overlapped 189 

with MosaicForecast and 60.09% (560/932, 87/91 validated) overlapped with M2S2MH. In 190 

contrast, 21.89% (204/932, 33/34 validated) were undetected by MosaicForecast, and 39.91% 191 

(372/932, 71/73 validated) were overlooked by M2S2MH. These variants uniquely detected 192 

by DeepMosaic all showed validation rate > 97% (Supplementary Fig. 5b and 5c), 193 
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demonstrating that DeepMosaic can accurately detect a considerable number of variants 194 

undetectable by widely used methods. 195 

 196 

To test the performance of these samples on data widely curated clinically, we compared 197 

detection sensitivity for genome samples with standard WGS read depth, by down-sampling 198 

blood-derived data from a 70-year old healthy individual, in whose blood we observed the 199 

highest number of mosaic variants (due to clonal hematopoiesis24). As all programs had high 200 

validation on this sample at 200x, the recovery rate was used to distinguish the ability of 201 

different programs to detect clonal hematopoiesis variants. DeepMosaic showed similar 202 

recovery in the down-sampled data (Supplementary Fig. 6d) as M2S2MH and slightly 203 

outperformed MosaicForecast at 100x and 150x. We found that the performance of 204 

DeepMosaic was not substantially influenced by the read depth according to the down-205 

sampling benchmark on biological data. 206 

 207 

To understand whether different pipelines had unique strengths or weaknesses, we separated 208 

all the detected variants into 7 groups (G1-G7) based upon sharing between different 209 

pipelines, Supplementary Fig. 6a). DeepMosaic specific variants showed similar base 210 

substitution features compared with other methods (Supplementary Fig. 6b). Similar to the 211 

computationally derived data, we found that DeepMosaic recovered additional low AF MVs 212 

with high accuracy (validation rate 95%, Supplementary Fig. 6c). Finally, we summarized the 213 

genomic features of variants detected by DeepMosaic and other pipelines. All caller groups 214 

report similar ratios of intergenic and intronic variants (Supplementary Fig. 7a). Analysis of 215 
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other genomic features showed DeepMosaic-specific variants (G1) expressed consistency 216 

with other groups (Supplementary Fig. 7b), reflecting that the low-fraction variants detectable 217 

only by DeepMosaic do not represent technical artifacts.  218 

 219 

While we propose DeepMosaic as a powerful tool for mosaic variant detection, it currently is 220 

underpowered for mosaic INDELs and mosaic repetitive variant detection which might be 221 

error-prone in genome. In practice, MosaicForecast can detect variants in genomic repeat 222 

regions with high accuracy, while M2S2MH has good performance for tissue-specific variants. 223 

Thus different methods complement one another.  224 

 225 

DeepMosaic is the first image-based tool for the accurate detection of mosaic SNVs from 226 

short-read sequencing data and does not require a matched control sample. Compared with 227 

NeuSomatic that compresses all the bases in a genomic position into 10 features6, 228 

DeepMosaic-VM provides complete representation of information present in the BAM file. 229 

Compared with other re-coding methods like DeepVariant14, DeepMosaic-CM has the ability 230 

to define MVs as an independent genotype and DeepMosaic-VM can be applied as an 231 

independent variant visualization tool for the user’s convenience. To further integrate 232 

population information not present in the raw BAM, 4 different features are also integrated in 233 

DeepMosaic to facilitate classification. 234 

 235 

Despite the unique features from image representation and a neural network based variant 236 

classifier, DeepMosaic can reproducibly identify the majority (~70%) of variants detectable by 237 
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conventional methods; in addition, however, this unique architecture results in higher 238 

sensitivity, and the detection of variants with relatively lower AF both in simulated and 239 

experimentally derived data validated by orthogonal experiments. 240 

 241 

Both down-sampled biological data in blood of an individual with advanced age and 242 

computationally generated data showed that DeepMosaic has the potential to identify variants 243 

at relatively high sensitivity and high accuracy for WGS at depths as low as 30x. Clonal 244 

hematopoiesis in blood without a known driver mutation is reported27, but can be difficult to 245 

detect because of technical limitations induced by noise and lower supporting read counts28. 246 

