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Abstract17

Polygenic risk scores (PRS) are on course to translate the results of genome-wide association studies18

(GWAS) into clinical practice. To date, most GWAS have been based on individuals of European-19

ancestry, meaning that the utility of PRS for non-European populations is limited because SNP effects20

and LD patterns may not be conserved across populations. We hypothesized that cross population21

prediction at the level of genes rather than SNPs would be more effective, since the effect of genes on22

traits is likely to be more highly conserved. Therefore, we developed a framework to convert effect sizes23

at SNPs into effect sizes for genetically predicted transcript abundance, which we used for prediction24

in non-European populations. We compared this approach, which we call polygenic transcriptome risk25

scores (PTRS), to PRS, using data from 17 quantitative traits that were measured in multiple ancestries26

(European, African, East Asian, and South Asian) by UK Biobank. On average, PTRS using whole27

blood predicted transcriptome had lower absolute prediction accuracy than PRS, as we expected since28
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not all regulatory processes were captured by a single tissue. However, as hypothesized, we found that29

in the African target set, the portability (prediction accuracy relative to the European reference set) was30

significantly higher for PTRS than PRS (p=0.03) with additional gain when transcriptomic prediction31

models ancestry matched the target population (p=0.021). Taken together, our results suggest that32

using PTRS can improve prediction in underrepresented populations and that increasing the diversity of33

transcriptomic data may be an effective way to improve portability of GWAS results between populations34

and help reduce health disparities.35

Introduction36

Polygenic risk scores (PRS) for a variety of traits are increasingly becoming accurate enough to be useful37

for clinical practice, realizing the longstanding goal of personalized medicine. PRS for coronary artery38

disease (CAD) have been shown to provide prediction that has been compared to monogenic mutations of39

hypercholesterolemia (Khera et al., 2018). In practice, PRS may impact a larger proportion of patients40

compared to monogenic mutations; for example, PRS for CAD provide potentially actionable information41

for 8% of the population (for whom the risk increases by three-fold) whereas known monogenic mutations42

are only informative for about 0.4% of patients. However, a major limitation of this approach is that PRS43

developed in one human ancestry group do not perform well in other ancestry groups, limiting their utility44

and exacerbating already severe health disparities (Curtis, 2018; Martin et al., 2019). This problem is being45

addressed by large efforts such as Human Heritity and Health in Africa (H3Africa) Choudhury et al. (2020),46

Million Veterans Project (Gaziano et al., 2016), AllofUs (of Us Research Program Investigators, 2019) and47

TOPMED (Taliun et al., 2019) that are recruiting individuals from diverse ancestry groups.48

However, these efforts are time consuming, enormously expensive and will have to be repeated at scale,49

for numerous traits, across numerous ancestry groups. Therefore, methods that can use GWAS results from50

one population for prediction in other ancestry groups is highly desirable. Analysis of GWAS conducted in51

different populations suggested that a considerable fraction of causal SNPs are shared across populations (Shi52

et al., 2020). This suggests that efforts to develop methods that transfers knowledge across populations can53

provide a cost effective ways to improve prediction in underrepresented ancestry groups. Many loci identified54

by GWAS are thought to exert their effects by regulating gene expression. Motivated by this mechanistic55

insight, multiple eQTL studies have been performed over the last decade (The GTEx Consortium, 2020;56

Võsa et al., 2018). The GTEx consortium, for example, has sequenced mRNAs samples from 50 tissues57

across the human body from more than 900 donor individuals. PrediXcan (Gamazon et al., 2015) and other58

TWAS methods (Gusev et al., 2016; Hu et al., 2019) leverage these reference transcriptome datasets to train59

prediction models of gene expression levels and correlate the genetically predicted gene expression levels60

with complex traits to identify causal genes. Given the common biology of human disease across populations61
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and the mediating role of the transcriptome, we hypothesized that that prediction at the level of estimated62

transcript abundance rather than SNPs might be more effective across populations.63

Therefore, we propose the polygenic transcriptomic risk score (PTRS) as a gene-based complement to64

the PRS that has the potential for superior portability across human ancestry groups. One advantage of65

PTRS is that the smaller number of features (tens of thousands of genes rather than millions of SNPs),66

means that optimizing the parameters to build PTRS is more manageable than PRS. Another advantage of67

