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Abstract:  

Drug target Mendelian randomization (MR) studies use DNA sequence variants in or near a 

gene encoding a drug target, that alter its expression or function, as a tool to anticipate the 

effect of drug action on the same target. Here, we applied MR to prioritize drug targets for their 

causal relevance for coronary heart disease (CHD). The targets were further prioritized using 

genetic co-localization, protein expression profiles from the Human Protein Atlas and, for 

targets with a licensed drug or an agent in clinical development, by sourcing data from the 

British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through 

their association with circulating blood lipids (HDL-C, LDL-C and triglycerides), we were able 

to robustly prioritize 30 targets that might elicit beneficial treatment effects in the prevention 

or treatment of CHD. The prioritized list included NPC1L1 and PCSK9, the targets of licensed 

drugs whose efficacy has been already proven in clinical trials. To conclude, we discuss how 

this approach can be generalized to other targets, disease biomarkers and clinical end-points to 

help prioritize and validate targets during the drug development process.  
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[Main Text: ] 

Introduction 

Genome-wide association studies (GWAS) in patients and populations test relationships 

between natural sequence variation (genotype) and disease risk factors, biomarkers and clinical 

end-points using population-based cohort and case-control studies. 

 

Mendelian randomization (MR) analysis uses genetic variants (mostly identified from GWAS) 

as instrumental variables to identify which disease biomarkers (e.g. blood lipids such as low- 

and high-density lipoprotein cholesterol and triglycerides) may be causally related to disease 

end-points (e.g. coronary heart disease; CHD) (1, 2). The established approach utilizes multiple 

independent variants associated with the biomarker of interest, selected from throughout the 

genome. These genetic instruments are used to derive an estimate of the effect of a change in 

the level of the biomarker on disease risk. We refer to this approach as MR analysis for causal 

biomarkers or ‘biomarker MR’. For example, biomarker MR studies have validated the causal 

role of elevated low-density lipoprotein cholesterol (LDL-C) on coronary heart disease risk, 

supporting the findings from randomized controlled trials of different LDL-C lowering drug 

classes (3–8). However, such studies have been equivocal on the role of high-density 

lipoprotein cholesterol (HDL-C) and triglycerides (TG) in CHD (3, 4). Clinical trials of these 

lipid fractions have also been seemingly contradictory. For example, using niacin to raise HDL-

C did not reduce CHD risk (9), but raising HDL-C by inhibiting cholesteryl ester transfer 

protein (CETP) with anacetrapib was effective in preventing CHD events (10).  

 

Genetic effects (like drug action) are mediated through proteins (according to Crick’s Central 

Dogma), and variation in the genome is inherited at random from parents to offspring 

(according to Mendel’s Laws), much like treatment allocation in a clinical trial (11). We and 
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others have shown that variants in a gene encoding a specific drug target, that alter its 

expression or function, can be used as a tool to anticipate the effect of drug action on the same 

target (12). We have referred to this application of Mendelian randomization as ‘drug target 

MR’ (12). In contrast to a biomarker MR, where the variants comprising the genetic instrument 

are selected from across the genome, in a drug target MR analysis, variants are selected from 

the gene of interest or neighboring genomic region because these variants are most likely to 

associate with the expression or function of the encoded protein (acting in cis). The estimate 

from a drug target MR helps infer whether, and in what direction, a drug that acts on the 

encoded protein, whether an antagonist, agonist, activator or inhibitor, will alter disease risk. 

The conceptual and analytical differences between drug target and biomarker MR (Table 1) 

are important because a narrow interpretation of a biomarker MR analysis of HDL-C and CHD 

might suggest that CETP inhibitors, which raise HDL-C, should not be regarded as a valid 

therapeutic intervention to reduce CHD risk. Yet, the causal effect on CHD per SD increase in 

HDL-C from the drug target MR using variants in CETP (0.87; 95%CI: 0.84, 0.90), and the 

odds ratio for CHD from allocation to the CETP-inhibitor anacetrapib in a placebo-controlled 

trial (0.93; 95%CI: 0.86, 0.99) are consistent with the view that targeting CETP is an effective 

therapeutic approach to prevent CHD (Fig. 1) (10, 12). This implies that, regardless of the 

findings of a biomarker MR analysis, other similarly effective but yet unexploited drug targets 

might exist for the prevention or treatment of CHD, and be identified through their association 

with blood lipids.  

 

In this study, we applied drug target MR on a set of druggable proteins identified through 

genetic associations with circulating blood lipids, and assessed their causal relevance for CHD. 

To place the findings in context, we first re-evaluated causal effect estimates for LDL-C, HDL-

C, and TG on CHD using biomarker MR, based on summary statistics from GWAS of blood 
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lipids and CHD. Next, we used these data to select genes associated with blood lipids that 

encode druggable targets, and tested the effects of these drug targets on CHD using drug target 

MR. For a set of replicated, prioritized drug targets, we performed a phenome-wide scan of 

genetic associations of variants within the encoding gene with additional disease biomarkers 

and end-points beyond CHD. We sourced data from clinicaltrials.gov and the British National 

Formulary (BNF) for drugs in clinical phase development and approved medicines, 

respectively, to identify agents that might be pursued rapidly in clinical phase testing for 

treatment or prevention of CHD. Finally, we discuss how this approach might be generalized 

to other drug targets and clinical end-points, providing a route to translating findings from 

GWAS into new drug development. 

 

Results  

Biomarker MR analysis of LDL-C, HDL-C and TG on CHD 

Previous biomarker MR studies have shown a causal effect of LDL-C and TG on CHD risk, 

while the causal role of HDL-C remains uncertain (4). As an initial step, to confirm the 

robustness of our analytical pipeline and contextualize further analyses, we first replicated 

previously reported biomarker MR estimates using genetic variants from the Global Lipid 

Genetic Consortium (GLGC) (13) to instrument causal effects of the three lipid sub-fractions 

on CHD, using summary statistics from the CardiogramPlusC4D Consortium GWAS (14). 

Causal estimates were obtained through univariable Mendelian randomization, with Egger 

horizontal pleiotropy correction applied through a model selection framework (15). The odds 

ratio (OR) for CHD per standard deviation (SD) higher concentration of the corresponding 

blood lipid fraction was 1.50 (95% confidence interval (CI): 1.39, 1.63) for LDL-C, 0.95 (95% 

CI: 0.90, 1.01) for HDL-C and 1.10 (95% CI: 1.01, 1.21) for TG. These findings were 
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replicated in an independent analysis using summary statistics from a GWAS meta-analysis of 

lipids measured using a nuclear magnetic resonance (NMR) spectroscopy platform (16, 17), 

and genetic associations with CHD risk derived from UK Biobank (18). The odds ratio for 

CHD per SD increase in LDL-C and TG in the replication dataset were 1.28 (95% CI: 1.25, 

1.31) and 1.23 (95% CI: 1.14, 1.32), respectively, and 0.89 (95% CI: 0.83, 0.96) per SD 

increase in HDL-C. These genome-wide biomarker MR estimates confirmed the previously 

reported causal effect of LDL-C and TG on CHD risk but illustrate the equivocal role of HDL-

C. To account for the correlation between the lipid fractions and evaluate their direct 

independent effect on CHD, we performed a multivariable MR (MVMR) analysis in the 

discovery datasets, which assessed genetic associations with the three lipid subfractions and 

CHD risk in a single model. The MVMR analysis generated an OR of 1.53 (95% CI: 1.44, 

1.62) per SD higher LDL-C, 0.91 (95% CI: 0.86, 0.95) per SD higher HDL-C and 1.09 (95% 

CI: 1.01, 1.17) per SD higher TG (table S1). 