For the past 10-15 years, hundreds of thousands of whole-genome sequencing datasets from 247 

clinical, commercial, or research labs have been generated at relatively low depth, but most 248 

have not been subjected to unbiased mosaicism detection due to lack of sufficiently sensitive 249 

methods. DeepMosaic could enable a genome-level unbiased detection of mutations that 250 

requires only conventional sequencing data. 251 

 252 

By using a training set comprising representative technical artifacts such as homopolymers 253 

and truncated reads, DeepMosaic acquired the power to distinguish biologically true positive 254 

variants from false positives, which might be filtered out directly by rule-based methods like 255 

MosaicHunter5 or MosaicForecast4. We also demonstrated that DeepMosaic works for 256 

various Illumina short read sequencing platforms and different library preparation strategies 257 

(PCR-amplified and PCR-free). 258 

 259 
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Although the EfficientNet-b4 at epoch6 performed best, we provide all pre-trained models 260 

(Densenet, EfficientNet, Inception-v3, and Resnet) as DeepMosaic-CM modules on GitHub. 261 

Users are provided with the options to prepare their own data with labeled genotypes for 262 

model training for DeepMosaic, to generate data-specific, personalized models, and to 263 

increase the detection specificity for DeepMosaic on specialized data sets. For instance, 264 

homopolymers and tandem repeats are increasingly recognized as important in disease and 265 

development, but are currently not detected with DeepMosaic, because of the limited training 266 

data; however, users with specialized data sets could remedy this problem by re-training. 267 

 268 

Likewise, gnomAD population AF features used in this study also rely on rely on a matched 269 

ancestry background to avoid population stratification. Annotations such as gene names, 270 

variant functional annotations, gnomAD allelic frequency, homopolymer and dinucleotide 271 

repeat annotation, as well as segmental duplication and UCSC repeat masker regions are 272 

provided in the final output to facilitate customization, as described at the GitHub homepage 273 

of DeepMosaic (https://github.com/Virginiaxu/DeepMosaic). Finally, apart from Mutect2 274 

single mode, DeepMosaic can also process variant lists generated by multiple methods such 275 

as the GATK HaplotypeCaller with ploidy 50 or 10022. Thus, DeepMosaic can be used directly 276 

as is, or can be customized to the needs of the end users, providing an adaptable and efficient 277 

mosaic variant detection workflow. 278 

  279 
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Methods 280 

Curation of training and benchmark data 281 

SimData1: 282 

For the initial training procedure, 10,000 variants were randomly generated on chromosome 283 

22 to get the list of alternative bases. Pysim29 was then used to simulate paired-end 284 

sequencing reads with random errors generated from the Illumina HiSeq sequencer error 285 

model. Alternative reads were generated by replacing the genomic bases with the alternative 286 

bases in the list, with the same error model. Alternative and reference reads were randomly 287 

mixed to generate an alternative AF of 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, and 50%. The data was 288 

randomly sampled for a targeted depth of 30, 50, 100, 150, 200, 250, 300, 400, and 500x. 289 

FASTQ files were aligned to the GRCh37d5 human reference genome with BWA (v0.7.17) 290 

mem command. Aligned data were processed by GATK (v3.8.1) and Picard (v2.18.27) for 291 

marking duplicate, sorting, INDEL realignment, base quality recalibration, and germline 292 

variant calling. The up- and down-sampling expanded this dataset into a pool of 990,000 293 

different variants. Depth ratios were calculated as defined. To avoid the situation that a 294 

randomly generated mutations falls on a common SNP position in the genome, which would 295 

bias the training and benchmarking, gnomAD allele frequencies were randomly assigned from 296 

0 to 0.001 for simulated mosaic positive and from 0 to 1 for simulated negative variants, which 297 

were established as homozygous or heterozygous. 298 

 299 

BioData1: 300 

Variant information and raw sequencing reads from 80-120x PCR-amplified PE-150 WGS 301 

data of 29 samples from 6 normal individuals were extracted from published data16, 17 on SRA 302 

