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1 Abstract 

In many biological systems, pH can be used as a parameter to understand and study cell dynamics. However, 
measuring pH in live cell culture is limited by the sensor ion specificity, proximity to the cell surface, and 
scalability. Commercially available pH sensors are difficult to integrate into a small-scale cell culture system 
due to their size and are not cost-effective for disposable use. We made PHAIR - a new pH sensor that uses a 
micro-wire format to measure pH in vitro human airway cell culture. Tungsten micro-wires were used as the 
working electrodes, and silver micro-wires with a silver/silver chloride coating were used as a pseudo reference 
electrode. pH sensitivity, in a wide and narrow range, and stability of these sensors were tested in common 
standard buffer solutions as well as in culture media of human airway epithelial cells grown at the air-liquid 
interface in a 24 well cell culture plate. When measuring the pH of cells grown under basal and challenging 
conditions using PHAIR, cell viability and cytokine responses were not affected. Our results confirm that 
micro-wires-based sensors have the capacity for miniaturization, and detection of diverse ions while 
maintaining sensitivity. This suggests the broad application of PHAIR in various biological experimental 
settings.                    

2 Introduction 

Changes in extracellular or intracellular pH may accompany cellular growth, metabolism, signaling, or ion 
transport 1,2. For instance, as cancer cells proliferate, they produce lactic acid that reduces extracellular pH in 
the local microenvironment 2,3. The central role that pH plays in cell biology highlights the importance of 
dynamic measurement of extracellular pH in cell culture experiments in both discovery and applied biomedical 
research, under basal and challenging conditions. 4–6. Human airway epithelial cells (HAECs) are an 
indispensable component of the innate immune system functioning as the first line of defense in the lungs, 
protecting against inhaled pathogens and environmental toxins, which may imbalance the extracellular pH of 
cells 7. In addition to serving as physical barriers, HAECs secrete a thin layer of airway surface lining (ASL) 
fluid that functions to hydrate the airways, facilitate mucociliary clearance, and trap inhaled substances. ASL, 
while mostly composed of water, contains salts, lipids, mucus, and protective proteins, including antimicrobial 
factors 8,9. Recent evidence suggests that the antimicrobial activities exhibited by ASL and some of its 
constituents, such as lactoperoxidase, LL-37, beta-defensin 1 (hBD-1), and beta-defensin 3 (hBD-3) are pH-
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dependent 8,9. In addition, ASL pH has been shown to modulate other aspects of airway homeostasis, ranging 
from altering mucus properties to regulating ionic movements 9,10. 

ASL pH is regulated by a variety of mechanisms involving paracellular pathways and membrane transport 
proteins, among which, Cystic Fibrosis Transmembrane Conductance Regulator (CFTR – also known as 
ABCC7) has received emphasis as the genetic defect behind Cystic Fibrosis (CF). CFTR activity is potentiated 
by cyclic-AMP (cAMP)-dependent protein kinase A phosphorylation of the intracellular regulatory region 11. 
Classically thought to be a Cl- channel, CFTR also conducts HCO3

- and has been identified as a crucial 
mechanism of base secretion in the airways 9,12,13. In cellular and animal models of CF, ASL acidification 
resulting from defective CFTR function has been demonstrated, leading to the hypothesis that abnormal ASL 
pH may reduce antimicrobial activity and contribute to chronic bacterial infections, a characteristic feature of 
CF airway disease 14–20. Accordingly, pharmacological interventions that aim to normalize ASL pH by 
increasing CFTR activity or targeting other acid/base transport proteins have been investigated 20,21. Although 
the lack of specificity of forskolin, a cAMP-elevating agent, renders it unsuited for clinical use, it serves as a 
robust tool for inducing CFTR in vitro research and drug response assays 22. Forskolin directly activates 
adenylate cyclase, resulting in an increase in intracellular cAMP concentration. Through a signaling cascade, 
phosphorylation-dependent CFTR modulation occurs, leading to potentiation of activity and ion flux (Li et al., 
2005; Schnur et al., 2019). 