PTRS is that training transcriptome prediction models requires much smaller samples than training PRS,68

and can then be used for prediction of many different traits. Furthermore, training data for non-European69

individuals are becoming increasingly available. Finally, because PTRS is gene-based, it is inherently more70

biologically interpretable than PRS.71

In this paper, we explored the advantages of PTRS using the UK Biobank (UKB), which provides72

genotype and phenotype data in half a million individuals (Bycroft et al., 2018). Although the majority73

of participants in UKB are of European-descent, several thousand individuals of non-European descent are74

also available, and could be used to compare prediction by PRS and PTRS across ancestries. We started by75

testing whether the genetically predicted transcriptome could explain a sizeable portion of trait heritability76

and whether matching the transcriptome training and risk score testing populations’ ancestry would be77

beneficial. Then, we built PRS and PTRS for a range of complex traits and compared their prediction78

accuracy and portability across populations.79

Results80

Before describing the results we define and clarify some terminology. In this paper, there are two types of81

prediction: 1) gene expression level prediction from genotype data and 2) complex trait prediction using PRS82

or PTRS. PRS uses genotype data directly and PTRS uses linear combinations of genotypes representing83

predicted gene expression levels. To simplify exposition, we will only use the term training for the calculation84

of weights for predicting gene expression levels using genotype data. The training of transcriptome (gene85

expression levels) prediction weights had been performed previously and we simply downloaded them from86

predictdb.org. When we estimate optimal weights for PRS and PTRS, we will use the terms building or87

constructing. We performed the building of PRS and PTRS using the discovery set. The testing of the risk88

scores, PRS and PTRS, were performed in what we call the target sets. For the remainder of the paper, we will89

refer to individuals by their ancestry and drop the -descent suffix. Unless otherwise clarified, we will use the90

term transcriptome to mean the set of predicted expression levels of genes. GTEx EUR transcriptome should91

be interpreted as the set of predicted gene expression levels using weights trained in European samples from92

GTEx. Similarly, MESA EUR transcriptome, will refer to the predicted transcriptome using weights trained93

with the MESA European samples. MESA AFHI transcriptome will refer to the predicted transcriptome94
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using weights trained with a combination of African American and Hispanic individuals from the MESA95

study.96

Experimental setup97

An overview of the experimental setup describing the discovery, training, and target sets used in the paper is98

shown in Fig.1. We randomly selected 356,476 unrelated Europeans in the UK Biobank for the discovery set.99

For testing the performance of risk scores, we constructed 5 target sets with participants of various ancestries100

in the UK Biobank. We used 2,835 African, 1,326 East Asian, and 4,789 South Asian individuals for the non101

European target sets. We also reserved two randomly selected sets of 5,000 Europeans as additional target102

sets. One was selected as the EUR reference set and the second European target was used as a test set to103

assess the the variability of the results within the same ancestry.104

For predicting the transcriptome, we downloaded prediction weights from multiple ancestries collected in105

predictdb.org. The first set of models had been trained in European individuals from the GTEx v8 release106

(Barbeira et al., 2020a) in whole blood and 9 other tissues chosen by had been large sample size. The second107

set of models had been trained using monocyte samples of Europeans, African Americans, and Hispanics108

from the MESA cohort (Mogil et al., 2018).109

For our tests, we focused on the 17 anthropomorphic and blood phenotypes used by Martin et al. (Martin110

et al., 2019).111
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Figure 1: Experiment setup. This figure summarizes the experimental set up used for testing the portability

of PRS and PTRS across populations. The weights for calculating PRS and PTRS were estimated in the discovery

set, which consisted of 345K randomly sampled individuals of European-descent from the UK Biobank. The training

sets where the weights for the prediction of transcriptomes were computed are shown in green. We downloaded

the weights trained previously from predictdb.org. We sampled 5 target sets from the UK Biobank for testing the

risk scores: two randomly sampled sets of European-, one African-, one East Asian-, and one South Asian-descent

individuals. For each of the 5 target sets, predicted transcriptomes were calculated using the weights trained in each

of the three training sets: GTEx EUR, MESA-EUR, MESA-AFHI.