 

Drug target MR analysis 

Drug target MR was used to determine the effect on CHD of perturbing druggable proteins that 

influence one or more of the three lipid fractions. First, genes previously shown to encode 

druggable proteins were selected in regions around variants associated with one or more of the 

major circulating lipid subfractions applying a P value < 1x10-6. This identified 341 genes; 149 

for an association with LDL-C, 180 for HDL-C and 154 for TG (19). One hundred forty genes 

(41%) were associated with a single lipid subfraction, 101 (30%) were associated with two 

subfractions and 100 (29%) were associated with all three subfractions (fig. S1, table S2). 

Subsequently, we performed a drug target MR analysis on CHD accounting for genetic 

correlation between variants (see Methods). In the absence of direct measures of the encoded 

protein, we proxied the effect of genetic drug target perturbation through the downstream effect 
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on one or more of the three lipid sub-fractions. Of the 341 drug targets, the effect estimates for 

165 excluded a null effect on CHD, with 131 of these estimates being consistent with a 

protective effect via decreasing LDL-C or TG and/or increasing HDL-C (Fig. 2, table S3). 

When weighted by LDL-C, eighty-seven targets showed a significant effect on CHD after 

orientating towards an increasing LDL-C direction, with the first and third quartiles (Q) of the 

CHD OR of 1.93 and 3.32. Similarly, the Q1 and Q3 after orientating the OR towards an 

increasing HDL-C direction were 0.22 and 0.53 for the 49 significant HDL-C instrumented 

targets, and for the 49 significant TG instrumented targets these were 1.95 and 4.35, 

respectively. 

 

Genetic rediscoveries of indications and mechanism-based adverse effects 

We investigated if the drug target MR analysis rediscovered the mechanism of action of drugs 

with a license for lipid modification or compounds with a different indication but with reported 

lipid-related effects. To do so, compounds with reported lipid indications (CHD or non-CHD) 

or adverse effects were extracted from the BNF website (https://bnf.nice.org.uk/), which 

comprises prescribing information for all UK licensed drugs. Out of the 341 druggable genes 

included in the analysis, five encoded the targets of drugs with a lipid-modifying indication 

(PCSK9, PPARG, PPARA, NPC1L1, HMGCR) of which NPC1L1, HMGCR and PCSK9 are 

targets of drugs used in CHD prevention; and 6 encoded a protein target of a drug with reported 

lipid-related adverse effects (ADRB1, TNF, ESR1, FRK, BLK and DHODH) (table S4). To 

include outcome and side effect data of candidates in clinical phase development, the 341 drug 

targets were mapped to compound data available in a clinicaltrials.gov curated database. This 

database differentiates between endpoints monitored throughout the trial (‘outcomes’), and 

unanticipated harmful episodes during the study that may be on-target or off-target effects of 
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the trial agent (‘adverse events’). Of the 341 drug targets, 23 had reported lipid related 

outcomes and 40 had reported lipid-related adverse events (table S4).  

 

The pool of druggable targets that were modeled using higher LDL-C as a proxy for the 

pharmacological action on a drug target included 14 targets of clinically used drugs, three of 

which were licensed for CHD treatment by lowering LDL-C (HMGCR, PCSK9 and NPC1L1). 

The non-CHD indications of clinically used drugs included dyslipidemias (PPARA), type 2 

diabetes (PPARG and NDUFA13), autoimmune diseases (TNF), neoplasms (RAF1 and 

PSMA5), circulatory disorders (ABCA1, PLG, ITGB3 and F2) and alcohol-dependency 

(ALDH2) (Table 2). With the exception of F2, instrumenting the target action through an 

higher LDL-C effect was associated with a higher CHD risk. Two drug targets were for 

compounds already in phase 3 trials for CHD prevention (ANGPTL3 and CETP). Their effect 

on CHD instrumented through an higher LDL-C effect was similar in magnitude to that 

observed for previously licensed drugs, with OR 1.21 (95%CI 1.11; 1.33) and 1.49 (95%CI 

1.29, 1.72), respectively. Lastly, three targets were in phase 2 trials of compounds developed 

for other indications (CYP26A1, LTA and LTB). The remaining 82 of the 101 targets had not 

yet been drugged by compounds in clinical phase development. 

 

When using higher HDL-C as a proxy for pharmacological action, MR of four drug targets 

with compounds approved for non-CHD indications showed a directionally beneficial effect 

on CHD (VEGFA, PSMA5, CACNB1 and NISCH), suggesting potential for indication 

expansion (Table 2). Three were targets for drugs approved for non-CHD indications but which 

showed a potentially detrimental effect direction on CHD when instrumented through 

increasing HDL-C concentration (ESR1, ALOX5, TUBB). Both CYP26A1 and CETP were 
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associated with lower CHD risk when the effect on CHD was instrumented through an 

elevation of HDL-C. The remaining 65 of the 74 targets have not yet been drugged by 

compounds in clinical phase development.  

 

Lastly, the set of druggable targets with compounds developed for non-CHD indications that 

were modeled using higher TG as a proxy for the pharmacological action on the target included 

PPARG, DHODH, VEGFA, TOP1, TUBB, NDUFA13, ABCA1, BLK, and F2 (Table 2). Of 

these, instrumenting the CHD effect through higher TG via drug action on BLK or F2 increased 

CHD risk. For the remaining targets, which included CETP, ANGPTL3 and CYP26A1, 

instrumenting the target effect through lowering TG levels decreased the risk of CHD, while 

the remaining 52 of the 64 targets have not been drugged by licensed compounds or clinical 

candidates yet. 