Performing simple yet accurate and reliable measurements of ASL pH has posed a significant challenge, with a 
variety of methods deployed to date 14,15,17,19–21,25,26. A particular challenge exists for pH measurements of 
airway epithelial cells grown under air-liquid interface culture conditions on Transwell inserts as there is a small 
growth surface area contributing to a low volume and depth of ASL. Since the measurement of pH in a cell 
culture system has been recognized as a useful tool to study different aspects of the cells’ biology, various pH 
sensors have been developed 27–32. Several techniques, such as optical sensing methods (Magnusson et al., 2013; 
Munoz-Berbel et al., 2013; Shaegh et al., 2016), ion-sensitive field-effect transistor-based sensors, or 
electrochemical pH sensing materials 36 have been investigated to monitor pH in a biological application. 
Among these methods, electrochemical-based pH sensors have great potential to be miniaturized and integrated 
into a cell culture system, especially potentiometric sensors. It is well-known that various metal oxides such as 
copper oxide 36, iridium oxide 5,37–40, tungsten oxide 41–44, cobalt oxide 45, titanium oxide 45, ruthenium oxide 39, 
zinc oxide 46, indium tin oxide 47–49, and palladium oxide 50–53 can be used as a pH sensing material in a 
potentiometric sensor. The fabrication of this type of pH sensor can be simplified to develop a straightforward 
compact pH sensor that can be easily integrated into different cell culture systems. Of the candidate materials, 
tungsten is always oxidized at room temperature resulting in a surface oxide layer with sensitivity to changes in 
pH 41,42. Based on the above, we hypothesized that a tungsten wire-based pH sensor system satisfies design 
constraints for pH measurements in airway surface lining fluid from human airway epithelial cells cultured 
under air-liquid interface conditions.  

Unlike other metallic oxides, tungsten is a metal that is oxidized at room temperature under a dry atmosphere 
resulting in the formation of a thin layer of WO3 on the tungsten surface 41. Exposing tungsten to an aqueous 
environment also results in the formation of a thicker layer of WO2, WO3, and hydroxide 41. When tungsten is 
placed in a buffer with a pH around 7, a slightly different form of tungsten oxides (WO2 or W2O5) can be 
formed 42. The formed metal oxide layer is responsible for the pH response of tungsten. Measuring the open 
circuit potentials (E) between the working electrode (metal/metal oxide) and a reference electrode, which are 
placed in an aqueous solution, can reveal information about the pH of the solution of interest. The metal/metal 
oxide electrode and its aqueous surrounding exchange proton (H+) and this redox reaction will finally reach an 
equilibrium at a constant pH, as shown below 44: 

��� � 2��� � 2���  	 ����� � ���� 
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In this work, we developed pH sensors using tungsten wire and demonstrated the capacity to measure pH in 
vitro cell culture. In order to miniaturize the sensor, we first developed a custom-made silver/silver chloride 
(Ag/AgCl) reference electrode in a micro-wire format to be able to deploy in HAEC ASL fluid for in situ 
measurement of pH. Secondly, the pH sensitivity of tungsten wires was studied relative to a commercial 
reference electrode or the optimized custom-made silver/silver chloride reference electrodes. Thirdly, we 
evaluated our pH sensor in different buffer standard solutions, non-buffer solutions, and cell culture media to 
assure that the pH sensor was robust and maintained sensitivity.  