Predicted transcriptome captures a significant portion of trait variability112

To assess the feasibility and to quantify the potential for PTRS to predict human traits, we calculated the113

proportion of variance explained by the predicted transcriptome assuming random effects of gene expression114

levels. The approach is analogous to standard SNP-heritability estimation (Yang et al., 2010) where the115

“predicted expression relatedness matrix” is used instead of the genetic relatedness matrix. In this section,116

we calculated the predicted transcriptome using the GTEx EUR weights using the European target set117

genotype data. Using these predicted expression levels, we calculated the “predicted expression relatedness118

matrix” (instead of the genetic relatedness matrix) and applied the standard restricted maximum likelihood119

estimation to calculate the proportion of variance explained by the predicted transcriptome.120

Since the PVE varies depending on the underlying heritability of the trait, we also calculated the propor-121

tion of SNP heritability explained by the predicted transcriptome as the ratio of PVE and heritability. We122

term this values “regulability” (Barbeira et al., 2020a). For the SNP-heritability we used publicly available123

heritability estimates based on LDSC regression (Bulik-Sullivan et al., 2015) in UK Biobank Europeans for124

the same set of phenotypes (see details in section 1.7).125
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As shown in Fig.2A, in the European target set, GTEx EUR whole blood based predicted transcriptome126

captured on average 20.6% (s.e.=2.1%) of the trait variability. This result is largely consistent to the127

estimates reported previously using a different approach (Yao et al., 2019).128

Aggregating predicted transcriptomes in multiple tissues increases the PVE129

To explore ways to increase the proportion of variance explained (PVE), we calculated the proportion130

explained collectively by the transcriptome predicted in 10 tissues, including muscle, adipose, tibial artery,131

breast, lung, fibroblast, lung, tibial nerve, and skin, with sample sizes ranging from 337 to 602 (Supplementary132

Table S3). As anticipated, we found that, collectively, the predicted transcriptomes in 10 tissues explained133

a larger portion of heritability: on average 34.4% (s.e. = 3.3%) of the heritability corresponding to a 48%134

increase relative to whole blood alone. This result suggests that adding transcriptomes from multiple tissues135

will improve predictions in general.136

(A) (B)

Figure 2: Proportion of variance explained (PVE) by the predicted transcriptome. (A) shows the ratio of

PVE (the proportion of phenotypic variation explained by the predicted transcriptome) of GTEx EUR transcriptome

model over the chip heritability using whole blood on the left and using 10 tissues on the right. (B) shows the mean

of the difference between the PVE by the predicted MESA AFHI transcriptome and the PVE by the MESA EUR

transcriptome. For the African set, the MESA AFHI transcriptome explains more variance that the MESA EUR

transcriptome. In the European set, the difference between the two transcriptomes is not significant. The vertical

bars show the 95% confidence intervals estimated with paired t-test.

Matching training and target ancestries increases the proportion of variance explained137

Next, we examined whether using transcriptomes trained in a population genetically closer to the target set138

could explain a larger proportion of the trait variance. For this, we took advantage of the availability of139

trans-ancestry transcriptome prediction models from the MESA cohort (Mogil et al., 2018). One of them140

(MESA-EUR) was trained in a European population and the other one (MESA AFHI) was trained in a141
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combination of African American and Hispanic populations (Supplementary Table S3). We decided to use142

the combined (African American and Hispanic) transcriptome prediction since the similarity of the sample143

sizes (578 vs 585) would make the comparison with the European trained models more fair.144

We found that (Fig.2B) in the African target set, using the ancestry matched MESA AFHI transcriptome145

yielded a significantly higher (2.1% with s.e. = 0.8%) proportion of variance explained than when using the146

MESA EUR transcriptome. For the European target set, the difference between using the MESA AFHI or147

the EUR transcriptomes was not significantly different from 0.148

Building PRS and PTRS149

After having determined that it is possible to capture a significant portion of trait variability using predicted150

transcriptome and that matching the training and target set ancestries can increase the portion explained,151

we proceeded to build the PRS and PTRS in our discovery set (356K Europeans from the UK biobank).152

We built PTRS weights using elastic net, a regularized linear regression approach, which selects a sparse153

set of predicted expression features to make up the PTRS. For PRS weights, we used the standard LD154

clumping and p-value thresholding approach (see details Methods section section 1.3).155

We quantified the prediction accuracy in each target set using the partial R2 (R̃2), which provides a156

measure of correlation between predicted and observed outcomes with the added benefit of taking covariates157

into account (see details in section 1.10).158

All the weights were calculated in the discovery set, however, to boost the prediction performance across159

the board, we performed an additional tuning step in the target populations. This was done for all scores160

(PRS and PTRS) in each target set so that the comparison remains fair. For PRS, we chose the p-value161

threshold that yielded the highest R̃2 in each target set. For PTRS, we pre-computed weights for a range162

of regularization parameters in the discovery set and chose the parameter that maximized the R̃2 in each163

target set.164

PTRS prediction accuracy outperforms expectation given their PVE explained165

Tested in the European target sets with European training set transcriptome models, the mean prediction166

accuracy of PTRS (GTEx EUR based) was lower than the accuracy of PRS (paired t-test p = 0.03) as167

shown in Fig.3A for the 17 traits. However, PTRS performance was much higher that what could have168

been expected given that predicted expression only explained about a fifth of the trait variation explained169

by typed and imputed SNPs. This better than expected performance indicates that integrating predicted170

transcriptomes and other omics is a promising avenue to improve PRS performance in general.171