 

Independent validation of the drug target MR estimates  

To help verify the MR findings, an independent two sample drug target MR analysis was 

conducted using summary statistics from a GWAS of blood lipids measured using an NMR 

spectroscopy platform (16, 17), and genetic associations with CHD risk derived from UK 

Biobank (18). The validation analysis identified 47 significant MR estimates (P value < 0.05), 

of which 39/47 (83%) showed a concordant direction of effect with the initial analysis (Table 

3) corresponding to 30 drug targets. Replicated targets included the licensed LDL-lowering 

drug targets PCSK9 and NPC1L1 (Table 4). While the majority of the replicated drug targets 

were anticipated to decrease CHD risk via lowering LDL-C concentration based on the 

univariable results, 9 of the drug targets analyzed were significantly associated with lower 

CHD when the effects were modelled through HDL-C and/or TG (fig. S2). 
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Discriminating independent lipid effects  

After considering each lipid sub-fraction as a single measure on disease risk in the univariable 

drug target MR analyses, we performed a multivariable drug target MR analysis including 

LDL-C, HDL-C and TG in a single model to account for potential pleiotropic effects of target 

perturbation via the other lipid sub-fractions. Twenty-six of the replicated targets had sufficient 

data (3 or more variants) for the multivariable analysis. This analysis prioritized a single lipid 

fraction for 12 targets (SLC12A3, APOB, APOA1, PVRL2, APOE, APOC1, CELSR2, 

GPR61, PCSK9 and CEACAM16 through LDL-C; LPL through HDL-C; and ALDH1A2 

through TG) (table S5).  For SMARCA4 and APOA5, the analysis prioritized both LDL-C and 

TG, and for RPL7A both LDL-C and HDL-C. Due to the limited number of variants in 

VEGFA, CILP2, NDUFA13 and ANGPTL4, multivariable MR analysis could not distinguish 

the lipid fraction through which CHD was likely affected. Additionally, the presence of 

horizontal pleiotropy in the MVMR analysis based on heterogeneity tests suggested that 

PCSK9, LPL, APOC1, APOE, PVRL2, APOB, APOC3, CETP, APOA1 and CELSR2 may 

affect CHD through additional pathways beyond the lipid sub-fractions LDL-C, HDL-C and 

TG included in the current model. 

 

Co-localization between loci for lipids and CHD 

Co-localization analyses are often performed to facilitate the mapping of genetic variants to 

causal genes in a disease GWAS by assessing whether associations with gene expression and 

disease outcome share a causal variant. Here, we applied co-localization analysis using blood 

lipids as an intermediate trait instead of gene expression data as a parallel validation step to 

assess if the genetic associations with each lipid sub-fraction and CHD were consistent with a 
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shared causal variant (20). Twenty-eight out of a total of 33 co-localization signals overlapped 

a significant finding in the discovery MR, which corresponded to 25 genes encoding a drugged 

or druggable target (Fig. 2). Moreover, 11 of the replicated drug targets showed evidence of 

co-localization between the lipid sub-fraction and CHD. These included 9 targets replicated for 

lowering LDL-C levels (SMARCA4, PVLR2, APOE, APOC1, CARM1, RPL7A, 

ADAMTS13, PCSK9 and C9orf96), one target replicated for raising HDL-C levels (LPL), and 

one target replicated for lowering TG levels (VEGFA).  

 

Tissue expression to aid drug target prioritization  

While many tissues are involved in lipid homeostasis, the liver is considered the mechanistic 

effector organ for many therapeutics targeting lipid metabolism (21). To investigate if the 

replicated drug target genes were specifically expressed in liver or any other particular tissue, 

we extracted their RNAseq expression profiles from the Human Protein Atlas (22) and 

calculated two commonly used tissue specificity metrics: the tau and z-scores (23). Whilst tau 

summarizes the overall tissue distribution of a given gene and helps to distinguish between 

broadly expressed house-keeping genes (tau = 0) and tissue-specific genes (tau = 1), z-scores 

quantify how elevated the expression of a particular gene is in a particular tissue compared to 

other tissues. Among the 30 replicated genes, 28 had available RNAseq data, of which 15 

(54%) showed elevated expression in the liver compared to other tissues (z-score > 1) (Table 

4, fig. S3). These genes included the known lipid-lowering drug targets, PCSK9 and NPC1L1. 

Furthermore, eight genes were highly specific to the liver as indicated by high tau values (tau 

> 0.8). Other tissues showing elevated expression of the replicated drug target genes were 

gastrointestinal tissues such as small intestine and colon (e.g. APOA4, APOB) and kidney 

(SLC12A3). Regarding the expression distribution of the targets, 9 showed tau values below 
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0.5, indicating that they are broadly expressed and suggesting that, when developing a drug, 

the possibility of observing adverse effects increases (24). 

 

Phenome-wide scan of replicated drug target candidates 

The identification of potential mechanism-based adverse effects of a target represents an 

important aspect when prioritizing clinical candidates in the drug development pipeline. To 

explore potential effects of target perturbation on clinical endpoints other than CHD (whether 

beneficial or adverse), we performed a phenome-wide scan in 103 disease traits of the 30 drug 

targets replicated via drug target MR (Methods, Fig. 3, fig. S4-32). Besides genome-wide 

significant associations with diseases of the circulatory system, variants in six drug target genes 

showed genome-wide significant associations with type 2 diabetes (NDUFA13, CILP2, 

PVRL2, VEGFA, APOC1, LPL), five with Alzheimer’s disease (APOC1, PVR, PVRL2, 

APOE, CEACAM16), four with asthma (SMARCA4, CETP, VEGFA, ALDH1A2) and four 

with gout (APOA1, APOC3, APOA4, APOA5). Notably, the PheWAS rediscovered the 

mechanism of action of metformin, a drug targeting NDUFA13 and licensed for type 2 diabetes 

(25). 

 

Discussion  

By combining publicly available GWAS datasets on blood lipids and coronary heart disease 

and applying MR approaches with drug information and clinical data, we have genetically-

validated and prioritized drug targets for CHD prevention.  

 

We identified 131 drug target genes associated with CHD risk from a set of 341 druggable 

genes overlapping associations with one or more of the major blood lipid fractions. 
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Importantly, these effects were observed not only for genes associated with LDL-C, but also 

TG or HDL-C. The set of targets included NPC1L1, HMGCR and PCSK9, which are known 

targets of LDL-lowering drugs, whose efficacy in CHD prevention has been proven in clinical 

trials. We performed an independent replication study both to corroborate the targets and the 

direction of the effects. We replicated the findings in independent datasets (UCLEB 

Consortium and UK Biobank) in which lipids were measured using a different platform (NMR 

spectroscopy in UCLEB) and the disease end-points ascertained by linkage to routinely 

recorded health data (UK Biobank). The validation study replicated 83% (39/47) of the initial 

estimates, including the mechanism of action of current lipid-modifying drug targets PCSK9 

and NPC1L1 and the suggested mechanism of action of compounds under investigation for 

lipid modification through TG or HDL-C, such as CETP inhibitors (26, 27).  

 

As a positive control step, our (genome-wide) biomarker MR analysis replicated previous 

findings on the potential causal relevance of LDL-C, TG, and HDL-C (4, 10, 28). Importantly, 

contrary to previous studies, here we replicated findings using a completely independent set of 

NMR-spectroscopy measured lipids data and CHD cases sourced from UK Biobank. While the 

causal relevance of LDL-C for CHD has been robustly proven through successful drug 

development of for example statins, there are as yet no compounds licensed for CHD 

prevention through effects on HDL-C and TG. Hence, the causal relevance of the lipid sub-

fraction, while supported by the current biomarker analyses, cannot be concluded definitively. 