(SRP028833, SRP100797, and SRP136305). 921 variants identified from WGS of samples 303 

from different organs of the donors and validated by orthogonal experiments were selected 304 

and labeled as mosaic positive. 492 genomic positions from the control samples validated 305 

with 0% AF were selected and labeled as negative. 162 variants with known sequencing 306 

artifacts were first filtered by MosaicHunter, manually selected and labeled as negative. The 307 

1575 genomic positions were also down-sampled and up-sampled for a targeted depth of 30, 308 

50, 100, 150, 200, 250, 300, 400, and 500x, to expand this dataset into a pool of 14,175 309 

different conditions. Depth ratios were calculated accordingly, gnomAD allele frequencies, 310 

segmental duplication, and repeat masker information was annotated.  311 

Random subsampling from SimData1 and the entire BioData1 were assembled together 312 

to generate a training and validation dataset with approximately 200,000 variants from the 313 

1,000,000 training variants. 180,000 variants were selected for model training. This dataset 314 

was used for the model training and evaluation of the sensitivity and specificity of the selected 315 

model, and their features including AF distribution and biological appearances were very 316 

similar to published biological data (Supplementary Fig. 1). 317 

 318 

BioData2: 319 

To estimate the performance of the pre-trained models and select the model with the best 320 

performance for DeepMosaic-CM, we introduced an independent gold-standard dataset. 321 

Variants were computationally detected from replicated sequencing experiments generated 322 
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from 6 distinct sequencing centers and validated in 5 different centers, known as the common 323 

reference tissue project from the Brain Somatic Mosaicism Network22. 400 variants underwent 324 

multiple levels of computational validations including haplotype phasing, CNV exclusion, 325 

population shared exclusion, as well as experimental validation such as whole-genome single 326 

cell sequencing, Chromium Linked-read sequencing (10X Genomics), PCR amplicon 327 

sequencing, and droplet digital PCR. After validation, 43 true positive MVs and 357 false 328 

positive variants were determined as gold-standard evaluation set for low-fraction single 329 

nucleotide MVs from the 250x WGS data22. We extracted deep whole-genome sequences for 330 

those variants, labeled them accordingly and used them as gold standard validation set for 331 

model selection (Supplementary Fig. 2). 332 

 333 

SimData2:  334 

To compare the performance of DeepMosaic and other software to detect mosaicism on 335 

simulated data, we randomly generated another simulation dataset, with the following 336 

modifications: 1] only 7610 variants on non-repetitive region of chromosome 22 were 337 

considered true positive genomic positions; 2] random errors were generated from the 338 

Illumina NovaSeq sequencer error model. 3] Data was randomly down-sampled and up-339 

sampled for a targeted depth of 50, 100, 200, 300, 400, and 500x. A total of 439,200 different 340 

variants were generated. FASTQ files were aligned and processed with BWA (v0.7.17), 341 

SAMtools (v1.9), and Picard (v2.18.27). The data was subjected to DeepMosaic as well as 342 

Mutect2 (GATK v4.0.4, both paired mode and single mode), Strelka2 (v2.9.2), MosaicHunter 343 

(v1.0.0), and MosaicForecast (v8-13-2019) with different models trained for different read 344 

depth (250x model for depth≥300x). 345 

 346 

BioData3:  347 

This additional dataset is used to compare the performance of DeepMosaic and other mosaic 348 

variant callers on biological samples. 16 WGS samples from blood and sperm of 8 individuals 349 

were sequenced at 200x24 (PRJNA588332). WGS was performed using an Illumina TrueSeq 350 