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.373647doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.373647
http://creativecommons.org/licenses/by/4.0/


Matching training and target ancestries improves prediction accuracy172

To test whether matching the training and target ancestries would improve the PTRS prediction accuracy, we173

examined the difference between using the African transcriptome (MESA AFHI) vs the European transcrip-174

tome (MESA EUR). As hypothesized, the PTRS based on the MESA AFHI transcriptome yielded accuracy175

higher than the PTRS based on the MESA EUR transcriptome when the target set was African. Similarly,176

for the European target set, the European transcriptome based PTRS had better accuracy than the AFHI177

transcriptome based ones. Fig.3B shows the small but significant difference (R2(AFHI) - R2(EUR)), which178

was positive (0.14%, s.e.= 0.06%) for the African target set and negative for the European target sets (-0.77%179

s.e.=0.08%), consistent with the positive effect of matching the ancestries.180

To avoid differences due to having different number of predicted genes, PTRS were built using only the181

genes that were present in both training sets, EUR and AFHI. See details in Methods section section 1.8.182

(A) (B)

Figure 3: Prediction accuracy of predicted transcriptome risk scores (PTRS). (A) Prediction accuracy,

measured by partial R̃2, of PTRS (on y-axis) compared to the accuracy of PRS (on x-axis). Given the fact that

the PVE by predicted expression was on average 20.1% of the heritability, PTRS is performing much better than

expected. (B) The difference in the prediction accuracies bewteen MESA AFHI and MESA EUR models for the set

of African samples and European samples. Matching training and target set ancestries leads to improved prediction

accuracy: AFHI transcriptome yields better prediction accuracy in the African target set and EUR transcriptome

yield better prediction accuracy in the European target set.

PTRS improves portability into the African population183

To test our hypothesis that PTRS can generalize more robustly across populations than the standard PRS,184

we defined ‘portability ’ as the predictive accuracy in each population relative to the European reference185

target set (EUR ref.). This is calculated as the ratio of the R̃2 in the target population divided by the R̃2
186

in the European reference target set. Thus, by definition the portability in the European reference set is 1.187
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Consistent with reports by (Martin et al., 2019), the portability of PRS degrades with the genetic distance188

to the European discovery set as shown in gray in Fig.4A. The portability of PTRS (shown in orange) also189

decreases with genetic distance to the discovery set, with the African target sets showing the largest loss of190

accuracy, as expected. However, we also observed that the portability of PTRS in the African target set191

was significantly higher than the portability of PRS (paired t-test p=0.03). These results provide strong192

proof of principle that integrating predicted transcriptome as done with PTRS has the potential to improve193

portability of risk scores across populations.194

In the European test set, we observed quite a bit of variability in the portability, ranging from 0.54195

to 2.21, despite the fact that both European target sets were randomly sampled from the same European196

UK Biobank participant set. As expected, the median portability in the second EUR target set is centered197

around 1.198

Finally, we used the MESA EUR and AFHI models to assess the potential improvement in portability199

when matching training and target set ancestries. As shown in Fig.4B, PTRS based on AFHI transcriptome200

has significantly higher portability than the MESA-EUR transcriptome-based PTRS (paired t-test p=0.021).201

As an additional evidence of improved portability of PTRS in general, we replicated the higher portability202

of the EUR-based PTRS compared to PRS using an independent training set (MESA vs GTEx as described203

above).204

(A) (B)

Figure 4: Portability of PTRS for 17 quantitative phenotyes in UK Biobank. (A) The portability of

PTRS trained and calculated using GTEx EUR whole blood samples are shown in yellow with the PRS shown in

gray (left panel). ‘EUR ref.’ set is used as the reference population in the calculation of portability (section 1.11) so

that the portability is always 1. (B) The right panel shows the portability in the AFR target set using the MESA

transcriptome models trained in EUR and AFHI sets. We observed the trend that PTRS has better portability using

EUR transcriptomes both from GTEx and MESA. The gain in the AFR set is even higher when AFR transcriptomes

are used for the PTRS.
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Taken together, our results provide support to our hypothesis that PTRS can transfer more robustly than205