It is therefore essential to highlight that, while our drug target analysis uses genetic associations 

with these lipid sub-fractions as weights, our inference throughout has been on the therapeutic 

relevance of perturbing the proteins encoded by the corresponding genes which are the main 

category of molecular target for drug action. The genetic associations with the corresponding 

lipids are merely used as a proxy for protein activity and/or concentration, serving to orientate 
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the MR effects in the direction of a therapeutic effect. They do not provide comprehensive 

evidence on the pathway through which perturbation of such targets causally affects CHD. 

Nevertheless, co-localization and multivariable MR do provide insight on the potential 

relevance of lipid pathways in mediating the effects of drug target perturbation. Due to the 

potential for weak instrument bias, attenuating results towards the null, non-significant results 

should not be over-interpreted as proof of absence (29).  

 

The set of 30 replicated drug targets also included lipoprotein lipase (LPL), a target that could 

potentially decrease CHD risk through both TG-lowering and HDL-C elevation, with an effect 

through HDL-C further endorsed by the co-localization and multivariable MR analyses (Fig. 

6). In contrast to current lipid-lowering drug targets which are specifically expressed in the 

liver, LPL shows highest specific expression in adipose tissue which suggests tissues beyond 

the liver may be relevant to target lipid metabolism. Several pharmacological attempts have 

been pursued to target LPL (30, 31), and gene therapy has also been applied to treat LPL 

deficiency by introducing extra copies of the functional enzyme in patients with 

hypertriglyceridemia (32). The approval of gene therapy interventions and the known indirect 

activation of LPL by drugs targeting other proteins, such as fibrates (33) and metformin (34), 

suggest that the previous failure of compounds targeting LPL in initial trials may have been 

idiosyncratic. LPL activity is also modulated by another protein in the replicated dataset, 

apolipoprotein A5 (ApoA5), which is exclusively expressed in liver tissue. While the 

univariable drug target MR analysis of ApoA5 suggested that all three sub-fractions affected 

by ApoA5 perturbation may contribute to the effect on CHD risk, the multivariable MR suggest 

that ApoA5 (partially) affects CHD through LDL-C and TG-mediated pathways. Regardless 

of the mediating lipid or lipids, the genetic findings in relation to both LPL and ApoA5 are 
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consistent and point to this as an important potentially targetable pathway in atherosclerosis, 

supporting prior work (35).   

 

To provide an indicative genetic profile of a drug target and hypothesise about potential 

mechanism-based adverse effects, repurposing opportunities or expansion of the indication 

portfolio of a drug target, we performed a PheWAS of variants in and around the replicated set 

of targets on 103 traits. While in some cases PheWAS highlighted associations with particular 

clinical endpoints, for example, the rediscovery of already known indications or biological 

pathway, such as the associations of type 2 diabetes with variants in NDUFA13 or the 

association of Alzheimer’s Disease with APOE, further research is needed to evaluate the 

causal role of the target in the corresponding disease and the beneficial or detrimental effects 

of modulating those targets pharmacologically. 

 

Some limitations of this study are noteworthy. First, we only included genes regarded as 

encoding druggable proteins, which currently comprise approximately 25% of all protein 

coding genes (19). As new knowledge advances, additional proteins will become druggable, 

and alternative therapeutic strategies such as antisense oligonucleotides and gene therapy may 

extend the range of mechanisms that can be targeted. The approach we describe is in fact 

agnostic to therapeutic modality and could be adapted accordingly. Notably, antisense 

oligonucleotides efficiently delivered to the liver (36), where 54% of the prioritised targets in 

our analysis showed elevated expression compared to other tissues. Second, we assigned 

variants to druggable genes based on genomic proximity, which may be as reliable as other 

approaches in mapping causal genes (37–39). However, simple genomic proximity might result 

in misleading assignment of the causal gene in a region containing multiple genes in high LD 
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(e.g. PVRL2, APOC1 and APOE are all located in a region of LD in Chr19:45349432-

45422606, GRCh37). In an effort to account for this, all the druggable genes (± 50kbp) that 

overlap one of the genetic variants associated with LDL-C, HDL-C or TG were included in the 

analysis, and we provided information on proximity of the variant to the gene, a gene distance 

rank value (in base pairs), and previous gene prioritisation data by the Global Lipids Genetics 

Consortium (GLGC) (13) to inform scenarios in which the causal gene may be a non-druggable 

gene but reside in the same region (table S2).  

 

We used cis-MR to evaluate the relevance of each drug target to CHD, which poses additional 

challenges and choices: defining the locus of interest, the significance threshold for the 

association with the exposure and the LD threshold to prune correlated instruments. Since an 

agreement on the choice of a general LD threshold and flanking region has yet to be reached, 

we used a window of 50kbp and LD threshold of 0.4, which showed the most consistent 

estimates in a grid-search in the discovery data using the four positive control examples: 

PCSK9, NPC1L1, HMGCR and CETP. Based on previous studies showing that using less 

stringent P-value thresholds often results in improved performance in cis-MR settings, we 

relaxed the threshold below genome-wide significance to select the genetic associations to 

instrument the exposure; and accounted for LD correlation by pruning and LD modelling 

during the MR analysis (12, 40).  

 

To validate our findings with independent data sources, we conducted a second drug target 

MR, although several drug target genes could not be evaluated in the validation analysis 

because the gene boundaries did not include genetic associations exceeding the pre-specified 

significance threshold (P ≤ 1x10-4), likely related to the “modest” sample size of the NMR 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.11.377747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.377747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 17 

replication data (N=33,029). Beyond univariable MR analyses, we attempted to further validate 

the findings with a multivariable extension of the inverse-variance weighted (IVW) and MR 

Egger methods, however, in some cases we observed imprecise estimates in line with previous 

studies which attributed this to the inclusion of highly correlated exposures in the model (41). 

To further evaluate if the association signals in the exposure and outcome datasets shared a 

causal genetic variant, we performed co-localization analyses. Because these analyses were 

originally developed to find evidence of co-localization between mRNA expression and a 

disease and not for an intermediate trait and a disease, the default prior probabilities used in 

the analysis may not be the optimal for these pairs of traits. In addition, the single-causal-

variant assumption in genetic co-localization methods may not always be satisfied even when 

prior conditional analyses are performed, with regions with multiple causal variants potentially 

yielding false negative results (42). 