3 Experimental  

3.1 Electrode preparation and fabrication of reference electrodes  

Tungsten (W) wires (99.95% metals basis) and silver (Ag) wires (99.9% metals basis) were purchased from 
Alfa Aesar with a diameter of 250 µm, cut into 10-cm long pieces. The wires were stored at room temperature 
(RT) prior to preparation for each experiment. Tungsten wires acted as a working electrode (WE) to measure 
pH. Three fabrication processes were used to make four custom-made silver/silver chloride (Ag/AgCl) 
reference electrodes (REs) as shown in Scheme 1) silver wires were immersed in silver/silver chloride ink or 
paste (ratio of 65:35, product # 125-21, Creative Materials, Ayer, MA, USA) for 5 minutes (Scheme 1a1), 
wiped by a disposable swab to remove extra ink and achieve a thin layer of ink on wires (Scheme 1a2), dried in 
an oven at 65 °C overnight, named as custom-made RE1 (Scheme 1a3) Silver wires were immersed in a bleach 
solution (Javex, Fisher Scientific, Canada) containing 10.8 % sodium hypochlorite (NaOCl) or NaOCl solution 
(product # 425044, Sigma Aldrich) containing 10 – 15 % chlorine for 5 minutes (custom-made RE2) or 10 
minutes (custom-made RE3) as seen in Scheme 1b1, rinsed rigorously with deionized water (DI), and dried at 
RT (Scheme 1b2). 3) Silver wires were immersed in bleach or NaOCl solution for 5 minutes (Scheme 1c1), 
rinsed with DI water, dried at RT overnight (Scheme 1c2), immersed in silver/silver chloride ink for 5 minutes 
(Scheme 1c3), wiped by a disposable swab (Scheme 1c4), and dried in an oven at 65 °C overnight, named as 
custom-made RE4 (Scheme 1c5).  
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Scheme 1: The fabrication process of miniaturized reference electrodes in a wire format: (a1 – a3) a 10-cm 
long silver wire (diameter = 250 µm) was immersed in silver/silver chloride paste for 5 minutes, extra paste on 
the wire was removed by a disposable brush, and the coated silver wire was cured in an oven at 65 °C 
overnight, (b1 – b2) a 10-cm long silver wire was immersed in a commercial bleach or sodium hypochlorite 
(NaClO) solution for 5 or 10 minutes, rinsed rigorously with DI water, and dried at RT, and (c1 – C5) a 10-cm 
long silver wire was first chlorinated in a commercial bleach solution of NaClO for 5 minutes, rinsed with DI 
water, dried in an oven at 65 °C for 2 – 3 hours, immersed in silver/silver chloride paste for 5 minutes, extra 
material was removed and dried in in an oven at 65 °C. 

 

3.2 Electrochemical sensing tests 

For all electrochemical experiments, a QUAD ISOPOD e-DAQ system was used to measure open circuit 
potentials (E) of tungsten wires with respect to a commercially-available reference electrode (CRE) or one of 
the custom-made reference electrodes. The commercial reference electrodes were a miniature silver/silver 
chloride reference electrode that had a porous Teflon tip, and they were purchased from CH Instruments, Inc. 
(CHI111, Austin, USA). The commercial reference electrodes were stored in a 3M potassium chloride (KCl) 
solution at RT. To analyze the pH response of tungsten wires against a commercial reference electrode or one of 
the custom-made reference electrodes, a set of wires consisted of a tungsten wire, and one of the reference 
electrodes was immersed in a buffer solution with known pH. Immediately after immersion, E was recorded for 
5 minutes, the recording was paused, the wire setup was removed from the buffer solution, rinsed with DI 
water, transferred to the next buffer solution, followed by the continuation of recording with 10-second delay to 
let wires wet properly in the new buffer. Three pH buffer standard solutions with pH of 4, 7, and 10 were used 
to test the pH sensitivity and stability of tungsten wires against a commercial reference electrode after one day 
and four days storage in phosphate-buffered saline (PBS) with a pH of ~ 7.4. The standard buffer solution with 
a pH of 10 was used for measuring the response time of each sensor setup. Hydrion buffers from Micro 
Essential Laboratory, Inc. with various pH (pH = 7, 8, and 9) were also used for testing the sensors for smaller 
pH intervals. The pH of these buffers was adjusted to the desired value if needed by adding 1 M sodium 
hydroxide (NaOH). To test and investigate the pH sensitivity of the sensors in a complex environment, Medium 
199 (M0393, Sigma Aldrich) containing Hanks′ salts and L-glutamine without sodium bicarbonate was used. 
After dissolving the medium powder in DI water, the pH of the medium was adjusted to ~ 6.75, 7.50, 8.25, and 
9.00 by adding 1 M NaOH (the medium was acidic with a pH of ~ 6.00). All experiments were performed at 
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room temperature. The pH of each media was measured before and after each step to detect any pH drif
these media did not contain a buffering system, and no significant change in pH was observed.  

3.3 Fabrication and assembly of macro-wells with wire sensors 

Polydimethylsiloxane (PDMS) monomer base and its curing agent were mixed at a ratio of 10:1 and dega
a desiccator for 15 minutes. PDMS was poured to a petri dish (thickness 8 mm) and cured in an oven a
for 2 hours. A disposable punch (Accu-Punch 12.0 mm, Electron Microscopy Sciences, PA, USA)
diameter of 12 mm was used to punch PDMS slabs and create macro-wells (Scheme 2a). Tungsten wire
pushed through from the sides and inserted in the wells (Scheme 2b). To insert the custom-made re
electrode into each well, a six mm-deep cut was made from the top of each well by a scalpel (Scheme 
seal the bottom of each well, the bottom side of wells and another cured PDMS piece were treated by a
torch (Scheme 2c), and a custom-made reference electrode was carefully placed inside the bottom of the 
slot of each well (Scheme 2d). Then, wells with inserted wires and another PDMS piece were broug
contact, followed by a gentle press to initiate bonding. Uncured PDMS was used to seal the cuts, 
product was placed in an oven at 65 °C overnight to strengthen the bonding (Scheme 2d).  