PRS, which can be improved by using ancestry matching transcriptomes. Also they suggests that adding206

transcriptomes predicted in other tissues and other omics data can further improve PRS generalizability.207

Discussion208

In this paper, we showed that informing genetic risk score building using genetically determined gene ex-209

pression traits as intermediate predictors as implemented with PTRS can lead to predictors that are more210

portable across populations, especially if matched ancestry transcriptomes are used.211

We found that the total trait variation that can be explained via predicted transcriptomes range from212

20.6% (using whole blood) to 34.4% (with a broader sets of tissues) of the SNP heritability, i.e. the total213

variation that can be explained using common SNPs. Promisingly, the actual predictors built on predicted214

transcriptomes had performances that were much higher than the expected 20.6% of the PRS performance.215

The predicted transcriptome tended to be more predictive if it was trained with individuals from the same216

ancestry stressing the advantages of collecting transcriptome reference data in diverse populations.217

We found that the portability of PTRS was significantly higher than the portability of PRS in the218

African target set, the most affected by the Eurocentric bias in GWAS studies, with further gains when the219

transcriptome was trained in matched ancestry samples.220

Our results show that investing in multi-omic studies of diverse populations may be a cost effective way221

to reduce current genomic disparities by taking better advantage of existing GWAS studies. Developments222

of methods to optimally combine PRS and PTRS should be encouraged.223

Our study points to promising strategies to improve risk prediction in general but it also has several224

limitations. First, PTRS are based on prediction models of gene expression traits which we estimated to225

account for less than a third of the total variability in the complex traits considered here. We expect this226

limitation to be mitigated as additional transcriptome reference sets as well as other omics data covering227

mediating mechanisms missed in current models. Second, we used single tissue prediction models for most228

of the analysis in this paper, which captured a fifth of the variation in the complex traits here. We will229

develop approaches to integrate multiple tissue models. Third, weights for PRS were calculated using230

GWAS summary results (thresholding and pruning method) whereas PTRS weights were calculated using231

individual level data due to computational considerations. Future analysis will be performed using individual232

level data for PRS by using biobank-scale ready elastic net approaches such as (Qian et al., 2020). Fourth,233

higher quality prediction models of the transcriptome in non-European ancestries are limited. Here we used234

predictors trained in monocyte samples assayed with older array technology. Multiple ancestry models are235

currently being generated by us and other groups. For example, the MESA TOPMED project has assayed236

RNAseq, protein, methylation, and metabolomics data in African Americans, Hispanics, and Asian ancestry237
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individuals which will allow the development of improved prediction models.238

1 Material and Methods239

1.1 Obtaining individuals and phenotypes from UK Biobank240

We used data from UK Biobank data downloaded on July 19 2017. We excluded related individuals and the241

ones with high missing rate or other sequencing quality issues. As covariates, we extracted age at recruitment242

(Data-Field 21022), sex (Data-Field 31), and the first 20 genetic PCs. The ancestry information of individ-243

uals was obtained from Data-Field 21000 and we kept individuals labelled as ‘British’, ‘Indian’, ‘Chinese’,244

or ‘African’ (according to Data-Coding 1001: http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=245

1001). Throughout the paper, we labeled ‘British’ individuals as EUR, ‘Indian’ individuals as S.ASN, ‘Chi-246

nese’ individuals as E.ASN, and ‘African’ individuals as AFR. The measurements of the 17 quantitative247

phenotypes (as shown in Supplementary Table S1) across all available instances and arrays were retrieved.248

The data retrieval described above was performed using ukbREST (Pividori and Im, 2019){pividori:2019}249

with the query YAML file available at https://github.com/liangyy/ptrs-ukb/blob/master/output/250

query_phenotypes.yaml.251

If one individual has multiple measurements for the same phenotype (in more than one instances and/or252

more than one arrays), we collapsed multiple arrays by taking the average and we aggregated measurements253

across multiple instances by taking the first non-missing value. Individuals with missing phenotype in any254

of the 17 quantitative phenotypes or covariates were excluded.255

1.2 Quality control on self-reported ancestry256

To ensure the quality of ancestry label, we removed individuals who deviate substantially from the popu-257

lation that they were assigned to. Specifically, for population k among the 4 populations (EUR, S.ASN,258