 

The effect directions of the replicated drug targets were compared to results from clinical trials 

using data from the clinicaltrials.gov registry, however, the lack of precision in annotation of 

events associated with lipid perturbations (e.g. hyperlipidaemia) in this dataset hinders the 

assignment of reported lipid abnormalities to a particular lipid sub-fraction. Moreover, the 

proportion of clinical trials with reported results in clinicaltrials.gov is less than 54.2% (43), 

suggesting that additional drug candidates with lipid effects might have been investigated but 

were not included in this analysis because of the lack of accessible data. Furthermore, our 

analysis relied on mapping clinical trial interventions to compounds known to act through 

binding to the targets of interest, which could potentially miss clinical trials of compounds 

annotated with less synonyms (such as research codes for compounds used by individual trial 

sponsors). Lastly, we performed a PheWAS spanning over 100 clinical endpoints, 80 of which 

were derived from UK Biobank. While this enabled screening for associations with a wide 
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range of diseases, genetic associations derived from diagnostic codes in electronic health 

record datasets might suffer from limited case numbers and inaccurate case and control 

definitions, which would reduce the power to detect true associations. To increase the power 

to detect associations, we included data from publicly available GWAS with the largest sample 

sizes for such phenotypes. 

 

In summary, we have shown an approach to move from GWAS signals to drug targets and 

disease indications. We illustrated its potential using genetic association data on lipids and 

CHD data, but the approach could also be applied in other settings where there are GWAS of 

diseases and biomarkers thought to be potentially causally related. For example, with the 

increasing available data on inflammatory biomarkers, this approach could be used to evaluate 

the causal role of anti-inflammatory drug targets, such as IL6R, in CHD, Alzheimer’s disease 

and major depression, following up on associations described in several studies (44–46), to 

identify potential new indications for anti-inflammatory agents established in the treatment of 

autoimmune conditions. Similarly, recent genetic studies on coagulation factor levels (47) can 

be harnessed to instrument the effect of modulating druggable targets for thrombotic disorders, 

such as FXI or FXII, which are emerging as potential targets for new anticoagulant drugs (48, 

49).  

 

When used as a screening tool, the approach could help reduce the efficacy problem in drug 

discovery by genetically validating targets in the earlier phases of the drug development 

pipeline.   
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Materials and Methods 

Data sources 

To determine the causal role and replicate previously reported results on the causal effect of 

LDL-C, HDL-C and TG on CHD, we obtained genetic estimates from the Global Lipids 

Genetics Consortium (188,577 individuals) (13) and from CardiogramPlusC4D (60,801 cases 

and 123,504 controls) (14). 

Independent replication data were sourced using lipids exposure data from a GWAS meta-

analysis of metabolic measures by the University College London–Edinburgh-Bristol 

(UCLEB) Consortium (50) and Kettunen et al. (13) utilizing NMR spectroscopy measured 

lipids (joint sample size up to 33,029). Independent CHD data was obtained from a publicly 

available GWAS of 34,541 cases and 261,984 controls in UK Biobank (18). 

 

Drug target gene selection 

Analyses were conducted using Python v3.7.3. To estimate the causal effect of modulating the 

level of each lipid sub-fraction via a druggable gene on CHD, variants associated with LDL-

C, HDL-C and/or TG with a P ≤ 1x10-6 were selected. Druggable genes overlapping a 50kbp 

region around the selected variants were extracted, resulting in 341 associated drug target genes 

(149 for LDL-C, 180 for HDL-C and 154 for TG). The set of genes in the druggable genome 

were identified as described previously (19), and identifiers were updated to Ensembl version 

95 (GRCh37), used in this analysis. All of these IDs were also present in Ensembl 95 

(GRCh37), used in this analysis. Because we only scanned for genetic associations with the 

druggable genome, protein-coding genes that were the ‘true’ causal gene but not yet druggable 

would be missed and the association mis-assigned. To mitigate this and provide information 

about potential effects through non-druggable genes, we provide the minimum distance from 
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the variant to the gene, where variants located within a gene were given a distance of 0bp, a 

gene distance rank value according to their base pair distance, and indicated the druggable 

genes prioritized by GLGC (table S2). 

 

Instrument selection 

For the biomarker or genome-wide MR analyses, a P threshold of 1x10-6 was used to select 

exposure variants associated with LDL-C, HDL-C and/or TG. For cis- or drug target MR 

analyses, variants from/within the 341 selected genes (±50kbp) were selected based on a P ≤  

1x10-4 . In both settings, variants were filtered on a MAF > 0.01 and LD clumped to an r2 < 

0.4. These parameters showed the most consistent estimates in a grid-search in the discovery 

data using the positive control examples: PCSK9, NPC1L1, HMGCR and CETP (fig. S33). To 

account for residual correlation between variants in the MR analyses, we applied a novel 

generalized least squares framework with a LD reference dataset derived from UK Biobank 

(51) as described in Detailed materials and methods.   

 

Statistical analysis 

As a validation step, a biomarker MR analysis was conducted for each lipid sub-fraction to 

replicate previous findings using genetic associations across the genome. A model-selection 

framework was used to decide between competing inverse-variance weighted (IVW) fixed-

effects, IVW random-effects, MR-Egger fixed effects or MR-Egger random-effects models 

(15). While IVW models assume an absence of directional horizontal pleiotropy, Egger models 

allow for possible directional pleiotropy at the cost of power. After removing variants with 

large heterogeneity (P < 0.001 for Cochran’s Q test) or leverage, we re-applied this model 

selection framework and used the final model (Detailed materials and methods). 
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Additionally, we conducted biomarker and drug target multivariable MR analyses using 

genetic associations with the three lipid sub-fractions and CHD risk in a single regression 

model.  

 

Co-localization analysis 

To estimate the posterior probability of each druggable gene sharing the same causal variant 

for the exposure lipid and CHD risk (52) we performed co-localization analyses. First, we 

conducted a stepwise conditional analysis using GCTA-COJO v1.92.4 with genotype data from 

5,000 individuals randomly selected from UK Biobank (53). Colocalization analyses were 

performed using a Python implementation of “coloc” v3.2-1 (20). The default prior 

probabilities were used to estimate if a SNP was associated only with the lipid sub-fraction (p1 

= 10−4), only with CHD risk (p2 = 10−4), or with both traits (p12 = 10−5). For each drug target 

gene, all variants from/within the gene boundaries (±50kbp) with a MAF > 0.01 were included. 

A posterior probability above 0.8 was considered sufficient evidence of colocalization based 

on previous observations (20). 

 

Drug indications and adverse effects 

To evaluate if the drug target MR and colocalization analyses rediscovered known drug 

indications, adverse effects or predicted repurposing opportunities, drug information and 

clinical trial data was extracted for the set of 341 druggable targets. Drug target genes were 

mapped to UniProt identifiers and indications and clinical phase for compounds that bind the 

target were extracted from the ChEMBL database (version 25) (54). Drug indications and lipid 

adverse effects data for licensed drugs were extracted from the British National Formulary 

(BNF) website (https://bnf.nice.org.uk/) in July, 2019. 
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To further examine the effects of the drugs and clinical candidates that are known to act through 

binding to the 341 druggable targets, relevant clinical trial data were downloaded from the 

clinicaltrials.gov registry. Compound name and synonyms were extracted from ChEMBL 

database (version 25) (54) and used to identify clinical trials with matching interventions. In 

case of non-exact matches, the results were inspected manually to ensure that only relevant 

trial records were used in the analysis. Lipid-related trial outcomes and adverse events were 

identified by searching the relevant fields within the trial records with the keywords: lipo*, 

lipid*, ldl*, hdl*,  cholest* and triglyceride*. For adverse events, the search was limited to the 

trial arm in which the drug of interest was administered (as opposed to placebo or active control 

used in the study) and only adverse events that affected at least one study participant were 

included. 