Scheme 2: The fabrication process of the macro-well array: (a) the PDMS was cut and punched to create well
tungsten wires were pushed through PDMS to be placed into wells, (c) a cut (1 mm from the bottom) was 
followed by treating flame activation for bonding, and (d) silver/silver chloride reference electrodes were placed in
locations and two pieces were brought in contact to initiate the bonding followed by sealing cuts using PDMS. 

     

3.4 Cell culture 

The human airway epithelial cell line, Calu-3 (HTB-55™, ATCC®, USA), was used for testing the e
wires on cell viability and cytokine release. The cells were cultured in alpha minimum essential m
(αMEM, Corning®, USA) which was supplemented with fetal bovine serum (10%, FBS, WISEN
Canada), and antibiotic-antimycotic (100 U/mL penicillin, 100 µg/mL streptomycin, 0.25 µg/mL ampho
B, Gibco®, USA) and HEPES buffer (10 µM, Gibco®, USA). The cells were cultured and maintaine
incubator at 37 °C with 5% carbon dioxide, and they were fed on a two-day feeding cycle.  

Prior to seeding cells in PDMS wells, the bottom of wells was coated with type I collagen solution (Pur
Bovine Collagen, 3 mg/mL, Advanced BioMatrix, CA, USA). The collagen solution had a concentrati
mg/mL and was diluted to 1 mg/mL with autoclaved DI water. To coat the wells, 200 µL of 1 mg/mL c
solution was added to each well, and all wells were stored in the fridge for 24 hours. Then, the collagen s
was removed from wells, wells were rinsed with PBS (pH = 7.4) for at least three times, the wells were d
a biosafety cabinet, and they were sterilized by UV light for 30 minutes. Calu-3 cells with a density of 1
cells/well were cultured in the wells and were grown to confluency for viability assay. Calcein AM (5 µM
Technologies®), and Hoechst (20 µg/mL, Thermo Fisher Scientific, USA) dyes were used to p
quantitative viability assay. First, the medium was removed from the wells, at the cells were gently wash
warmed PBS two times, 400 µL of Calcein AM and Hoechst solution was added to each well, the
incubated with dyes at 37 °C for 20 minutes, the dyes were removed, they were rinsed with warmed PB
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least two times, and they were imaged by an EVOS M7000 microscope (Thermo Fisher, Canada). Wells 
without wires were also fabricated, cultured with Calu-3 cells, and imaged for controls.   

3.5 Enzyme-Linked Immunosorbent Assay (ELISA) and Cell viability assessment 

Cell culture media was collected and spun down at 7500 xg for 15 minutes at 4 °C. Supernatants were 
subsequently analyzed for IL-6 and IL-8 cytokines via ELISA. Human IL-6 Duoset (R&D Systems; Catalog 
Number DY206) and Human IL-8/CXCL8 Duoset (R&D Systems; Catalog Number DY208) were used in 
accordance with the manufacturer’s protocols. The following maximum and minimum limits of standards were 
used, respectively: IL-6 (1200 pg/ml, 0 pg/ml) and IL-8 (4000 pg/ml, 0 pg/ml) with the assay plate analyzed as 
per manufacturer’s protocols using a SpectraMax i3x microplate reader.  

Cell viability was determined using secreted lactate dehydrogenase (LDH) using a commercially available kit 
(Thermofisher; Catalog Number C20301) and following manufacturer’s directions.  