E.ASN, and AFR), we treated the distribution of the individuals, in the space of the first 10 PCs, as259

multivariate normal. And we calculated the observed population mean µ̂k and covariance Σ̂k accord-260

ingly. Then, for each individual i in population k, we evaluated the “similarity” Sik to the population k261

as Sik = log Pr(PC1
i , · · · ,PC10

i ; µ̂k, Σ̂k). Intuitively, if an individual has genetic background differing from is262

the assigned population, the corresponding Sik will be much larger than others. So, we filtered out individ-263

uals with Sik ≤ −50 in the assigned population k. This cutoff was picked such that Sik′ for any un-assigned264

population k′ has Sik′ ≤ −50 for all individuals.265

The number of individuals remained after data retrieval and ancestry quality control is listed Supple-266

mentary Table S2.267

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.373647doi: bioRxiv preprint 

http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=1001
http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=1001
http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=1001
https://github.com/liangyy/ptrs-ukb/blob/master/output/query_phenotypes.yaml
https://github.com/liangyy/ptrs-ukb/blob/master/output/query_phenotypes.yaml
https://github.com/liangyy/ptrs-ukb/blob/master/output/query_phenotypes.yaml
https://doi.org/10.1101/2020.11.12.373647
http://creativecommons.org/licenses/by/4.0/


1.3 Performing GWAS and building LD-clumping based PRS models268

We built PRS using the genotypes and phenotypes of the individuals in the discovery data set (the details of269

data splitting is described in section 1.11). We performed GWAS (linear regression) using linear_regression_rows270

in hail v0.2 where we included covariates: first 20 genetic PCs, age, sex, age2, sex × age, and sex × age2.271

In the GWAS run, we excluded variants with minor allele frequency < 0.001 and variants that significantly272

deviate from Hardy-Weinberg equilibrium (p-value < 10−10). And the phenotype in their original scales273

were used.274

To obtain relatively independent associations for PRS construction, we run LD clumping using plink1.9

with option –clump –clump-p1 1 –clump-r2 0.1 –clump-kb 250. This command extracted genetic vari-

ants in the order of their GWAS significances and excluded all variants having R2 > 0.1 to or 250 kb within

any variants that have already been included. The PRS was constructed on the basis of the set of variants

obtained from the LD clumping along with the marginal effect size estimated in GWAS run. Specifically, we

calculated PRSs at a series of GWAS p-value thresholds: 5× 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 0.01, 0.05,

0.1, 0.5, and 1. In other word, at threshold t, the PRS for individual i was calculated as

PRSti =
∑
j:pj≤t

Xij b̂j , (1)

where Xij is the effect allele dosage of variant j in individual i and b̂j is the estimated effect size of variant275

j from GWAS run.276

At the testing stage, given the genotype of an individual, we calculated the PRS of the individual using277

eq. (1).278

1.4 Computing the predicted transcriptome279

We computed predicted gene expression for all individuals passing filtering steps and quality control. We280

utilized two sets of prediction models: 1) CTIMP models (proposed in (Hu et al., 2019)) trained on GTEx v8281

EUR individuals (Barbeira et al., 2020b){barbeira:2020}; and 2) elastic net models which were trained on Eu-282

ropeans (EUR) or African Americans in combination with Hispanics (AFHI) (Mogil et al., 2018){mogil:2018}.283

The sample size and tissue informations of the prediction models are listed in Supplementary Table S3.284

1.5 Estimating PVE by predicted transcriptome of a single tissue285

To get a sense on the predictive power of predicted transcriptome on the phenotypes of interest, we estimated

the proportion of phenotypic variation that could be explained by the predicted transcriptome in aggregate.
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Specifically, we assume the following mixed effect model (for individual i).

Yi = µ+
∑
l

Cilal +
∑
g

T̃igβg + εi (2)

εi ∼iid N(0,σ2
e) (3)

βg ∼iid N(0,
σ2
g

M
), (4)

where M denotes the number of genes, Cil is the lth covariate, T̃ig is the inverse normalized predicted286

expression for gene g, and Yi is the observed phenotype. By inverse normalization, we converted the predicted287

expression T̂ig to T̃ig by T̃ig = Φ−1(
rank(T̂ig)
N+1 ) within each gene g where N is the number of individuals and288

‘rank’ is in increasing order. So that we have T̃ig ∼ N(0, 1). The parameters of the model were estimated289

using hail v0.2 stats.LinearMixedModel.from_kinship with K matrix being set as T̃ T̃ t/M . And PVE is290

calculated as σ̂2
g

σ̂2
e+σ̂

2
g
. The same set of covariates as section 1.3 were used.291

The PVE estimation was performed for each transcriptome model and population pairs. For non-292