 

Tissue expression analysis 

To further characterize the genes prioritized by the MR pipeline, their tissue expression was 

analyzed as follows. First, RNAseq data were downloaded from Human Protein Atlas (HPA) 

(22), which captures baseline expression of human genes and proteins across a panel of diverse 

healthy tissues and organs. For each included gene and tissue, HPA provides a consensus 

Normalized eXpression value (NX), obtained by normalizing TPM (transcripts per million) 

values from three independent transcriptomics datasets: GTEx (55), Fantom5 (56), and HPA’s 

own RNAseq experiments (57).  

The downloaded NX values were then used to investigate if the prioritized target genes were 

specifically expressed in any of the included tissues. Two commonly used tissue specificity 

metrics were calculated for each gene: tau and z-score (23). Tau summarizes the overall tissue 

distribution of a given gene and ranges from 0 to 1, where 0 indicates ubiquitous expression 
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across all included tissues (house-keeping genes) and 1 indicates narrow expression (highly 

tissue-specific genes). While tau provides a single summary measure of the tissue specificity, 

z-scores are calculated for individual tissues separately to quantify how elevated the gene 

expression is in a particular tissue compared to others. Here, higher z-score values indicate 

higher tissue specificity. See Kryuchkova-Mostacci et al. (23) for details on the calculation and 

interpretation of the two metrics. 

 

Phenome-wide scan of replicated drug target genes 

To explore the effect spectrum associated to prioritized drug targets, we performed a phenome-

wide scan of 103 disease endpoints. These included genome-wide summary statistics for 80 

ICD10 main diagnoses in UK Biobank, which were released by Neale Lab (1st August 2018, 

http://www.nealelab.is/uk-biobank/), and downloaded using a Python implementation of MR 

Base API (58). The variants in-and-around the prioritized drug target genes allowing for a 

boundary region of 50kbp were extracted, palindromic variants were inferred using the API 

default MAF threshold of 0.3 and removed (59). The Ensembl REST Client was used to gather 

positional information for the variants (60).  

We attempted to maximize the power to detect genetic associations by sourcing data from 23 

publicly available GWAS with the largest sample sizes for such phenotypes (table S6). All the 

GWAS clinical endpoints and UK Biobank ICD10 main diagnoses were grouped according to 

ICD10 chapters.  

Supplementary Materials 

Fig. S1. Overlap between genes encoding druggable targets associated with the major lipid 

sub-fractions. 

Fig. S2. The sets of assigned genes associated with LDL-C, HDL-C, TG that encode 

druggable targets. 

Fig. S3. Tissue expression profile of the replicated drug target genes. 

Fig. S4. Prioritized target: SMARCA4 
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Fig. S5. Prioritized target: APOC1. 

Fig. S6. Prioritized target: NPC1L1. 

Fig. S7. Prioritized target: SLC12A3. 

Fig. S8. Prioritized target: PVR.  

Fig. S9. Prioritized target: APOB. 

Fig. S10. Prioritized target: CETP. 

Fig. S11. Prioritized target: TMED1. 

Fig. S12. Prioritized target: APOA5. 

Fig. S13. Prioritized target: APOA4. 

Fig. S14. Prioritized target: APOC3. 

Fig. S15. Prioritized target: VEGFA. 

Fig. S16. Prioritized target: APOA1. 

Fig. S17. Prioritized target: ALDH1A2. 

Fig. S18. Prioritized target: PVRL2. 

Fig. S19. Prioritized target: APOE. 

Fig. S20. Prioritized target: CARM1. 

Fig. S21. Prioritized target: PSMA5. 

Fig. S22. Prioritized target: CELSR2. 

Fig. S23. Prioritized target: RPL7A. 

Fig. S24. Prioritized target: GPR61. 

Fig. S25. Prioritized target: CILP2. 

Fig. S26. Prioritized target: ADAMTS13. 

Fig. S27. Prioritized target: ANGPTL4. 

Fig. S28. Prioritized target: SIK3. 

Fig. S29. Prioritized target: PCSK9. 

Fig. S30. Prioritized target: C9orf96. 

Fig. S31. Prioritized target: NDUFA13. 

Fig. S32. Prioritized target: CEACAM16. 

Fig. S33. Drug target MR of positive control examples. 

Table S1. Causal odds ratios (95% CI) for CHD per standard deviation increase in each lipid 

sub-fraction from a biomarker MR analysis. 

Table S2. Proximity to GWAS SNP, distance rank and previous evidence of druggable genes 

near genetic associations with LDL-C, HDL-C and TG.  

Table S3. Univariable drug target MR estimates.  

Table S4. Univariable MR estimates of drug targets with lipid records in clinicaltrials.gov 

and/or BNF.  

Table S5. Multivariable drug target MR estimates.  

Table S6. Publicly available GWAS data used in the PheWAS. 
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Study 

  

OR (95% CI) of CHD for intervention or  per 1-
SD increase in HDL-C 

CHD GWAS Clinical trial 

Events/Total 
Treatment 

Events/Total 
Placebo 

Events/Total 

HDL-C 
genetic variants 

(genome-wide) 

60801/184305 - - 
 

0.93 (0.85, 1.02) 

CETP 

genetic variants 
60801/184305 - -  0.87 (0.84, 0.90) 

Anacetrapib 
(CETP inhibitor) 

- 1640/15225 1803/15224  0.93 (0.86, 0.99) 

 

 

 

Fig. 1. HDL-C, CETP inhibitor and CHD: biomarker vs drug target MR. Forest plot of the HDL-C biomarker 

MR estimate (Holmes et al, 2015), drug target MR estimate of CETP level and function using HDL-C as 

a proxy (Schmidt et al, 2020) and odds ratio of anacetrapib clinical trial (HPS3/TIMI55–REVEAL 

Collaborative Group, 2017). OR = odds ratio; CI = confidence interval; SD = standard deviation.  
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Fig. 2. Drug target MR estimates on CHD. Analyses were performed using genetic associations with LDL-C, 

HDL-C and TG from the Global Lipid Genetic Consortium (GLGC) with CHD events from the 

CardiogramPlusC4D Consortium. Drug targets are grouped by clinical phase according to ChEMBL 

database. Blue indicates a beneficial effect on CHD risk, and red a detrimental effect per SD difference 

with respect to the indicated lipid sub-fraction. Significant estimates are indicated with an asterisk (*). 