Calu-3 cells were cultured in a 24-well plate with a density of 10 × 105 cells/well and grown to confluency. 
Then, a set of two-wire sensing system including a 10 mm-long tungsten wire and a 10 mm-long custom-made 
reference electrode (5 minutes bleached silver wires) was transferred to four wells, and the cells were 
maintained for two days. Supernatants were collected for ELISA and LDH assays. Positive controls indicating 
maximal LDH release were generated by seeding a 24-well cell culture plate with the same cell density and 
incubating in 1 mL of cell culture media until confluency followed by the addition of 100 µL of lysis buffer 
provided in the assay kit as per manufacturer’s directions. All supernatants were then harvested and spun down 
at 7500 xg for 15 minutes before use in LDH and ELISA assays.  

3.6 Calu-3 Cell Culture at Air-Liquid Interface 

Calu-3 cells were seeded onto semi-permeable Transwell insert (Corning) at a density of 100,000 cells/well, 
with 200 µL and 750 µL of media in the apical and basal compartments, respectively. Media were replaced 
every two days. When confluency was reached after five days, the apical medium was removed, and cells were 
fed basal-only every two days to allow for differentiation at the air-liquid interface (ALI day 0). In addition, 
transepithelial electrical resistance (TEER) measurements were performed as quality control after feeding by 
adding 200 µL of Hanks' Balanced Salt Solution (HBSS) to the apical compartment and using the TEER 
machine (Millicell® ERS-2 Voltohmeter) according to the manufacturer’s protocol. After TEER measurements, 
the apical surface of cells was gently washed with 200 µL of HBSS for 10 min to remove debris and mucus. On 
ALI day 16, one hour prior to stimulation, the basal medium was replaced, three apical washes with HBSS were 
performed, and TEER values were >700 Ω⋅cm2 for all wells. 

3.7 Forskolin stimulation and airway surface liquid pH Measurements 

To allow for measurement of ASL pH changes, 100 µL of HCO3
- and K+-free saline Ringer's solution (140 mM 

Na+/140 mM Cl-/1.2 mM Ca2+/1.2 mM Mg2+/2.5 mM PO4
3-, pH 6) was added to the apical compartment of 

Transwell inserts. After the addition of 10 µM of forskolin or dimethyl sulfoxide (DMSO) vehicle control to the 
basal medium, cells were incubated for 3 hours in an incubator and subsequently left at room temperature for 30 
minutes. ASL pH for each well was then measured using our pH sensor, followed immediately by a commercial 
pH microelectrode (Orion™ PerpHecT™ ROSS™). Sensor fabrication and setup were carried out in 
accordance with the previously described protocol. Calibration was performed in HCO3

- and K+-free saline 
Ringer's solutions (pH 6, 6.75, 7.5, 8.25, and 9) at room temperature to obtain ascending and descending 
calibration curves. The sensor wires were conditioned in the pH 6 solution for at least 2 hours prior to use. To 
simplify the measurement process and ensure wire stability in solution, a custom holder was designed to fit onto 
Transwell inserts and was 3D-printed using A FormLab Form 2 printer (MA, USA); the working and reference 
electrodes were firmly attached to the 3D-printed holder with instant glue (Loctite 4013). For each well, open 
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circuit potential (mV) was recorded every second for a total duration of 150 seconds. The last 60 values were 
averaged, and corresponding pH values were obtained from the ascending and descending calibration curves. 
The apical solution was subsequently transferred from the Transwell insert into a micro Eppendorf tube, 
allowing for pH measurement with a commercial pH meter. At the end of the experiment, live and dead cell 
viability assay from ThermoFisher was used to assess the viability of cells.  

 

4 Results and discussion 

4.1  Tungsten wire pH response and stability against a commercial reference electrode   

In this work, the potentiometric measurements of the metallic tungsten wires were conducted in a series of 
standard buffer solutions with a pH of 10, 7, and 4. Initially, tungsten wires were placed in the pH 10 standard 
buffer solution, and E was continuously recorded for 20 minutes. The aim of the experiment was to evaluate the 
pH response time of tungsten wires when they were transferred from a dry condition (room air) to an aqueous 
environment. In this study, the response time of tungsten wires is defined as the time that the sensors need to 
reach 90 % or 95 % of their equilibrium potential 40. Using this definition, tungsten wires reached 90 % and 95 
% of their equilibrium potential in 12 seconds and 58 seconds, respectively, as presented in Figure 1a. A change 
in potential from ~ -500 mV to ~ - 432 mV was observed, attributable to the transformation of the oxide layer 
from WO2 to WO2/WO3/W2O5 