European populations, all individuals were included in the analysis. We randomly selected 5,000 EUR293

individuals for the analysis.294

1.6 Estimating PVE by predicted transcriptome of multiple tissues295

The genetic effects on the complex trait can be mediated through the regulation of expression in different296

tissues so that including predicted transcriptomes in multiple tissues could potentially improve the prediction297

performance. To test this idea, we performed PVE analysis as described in section 1.5 using predicted298

expression in 10 GTEx tissues (listed in Supplementary Table S3). To account for colinearity issues induced299

by the high correlation of predicted expression among tissues, we preselected linearly independent ‘eigen-300

predicted expression’ traits using singular vectors of the predicted expression data. This approach is similar301

to the one used for combining PrediXcan association in multiple tissues (Barbeira et al., 2019). The PVE302

was calculated using a mixed effects model similar to eq. (2) where the expression traits were replaced by303

the eigen-predicted expression traits.304

Briefly, the eigen-predicted expression traits were calculated as follows. For each gene g, let T̂ jg =

(T̂ j1g, · · · , T̂ jNg) denote the predicted expression (with standardization) of g in tissue j across individual

i = 1, · · · ,N . By collecting T̂ jg for all tissues which have prediction model for gene g (suppose there are J of

them), we have a matrix Tg ∈ RN×J where columns correspond to tissues. To remove the colinearity in the

columns of Tg by keeping linearly independent predictors, we used the first K left singular vectors of Tg with

K selected as follows. We performed PCA on T̂ tg T̂g and any kth PC V kg was excluded if λk/λmax ≤ 1/30.

The leading K left singular vectors (up to a scaling factor) of T̂g was reconstructed as follow.

Ukg = T̂gV kg (5)
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We further inverse normalized Ukg (as described in section 1.5) resulting in Ũkg , which were plugged into305

eq. (2) the procedure described in the previous subsection 1.5.306

1.7 Retrieving publicly available heritability estimates307

We retrieved chip heritability estimates by LDSC regression (Bulik-Sullivan et al., 2015) from https:308

//nealelab.github.io/UKBB_ldsc/downloads.html where we downloaded the file https://www.dropbox.309

com/s/8vca84rsslgbsua/ukb31063_h2_topline.02Oct2019.tsv.gz?dl=1. These estimates were calcu-310

lated with GWAS summary statistics obtained from UK Biobank Europeans with inverse normalized phe-311

notypes. We extracted phenotypes of interest by their UKB Field ID. And we used columns h2_observed312

and h2_observed_se as the estimated value and standard error of the heritability estimation.313

1.8 Building PTRS models using elastic net314

For each of the 17 quantitative phenotypes, we trained elastic net model to predict the phenotype of interest

using the predicted transcriptome (in a single tissue) as features. The same set of covariates as described in

section 1.3 were used. Let T̂g ∈ RN×1 denote the standardized predicted expression level of gene g across

N individuals. Similarly, let Cl ∈ RN×1 denote the observed value of the lth standardized covariate. We fit

the following elastic net model.

βEN = arg min
β

loss: l(β)︷ ︸︸ ︷
1

N
‖Y −Xβ − β0‖22 +λα‖β‖1 + λ(1− α)‖β‖22 (6)

X := [T̂1, · · · , T̂M ,C1, · · · ,CL] , (7)

where β0 is the intercept, M is the number of genes, L is the number of covariates, ‖β‖22 is the l2 norm and315

‖β‖1 is the l1 norm of the effect size vector. Here, α controls the relative contribution of the l1 penalization316

term and λ controls the overall strength of regularization.317

The model fitting procedure was implemented using tensorflow v2 with mini-batch proximal gradient

method and the code is available at https://github.com/liangyy/ptrs-tf. We trained models at α = 0.1

(α = 0.5 and 0.9 show similar performance). And fixing the α value, as suggested in (Friedman et al.,

2010){friedman:2010}, we trained a series of models for a sequence of λ’s starting from the highest. The

maximum λ value, λmax, was determined as the smallest λ such that eq. (8) is satisfied.

| ∇l(β) | ≤ αλ, (8)

where the gradient is evaluated at

β0 = Y ,βcovariate = 0,βtranscriptome = 0 (9)