Co-localization of genetic effects on the relevant lipid sub-fraction and CHD at the same locus is 

indicated by a square around the cell. 
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Fig. 3.  Prioritized target: lipoprotein lipase (LPL). The top and middle left panels show genetic associations 

at the locus (± 50kbp) in black vs genome-wide associations (grey, P value < 1x10-6). The x-axis shows 

the per allele effect on the corresponding lipid expressed as mean difference (MD) from GLGC and the 

y-axis indicates the per allele effect on CHD expressed as log odds ratios (OR) from 
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CardiogramPlusC4D. The marker size indicates the significance of the association with the lipid sub-

fraction (P-value). The middle right panel shows the result of the univariable and multivariable (drug 

target) cis-MR results. An asterisk (*) indicates the MR estimates as being replicated, and a dagger (†) 

that the lipid effect and CHD signals are co-localized. The bottom panel shows disease associations at 

the locus with 103 clinical end points from UK Biobank and GWAS Consortia. 
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Table 1. Main conceptual differences between biomarker and drug target MR approaches.  

 Biomarker MR Drug target MR 

Aim 
Causal effect 
of a biomarker 

Causal relevance 
of a drug target 

SNP selection Genome-wide Locus specific 

Ideal exposure 
Clinically relevant 
quantitative trait 

mRNA or protein  
expression of  

the encoded gene  

MR methods Any described MR method 

Methods accounting for  
residual genetic correlation 

to maximize power 
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Table 2. Univariable drug target MR estimates for drug targets approved for indications other than lipid-

lowering. These drug targets showed lipid records in clinicaltrials.gov and/or the British National Formulary 

(BNF). * indicates significance in the discovery analysis; † indicates significance in both original and validation 

study and concordant direction of effect. OR = odds ratio of CHD per 1-standard deviation increase in LDL-C, 

HDL-C or triglycerides; CI = confidence interval. 

Drug 
target 
gene 

LDL-C  
(OR, 95% CI) 

HDL -C 
 (OR, 95% CI) 

Triglycerides 
(OR, 95% CI) 

 
Mechanism of action and indication 

ESR1 - 2.11 (1.13, 3.93)* - 

AGONIST: Neoplasms, Hypogonadism, Menorrhagia, Primary 
Ovarian Insufficiency, Acne Vulgaris, Postmenopausal 
Osteoporosis 
ANTAGONIST: Breast Neoplasms, Neoplasms 
MODULATOR: Infertility, Dyspareunia, Breast Neoplasms, 
Postmenopausal  Osteoporosis 

TNF 2.03 (1.05, 3.93)* - 1.21 (0.78, 1.9) 
INHIBITOR: Ankylosing Spondylitis, Crohn Disease, Psoriasis, 
Rheumatoid Arthritis, Colitis, Ulcerative, Psoriatic Arthritis, 
Immune System Diseases, Juvenile Arthritis 

BLK - - 0.46 (0.31, 0.7)* 
INHIBITOR: Precursor Cell Lymphoblastic Leukemia-Lymphoma, 
Neoplasms 

DHODH 0.66 (0.44, 1.0) - 7.42 (2.32, 23.71)* 
INHIBITOR: Rheumatoid Arthritis, Immune System Diseases, 
Multiple Sclerosis 

PPARG 1.67 (1.04, 2.68)* 0.71 (0.35, 1.48) 2.18 (1.14, 4.15)* 
AGONIST: Type 2 Diabetes Mellitus, Diabetes Mellitus, Colitis, 
Ulcerative, Cardiovascular Diseases 

PPARA 3.77 (1.44, 9.85)* - - 
AGONIST: Cardiovascular Diseases, Hypercholesterolemia, 
Dyslipidemias 

NDUFA13 1.63 (1.13, 2.35)* - 1.18 (1.0, 1.39)*† INHIBITOR: Diabetes Mellitus, Type 2 Diabetes Mellitus 

ALDH2 0.14 (0.07, 0.29)* - - INHIBITOR: Ectoparasitic Infestations, Alcoholism 

NISCH - 0.57 (0.35, 0.93)* 1.16 (0.31, 4.34) AGONIST: Hypertension 

ABCA1 2.05 (1.34, 3.15)* 1.41 (0.66, 3.0) 2.4 (1.29, 4.49)* INHIBITOR: Cardiovascular Diseases 

F2 0.17 (0.05, 0.59)* 0.57 (0.13, 2.43) 0.35 (0.13, 0.94)* 
INHIBITOR: Venous Thrombosis, Thrombosis, Unstable Angina, 
Thrombocytopenia, Atrial Fibrillation, Embolism, Stroke  

TUBB - 7.56 (1.18, 48.38)* 4.46 (2.13, 9.36)* 
INHIBITOR: Breast Neoplasms, Neoplasms, Hodgkin Disease, 
Large-Cell Anaplastic Lymphoma, Non-Small-Cell Lung 
Carcinoma, Gout, Familial Mediterranean Fever 

VEGFA - 0.22 (0.15, 0.3)* 4.16 (2.45, 7.08)*† 

ANTAGONIST: Retinal Neovascularization 
INHIBITOR: Diabetic Retinopathy, Retinal Neovascularization, 
Wet Macular Degeneration, Macular Edema, Colorectal 
Neoplasms, Neoplasms, Glioblastoma, Renal Cell Carcinoma, 
Non-Small-Cell Lung Carcinoma, Uterine Cervical Neoplasms 

RAF1 2.06 (1.48, 2.86)* - 2.63 (0.79, 8.83) INHIBITOR: Neoplasms 

PSMA5 2.47 (1.8, 3.39)*† 0.08 (0.02, 0.29)* - 
INHIBITOR: Multiple Myeloma, Neoplasms, Mantle-Cell 
Lymphoma 

ALOX5 - 1.74 (1.18, 2.58)* - 
INHIBITOR: Asthma, Ulcerative Colitis, Rheumatoid Arthritis, 
Juvenile Arthritis 

CACNB1 - 0.38 (0.2, 0.72)* - 
BLOCKER: Cardiovascular Diseases 
MODULATOR: Fibromyalgia, Seizures, Epilepsy, Neuralgia, 
Restless Legs Syndrome, Postherpetic Neuralgia 

PLG 18.35 (5.47, 61.6)* 5.48 (0.07, 456.86) 0.75 (0.18, 3.14) 

ACTIVATOR: Thrombosis, Pulmonary Embolism, Stroke, 
Myocardial Infarction, Heart Failure, Hepatic Veno-Occlusive 
Disease 
INHIBITOR: Hemorrhage, Menorrhagia 

ITGB3 1.64 (1.06, 2.52)* 2.79 (0.81, 9.62) - INHIBITOR: Thrombosis, Unstable Angina 

TOP1 2.3 (0.15, 35.62) - 16.72 (4.19, 66.8)* INHIBITOR: Neoplasms 
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Table 3. Replication of drug target MR findings. The discovery and replication analyses used different data 

sources for both exposure and outcome. 145 replication MR analyses were performed in which the gene 

boundaries included genetic associations exceeding the pre-specified significance threshold (P ≤ 1x10-4). 