41,42. Then, tungsten wires were stored in PBS with a neutral pH for one day 
before performing pH sensitivity testing. One-day storage in a buffer solution would ensure that all tungsten 
wires were uniformly oxidized. Figure 1b shows the real-time pH response of the metallic tungsten wires 
against a commercial reference electrode. A smooth transition of the potentials was observed while the tungsten 
wires were transferred from one buffer to another one. Figure 1c to Figure 1f show measured E of the tungsten 
wires versus pH (the calibration curve for each sensor), where all of them demonstrated a good linear property 
(R2 > 0.999). Moreover, the hysteresis between the measured open circuit potential for descending and 
ascending pH was small and negligible (< 1%; red lines and black lines had covered each other).  

One of the main challenges for any type of pH sensor is its stability over time. Here, the tungsten wires were 
tested on day 4 again under identical conditions, and their pH behavior was studied at day four (Figure 1g). 
Compared to day 1, measured E was changed in a range of 7 % to 15 % (~ 7 % for the basic buffer, ~ 13 % for 
the neutral buffer, and ~ 15 % for the acidic buffer). This behavior suggested that longer storage in an aqueous 
solution would change the oxidized layer properties (the combination of metal/metal oxide or the thickness of 
metal oxide layer) as observed in other studies as well 41,42. However, the tungsten wires still exhibited a linear 
response (R2 > 0.995), and the slope did not change significantly compared to day 1 (the average slopes at day 1 
and day 4 were – 42.7 ± 0.5 mV/pH and – 41.8 ± 1.0 mV/pH, respectively) as depicted in Figure 1g-k.  
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Figure 1: Open circuit potential (E) versus a commercial reference electrode (CRE) for tungsten (W) wires: (a) 
the stability testing of tungsten wires (n=7) over 20 minutes in a buffer with the pH of 10, (b) real-time 
response of tungsten wires in 3 standard pH buffers (4, 7, and 10) after being conditioned in PBS (pH = 7.4) 
for one day, (c – f) the calibration curve for each individual wire at day one, (g) real-time response of tungsten 
wires in 3 standard pH buffers (4, 7, and 10) after being stored in PBS (pH = 7.4) for four days, and (h – k) the 
calibration curve for each individual wire at day four. N = 4. The decrease in pH is shown by red colors, and 
the increase in pH is shown in black color.    

 

4.2 Characterization of custom-made reference electrodes 

The pH sensitivity of metallic tungsten facilitated the fabrication of a miniature pH sensor in a micro-wire 
format with tungsten metal forming the basis of the working electrode. Nonetheless, a potentiometric pH sensor 
consisted of a working electrode and a reference electrode. The majority of commercially-available reference 
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electrodes have a macro size (typically they have a diameter greater than 1 - 5 mm) and cannot be integrated 
into a micro-scale pH sensor device. As a result, a micro-scale reference electrode was required to realize a 
miniaturized pH sensor. Silver wires with a diameter of 250 µm were used as a substrate to fabricate four types 
of silver/silver chloride reference electrodes. For each electrode type, six reference electrodes were prepared, 
immersed in a standard buffer with a pH of 10, and their real-time response against a tungsten wire was 
monitored over 30 minutes, as seen in Figure 2. All custom-made reference electrodes were air-dried and used 
fabrication immediately. Custom-made RE1 had the largest variation, and the equilibrium potential varied from 
– 625 mV to – 586 mV (Figure 2a). Chlorinated REs (RE2 and RE3) had the smallest variation for the 
equilibrium potential ranging from – 661 mV to – 641 mV (Figure 2b and Figure 2c). The equilibrium potential 
of custom-made RE4 was also as small as chlorinated reference electrodes. However, custom-made RE4 had a 
noisier response compared to chlorinated reference electrodes (Figure 2d). Therefore, the chlorination of silver 
wires for 5 minutes was chosen as the standard process for the fabrication of all reference electrodes in this 
study.    