PCR-free kit with 350bp insertion size and sequenced on an Illumina HiSeq sequencer. Reads 351 

were aligned to the GRCh37 genome with BWA (v0.7.15) mem and duplicates were removed 352 

with sambamba (v0.6.6) and base quality recalibrated by GATK (v3.5.0). Processed BAM files 353 

were subjected to DeepMosaic as well as Mutect2 (GATK v4.0.4, both paired mode and single 354 

mode), Strelka2 (v2.9.2), MosaicHunter (v1.0.0), and MosaicForecast (v8-13-2019) with 200x 355 

models trained for the specific depth. Data from one of the individuals (F02) was down 356 

sampled to 150x, 100x, 50x, and 30x with the SAMtools (v1.9) view command for the further 357 

benchmark of DeepMosaic. 358 

Neural network building and model training 359 

For the 10 neural network architectures, Inception-v3, Resnet and Densenet were imported 360 

from PyTorch’s (v1.4.0) built-in library, while the 7 different builds of EfficientNet were 361 

imported from the efficientnet_pytorch (v0.6.1) Python (v3.7.1) package. The final fully 362 

connected layer of each model was replaced to be fed into 3 output units representing 363 

intermediate results instead of the default 1,000 output units for the 1,000 ImageNet classes 364 

to significantly reduce the total images required to extract basic features such as edges, 365 
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stripes from raw images. A transfer-learning method was adopted for model training. Each 366 

model’s initial pre-trained weights provided by Pytorch and efficientnet_pytorch packages 367 

were trained on the ImageNet dataset. Before model training, we randomly divided the entire 368 

training dataset (including down-sampling and up-sampling of SimData1 and BioData1) to 80% 369 

“training” and 20% “evaluation” sets and fixed the split during model training while shuffling 370 

the order within the training set and evaluation set for each training epoch to form mini-371 

batches for gradient descent. Each network architecture was trained using a batch size of 20 372 

with a stochastic gradient descent (SGD) optimizer with learning rate of 0.01, and momentum 373 

of 0.9. The training was terminated until the training losses plateaued and evaluation accuracy 374 

reached 90% for each model architecture. The training was conducted on NVIDIA Kepler K80 375 

GPU Nodes on San Diego Supercomputer Centre’s Comet computational clusters. 376 

Network selection 377 

For selecting the “best-performing” neural network architecture among the trained Inception-378 

v3, Resnet, Densenet and 7 different builds of EfficientNet, the gold standard evaluation 379 

dataset (BioData2) was used to test each model’s performance on biological (non-simulated) 380 

MVs determined by the dataset. Accuracy, MCC, True positive rates were calculated for each 381 

model and in the end EfficientNet-b4 at epoch 6 with the highest Accuracy, MCC and True 382 

positive rate among all model architectures was selected as our DeepMosaic model. The 383 

performance of DeepMosaic model (EfficientNet-b4 architecture) was further evaluated. 384 

Usage of DeepMosaic 385 

Detailed instructions for users as well as the demo input and output is provided on GitHub 386 

(https://github.com/Virginiaxu/DeepMosaic). 387 

Orthogonal validation with deep amplicon sequencing  388 

Deep amplicon sequencing analysis was applied to 241 variants from the 1355 candidates 389 

detected by all 5 mosaic variant callers from the 200× WGS of 16 samples24 to experimentally 390 

confirm the validation rate of DeepMosaic as well as other methods. PCR products for 391 

sequencing were designed with a target length of 160-190 bp with primers being at least 60 392 

bp from the base of interest. Primers were designed using the command-line tool of Primer330 393 

with a Python (v3.7.3) wrapper. PCR was performed according to standard procedures using 394 

GoTaq Colorless Master Mix (Promega, M7832) on sperm, blood, and an unrelated control. 395 

Amplicons were enzymatically cleaned with ExoI (NEB, M0293S) and SAP (NEB, M0371S) 396 

treatment. Following normalization with the Qubit HS Kit (ThermoFisher Scientific, Q33231), 397 

amplification products were processed according to the manufacturer’s protocol with AMPure 398 

XP Beads (Beckman Coulter, A63882) at a ratio of 1.2x. Library preparation was performed 399 

according to the manufacturer’s protocol using a Kapa Hyper Prep Kit (Kapa Biosystems, 400 