 
Source of data 

 Lipids measures Disease endpoints 

Discovery 

Clinical chemistry 
 

(GLGC, 
N= 188,578) 

 
Research-based case 

ascertainment 
 

(CardiogramPlusC4D, 
N= 184,305 cases) 

 

Replication 

 
Nuclear magnetic 

resonance 
(NMR)  spectroscopy 

 
(Kettunen et al, 2016, 
UCLEB Meta-analysis, 

N=33,029) 
 

Routine Electronic Health 
Records 

 
(UK Biobank, 

N=34,541 cases) 

 
 
Direction of effect 

 LDL-C HDL-C Triglycerides Overall 

Concordant 21 6 12 39 

Discordant 4 0 4 8 
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Table 4. Tissue specificity for replicated genes encoding drug targets. The tau value is a measure of tissue 

specificity with values between 0 and 1, where 1 indicates high specificity for a single tissue. The tissue with the 

highest expression of the gene is indicated in the top tissue column. * indicates significance in the discovery 

analysis, † indicates significance in both original and validation study and concordant direction of effect. OR = 

odds ratio of CHD per 1-standard deviation increase in LDL-C, HDL-C or triglycerides; CI = confidence interval. 

Drug target 
gene 

LDL-C  
(OR, 95% CI) 

HDL-C 
(OR, 95% CI) 

Triglycerides 
 (OR, 95% CI) 

Tissue 
specificity 
index (tau) 

Top tissues (Z-score >1) 

APOA5 2.05 (1.4, 3.02)* † 0.72 (0.6, 0.87)*† 1.21 (1.12, 1.31)* † 1.00 liver 

SLC12A3 1.94 (1.43, 2.63)* 0.89 (0.86, 0.93)* † 0.75 (0.24, 2.33) 0.98 kidney 

CEACAM16 1.66 (1.31, 2.11)* † 0.46 (0.27, 0.79)* 0.56 (0.25, 1.27) 0.98 pancreas, tonsil 

APOC3 2.04 (1.72, 2.42)* † 0.67 (0.58, 0.78)* 1.26 (1.12, 1.41)* † 0.95 liver 

APOA4 1.51 (1.23, 1.86)* † 0.53 (0.38, 0.74)* 1.27 (1.14, 1.43)* † 0.94 small intestine, colon, duodenum 

APOB 1.5 (1.18, 1.9)* † 1.23 (0.72, 2.12) 0.53 (0.29, 0.98)* † 0.94 liver, small intestine 

APOA1 1.88 (1.49, 2.36)* † 0.84 (0.63, 1.11) 1.25 (1.12, 1.4)* † 0.93 liver, small intestine 

NPC1L1 2.01 (1.48, 2.73)* † - 2.56 (0.75, 8.68) 0.92 
small intestine, colon, duodenum, 

liver 

GPR61 1.97 (1.56, 2.5)* † 3.02 (0.77, 11.91) 5.14 (1.43, 18.48)* 0.91 
cerebral cortex, adrenal gland, eye, 

thyroid gland 

PCSK9 1.6 (1.45, 1.77)* † - - 0.87 liver, lung, pancreas 

APOC1 1.31 (1.22, 1.41)* † 0.39 (0.25, 0.59)* 0.51 (0.17, 1.47) 0.85 liver 

CETP 1.49 (1.29, 1.72)* 0.91 (0.87, 0.95)* † 1.98 (1.63, 2.4)* † 0.76 lymph node, liver, placenta, spleen 

ADAMTS13 11.18 (4.37, 28.59)* † - - 0.72 liver 

CILP2 1.19 (1.01, 1.39)* - 1.18 (1.0, 1.39)* † 0.71 
testis, gallbladder, ovary, thyroid 

gland 

LPL - 0.63 (0.49, 0.82)* † 1.68 (1.46, 1.92)* † 0.68 
adipose tissue, breast, heart 

muscle, seminal vesicle 

APOE 1.3 (1.2, 1.41)* † 0.39 (0.26, 0.59)* 0.5 (0.17, 1.45) 0.58 liver, adrenal gland 

CELSR2 1.97 (1.78, 2.18)* † 0.06 (0.04, 0.09)* - 0.58 cerebral cortex, fallopian tube, skin 

ALDH1A2 - 0.89 (0.81, 0.99)* 1.28 (1.07, 1.54)* † 0.55 
endometrium, blood, cervix, uterine, 
fallopian tube, eye, seminal vesicle, 

testis 

ANGPTL4 - 0.48 (0.28, 0.83)* † 3.38 (1.02, 11.22)*† 0.50 
liver, adipose tissue, breast, 

cerebral cortex, pancreas 

PVR 1.31 (1.12, 1.54)*† 0.32 (0.11, 0.91)* - 0.45 liver, heart muscle 

NDUFA13 1.63 (1.13, 2.35)* - 1.18 (1.0, 1.39)* † 0.43 
testis, blood, heart muscle, skeletal 

muscle 

CARM1 2.27 (1.68, 3.05)* † - - 0.38 skeletal muscle 

VEGFA - 0.22 (0.15, 0.3)* 4.16 (2.45, 7.08)* † 0.33 
thyroid gland, endometrium, heart 

muscle, liver, skeletal muscle, 
urinary bladder 

SIK3 1.15 (0.57, 2.31) 0.46 (0.29, 0.73)* † 1.08 (0.98, 1.18) 0.27 
cerebral cortex, ovary, parathyroid 

gland, testis, thyroid gland 

TMED1 2.06 (1.5, 2.83)* † - - 0.26 
blood, heart muscle, liver, placenta, 

skeletal muscle 

PSMA5 2.47 (1.8, 3.39)*† 0.08 (0.02, 0.29)* - 0.23 
liver, cerebral cortex, kidney, 

skeletal muscle, thyroid gland 

SMARCA4 2.22 (1.98, 2.49)* † 0.01 (0.0, 0.02)* - 0.19 
cerebral cortex, bone marrow, 

esophagus, skeletal muscle, skin, 
testis, tonsil 

RPL7A 2.29 (1.57, 3.36)* † - - 0.19 
salivary gland, endometrium, lymph 

node, ovary, pancreas 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.11.377747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.377747
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title: Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics
	The downloaded NX values were then used to investigate if the prioritized target genes were specifically expressed in any of the included tissues. Two commonly used tissue specificity metrics were calculated for each gene: tau and z-score (23). Tau su...
	Phenome-wide scan of replicated drug target genes
	To explore the effect spectrum associated to prioritized drug targets, we performed a phenome-wide scan of 103 disease endpoints. These included genome-wide summary statistics for 80 ICD10 main diagnoses in UK Biobank, which were released by Neale Lab...
	We attempted to maximize the power to detect genetic associations by sourcing data from 23 publicly available GWAS with the largest sample sizes for such phenotypes (table S6). All the GWAS clinical endpoints and UK Biobank ICD10 main diagnoses were g...