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.373647doi: bioRxiv preprint 

https://nealelab.github.io/UKBB_ldsc/downloads.html
https://nealelab.github.io/UKBB_ldsc/downloads.html
https://nealelab.github.io/UKBB_ldsc/downloads.html
https://www.dropbox.com/s/8vca84rsslgbsua/ukb31063_h2_topline.02Oct2019.tsv.gz?dl=1
https://www.dropbox.com/s/8vca84rsslgbsua/ukb31063_h2_topline.02Oct2019.tsv.gz?dl=1
https://www.dropbox.com/s/8vca84rsslgbsua/ukb31063_h2_topline.02Oct2019.tsv.gz?dl=1
https://github.com/liangyy/ptrs-tf
https://doi.org/10.1101/2020.11.12.373647
http://creativecommons.org/licenses/by/4.0/


So, at λ = λmax, eq. (9) is the solution to eq. (6), which could serve as the initial points for the subsequent318

fittings of λ’s. We estimated λmax using the first 1000 individuals of the data. And the sequence of λ was319

set to be 20 equally spaced points in log scale with the maximum value being 1.5λmax and the minimum320

value being λmax/104. Among these PTRS models generated at different λ values, we only kept the first321

11 non-degenerate PTRS models so that we have the same number of candidate models for both PRS and322

PTRS.323

Transcriptome prediction models for PTRS construction324

The predicted transcriptome in the discovery set (UKB EUR) was calculated using models from GTEx325

(Barbeira et al., 2020b) and MESA EUR based models (Mogil et al., 2018) listed in Supplementary Table326

S3). The GTEx EUR whole blood transcriptome consisted of 7,041 genes. For the MESA transcriptomes,327

we restricted the prediction to the 4,041 genes that were present in both the MESA EUR models and the328

MESA AFHI models (to ensure that PTRS built in the discovery set with the EUR models could be computed329

without missing genes in the target sets using the AFHI models).330

1.9 Testing of PTRS in target sets331

At the testing stage, given the standardized (within the population) predicted transcriptome of an individual,

we calculated the PTRS of the individual using the following:

PTRSλi =
∑
g

T̂igβ
λ
g , (10)

where βλ denotes the βEN obtained at hyperparamter equal to λ. For the PTRS built upon from GTEx EUR332

predicted transcriptome, the target PTRS was calculated with the GTEx EUR transcriptome (transcriptome333

predicted with GTEx EUR gene expression prediction models). To examine the utility of population-matched334

prediction model, the PTRS on the target set were calculated with of both MESA EUR and MESA AFHI335

transcriptomes.336

1.10 Quantifying the prediction accuracy of PRS and PTRS with partial R2
337

To measure the predictive performance of PRS and PTRS, we calculated the partial R2 of PRS/PTRS

against the observed phenotype accounting for the set of covariates listed in section 1.3. Specifically, for

individual i, let ŷi denote the predicted phenotype which could be either PRS or PTRS and yi denote the

observed phenotype. Partial R2 (denoted as R̃2 below) is defined as the relative difference in sum of squared

error (SSE) between two linear models: 1) y ∼ 1 + covariates (null model); and 2) y ∼ 1 + covariates+ ŷ (full

model), i.e. R̃2 = 1 − SSEfull
SSEnull

. To enable fast computation, we calculated R̃2 using an equivalent formula

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.373647doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.373647
http://creativecommons.org/licenses/by/4.0/


shown in eq. (11) which relies on the projection matrix of the null model.

R̃2 =
C2(y, ŷ)

C(y, y)C(ŷ, ŷ)
(11)

C(u, v) := utv − utHv, (12)

where H is the projection matrix of the null model, i.e. H = C̃(C̃tC̃)−1C̃t where C̃ = [1,C1, · · · ,CL] with338

Cl being the lth covariate.339

1.11 Quantifying the portability of PRS and PTRS340

As stated in the results section, PTRS weights were computed in the discovery set (UKB EUR) and tested341

in the 5 target sets. For each of the 17 quantitative traits, 11 sets of weights for PRS and for PTRS were342

calculated with different hyperparameters. For PRS, different p-value thresholds were used to generate 11343

different sets of weights. For PTRS, 11 different regularization parameters were used to generate the different344

sets of weights. The prediction accuracy in each of the 5 the target sets were calculated using the partial R2
345

described in section section 1.10 and the highest R2 among the 11 sets weights were used as the prediction346

accuracy. Portability was defined as the ratio of the prediction accuracy in each target set divided by the347

prediction accuracy in the European reference set. Therefore, by definition, portability in the EUR ref. set348

was 1.349

When calculating the portability of PTRS using MESA AFHI transcriptome, we used the MESA EUR350

model R̃2
EUR ref. as the reference. This is a conservative choice since MESA EUR model is expected to351

perform better than MESA AFHI model among EUR individuals.352
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