KK8501) and barcoded independently with unique dual indexes (IDT for Illumina, 20022370). 401 

The libraries were sequenced on a NovaSeq platform with 100 bp paired-end reads. Reads 402 

from deep amplicon sequencing were mapped to the GRCH37d5 reference genome by BWA 403 

mem and processed according to GATK (v3.8.2) best practices without removing PCR 404 

duplicates. Putative mosaic sites were retrieved using SAMtools (v1.9) mpileup and pileup 405 
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filtering scripts described in previous TAS pipelines24. Variants were considered positively 406 

validated for mosaicism if 1] their lower 95% exact binomial CI boundary was above the upper 407 

95% CI boundary of the control; 2] their AF was >0.5%. The number of reference and 408 

alternative alleles calculated from the Amplicon validation was provided in Supplementary 409 

Table 1. 410 

Analysis of different categories of variants overlap with different genomic features 411 

In order to assess the distribution of MVs and their overlap with genomic features, an equal 412 

number of variants (mSNVs/INDELs as in group G1-G7 in Supplementary Fig. 6) was 413 

randomly generated with the BEDtools (v2.27.1) shuffle command within the region from 414 

Strelka2 without the subtracted regions (e.g. repeat regions). This process was repeated 415 

10,000 times to generate a distribution and their 95% CI. Observed and randomly subsampled 416 

variants were annotated with whole-genome histone modifications data for H3k27ac, 417 

H3k27me3, H3k4me1, and H3k4me3 from ENCODE v3 downloaded from the UCSC genome 418 

browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/)—specifically for the 419 

overlap with peaks called from the H1 human embryonic cell line (H1), as well as peaks 420 

merged from 10 different cell lines (Mrg; Gm12878, H1, Hmec, Hsmm, Huvec, K562, Nha, 421 

Nhek, and Nhlf). Gene region, intronic, and exonic regions from NCBI RefSeqGene 422 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz); 10 423 

Topoisomerase 2A/2B (Top2a/b) sensitive regions from ChIP-seq data (Samples: 424 

GSM2635602, GSM2635603, GSM2635606, and GSM2635607); CpG islands: data from the 425 

UCSC genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/); 426 

genomic regions with annotated early and late replication timing31; high nucleosome 427 

occupancy tendency (>0.7 as defined in the source, all values were extracted and merged) 428 

from GM12878; enhancer genomic regions from the VISTA Enhancer Browser 429 

(https://enhancer.lbl.gov/); and DNase I hypersensitive regions and transcription factor 430 

binding sites from Encode v3 tracks from the UCSC genome browser 431 

(wgEncodeRegDnaseClusteredV3 and wgEncodeRegTfbsClusteredV3, respectively). 432 

Data availability 433 

WGS data used to generate the training set are available at the Sequence Read Archive 434 

(SRA, Accession No. SRP028833 and SRP100797). The gold standard WGS data is 435 

available at the National Institute of Mental Health Data Archive (NIMH NDA Study ID 792: 436 

https://dx.doi.org/10.15154/1504248) and the Brain Somatic Mosaicism Consortium Data 437 

Portal (https://bsmn.synapse.org/Explore/Studies/DetailsPage?id=syn21781120). The 438 

independent sperm and blood deep WGS data are available at SRA (Accession No. 439 

PRJNA588332). 440 

Code availability 441 

DeepMosaic is implemented in Python; the code, documentation and demos are available at 442 

https://github.com/Virginiaxu/DeepMosaic. 443 
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 532 

  533 

Fig. 1| Image representation, model training strategies, and framework of DeepMosaic. 534 

a, DeepMosaic-VM: Composite RGB image representation of sequenced reads separated 535 

into “Ref” - reads supporting the reference allele; or “Alts'' - reads supporting alternative alleles; 536 

each outlined in yellow. b, Red channel of compound image contains base information from 537 

BAM file. “D” - deletion; “A” – Adenine; “C” – cytosine; “G” – guanine; “T” – thymine; “N” – low-538 

quality base. Yellow box: Var: candidate position, centered in the image. c, Green channel: 539 

base quality information. Note that channel intensity was modulated in this example for better 540 

visualization. d, Blue channel: strand information (i.e. forward or reverse). e, Model training, 541 

model selection, and overall benchmark strategy for DeepMosaic-CM (Methods and 542 

Supplementary Fig. 1). Ten different convolutional neural network models were trained on 543 

180,000 experimentally validated positive and negative biological variants from 29 WGS data 544 

from 6 individuals sequenced at 100x16, 17 (BioData1), as well as simulated data with different 545 

AFs (SimData1) resampled to different depth. Models were evaluated based upon an 546 

independent gold-standard biological dataset from the 250x WGS data of the Brain Somatic 547 

Mosaicism Network Reference Tissue Project22 (BioData2). DeepMosaic was further 548 

benchmarked on 16 independent biological datasets from 200x WGS data24 (BioData3) as 549 

well as 439,200 independently simulated variants (SimData2). Deep amplicon sequencing 550 

was carried out as an independent evaluation on variants detected by different software 551 
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(Supplement Table 1). f, Application of DeepMosaic-CM in practice. Input images are 552 

generated from the candidate variants. 16 convolutional layers extracted information from 553 

input images. Population genomic features were assembled for final output. Images of 554 

positive and negative variants are shown as examples. Conv: convolutional layers; MBConv: 555 

mobile convolutional layers. 556 

  557 
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 558 

 559 

Fig. 2| DeepMosaic showed high performance on simulated benchmark variants.  560 

a, Receiver operating characteristic (ROC) curve for DeepMosaic. True positive rates (TPR) 561 

and false positive rates (FPR) were evaluated from 20,265 variants (BioData1 and SimData1) 562 

hidden from model training and model selection. Colors show groups of intended read depth. 563 

b, Precision-recall curves for DeepMosaic, evaluated from the 20,265 hidden variants, dots 564 

showed the performance of the default parameters for DeepMosaic-CM. ROC and precision-565 
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recall curves for DeepMosaic on different AFs are provided in Supplementary Fig. 3. c, 566 

Sensitivity of DeepMosaic and other mosaic callers on 439,200 independently simulated 567 

benchmark variants (SimData2) at simulated read depths and AFs. DeepMosaic performed 568 

equally well or better than other tested methods, especially at lower read-depths and lower 569 

expected AFs. 570 

  571 
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 572 

 573 

Fig. 3| DeepMosaic performance validated on biological data.  574 

a, DeepMosaic and other mosaic variant detection methods were applied to 200x whole-575 

genome sequencing data from 16 samples, which were not used in the training or validation 576 

stage for any of the listed methods (BioData3). Raw variant lists were either obtained by 577 

comparing samples using a panel-of-normal25 strategy with MuTect2 single mode, between 578 

different samples from a same individual using MuTect2 paired mode or Strelka2 somatic 579 

mode, or detected directly without control with MosaicHunter single mode with heuristic 580 

filters24. A total of 46,928 candidate variants from MuTect2 single mode were analyzed by 581 

DeepMosaic and MosaicForecast. Orthogonal validation with deep amplicon sequencing was 582 

carried out on a total of 241 variants out of the 1355 candidates called by at least one method. 583 

b, Distribution of AFs of the whole candidate mosaic variant list and the 241 randomly selected 584 
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variants. c, Comparison of validation results between different mosaic variant calling methods, 585 

‘UpSet’ plot shows the intersection of different mosaic detection methods and the validation 586 

result of each category. Variants identified by DeepMosaic showed the highest validation rate 587 

on biological data. d, Examples of validated variants called by DeepMosaic and 588 

MosaicForecast (i), only by DeepMosaic (ii), or by DeepMosaic and other traditional methods 589 

(iii). e, Comparison of validation rate in different AF range percentage bins of variants. 590 

DeepMosaic showed the highest validation rate at a range of AFs, approximately 48 591 

experimentally validated variants are shown in each AF bin. 592 
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