The main drawback of applying silver/silver chloride paste was that commercially available inks had supplier 
dependent properties and batch to batch variations, which made the replication of the results difficult. The 
chlorination of silver wires was recognized as a versatile method for producing silver/silver chloride reference 
electrodes and was less dependent on a given chlorine solution. Therefore, it was realized that reference 
electrodes chlorinated by NaClO solution were more stable and showed less variation in their potentials. 
Immersion of silver wires in a bleach solution or NaClO solution (10 – 15 %) led to a chemical reaction at the 
surface of silver wires as follows 54: 

�
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Figure 2: The stability evolution of custom-made reference electrodes: (a) real-time response of silver wires 
coated with silver/silver chloride paste versus a tungsten wire in a buffer with the pH of 10 for 30 minutes-
RE1, (b) real-time response of 5-minutes bleached silver wires versus a tungsten wire in a buffer with the pH 
of 10 for 30 minutes-RE2, (c) real-time response of 10-minutes bleached silver wires versus a tungsten wire in 
a buffer with the pH of 10 for 30 minutes-RE3, and (d) real-time response of 5-minutes bleached silver wires + 
silver/silver chloride paste versus a tungsten wire in a buffer with the pH of 10 for 30 minutes-RE4. N = 6. 
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4.3 pH response and stability: Combination of tungsten wire and chlorinated silver wire 
reference electrodes 

The silver wires chlorinated for 5 minutes were conditioned in 3M KCl, PBS, and room air, and their real-time 
response was studied against a tungsten wire in different standard pH buffers (Figure 3a). Chlorinated silver 
wires that were conditioned in PBS showed a more stable response and less drifting compared to other 
conditions. The pH sensitivity and real-time response of custom-made reference electrodes that were 
conditioned in 3M KCl continuously drifted relative to dry, and PBS conditioned electrodes. Consequently, for 
the rest of the experiments, custom-made reference electrodes were conditioned and stored in neutral PBS 
unless otherwise mentioned.  

The real-time response of custom-made reference electrodes stored in PBS against a tungsten wire was 
investigated in a standard buffer with a pH of 10 (Figure 3b). The average initial potential was – 650.3 mV, 
which was consistent with the final average potential (- 649.7 mV), showing that a properly-conditioned 
reference electrode rapidly responded to the new environment. Next, we tested chlorinated reference electrodes 
versus a tungsten wire. Figure 3c represents the real-time response of these reference electrodes against the 
tungsten wire after conditioned for one day in PBS, in three different standard buffers (pH = 10, 7, and 4). A 
smooth transition of the potential electrical signals for all five custom-made reference electrodes was observed 
when they were transferred from one buffer to another one. However, one of the reference electrodes (Ref 5) 
had a slightly different potential at a pH of 10 and underwent a larger hysteresis compared to others. Figure 3d 
to Figure 3h shows the open circuit potential of these reference electrodes at different pH (the calibration 
curves). The average slope of the calibration curves was – 50 ± 1 mV/pH, which was close to the values 
reported in other works 43,44,55 and was higher compared to commercial reference electrodes reported earlier.      
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Figure 3: Characterization and testing of tungsten wires with custom-made chlorinated reference electrodes: 
(a) Real-time response of silver wires undergoing 5 minutes of bleached (NaClO) versus a tungsten wire in a 
series of buffers with the pH of 10, 7, and 4 with a different conditioning treatment, (b) real-time response of 5-
minute bleached silver wires versus a tungsten wire in a buffer with the pH of 10 for 30 minutes, (c) real-time 
response of 5-minute bleached silver wires versus a tungsten wire in standard buffers (pH = 4, 7, and 10) after 
being conditioned in PBS for one day, (d – h) the calibration curves for each individual sensors. N = 5. The 
decrease in pH is shown by red colors, and the increase in pH is shown in black color.    

 

Both custom-made reference electrodes and the tungsten wire were stored in PBS for three more days, and the 
real-time response of custom-made reference electrodes at day four was evaluated against the tungsten wire 
under the same conditions (Figure 4a). One of the reference electrodes (Ref 5) failed and did not show 
significant pH sensitivity. The formed silver/silver chloride layer was fragile and could be damaged due to the 
movement of the reference electrode. Drift in electrical potentials was observed, most prominent in basic 
conditions (pH 10), which was 4 – 5 % compared to day 1 (pH = 10). However, the drift in potentials at pH = 4 
and pH = 7 were smaller (1 %). The pH response of these reference electrodes against the tungsten wire is 
shown in Figure 4b to Figure 4e. A decrease in the slope was observed from an average value of ~ -50.0 mV/pH 
to -45.7 mV/pH.  
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Figure 4: The long-term stability testing of tungsten wires with the custom-made reference electrodes at day 4: 
(a) real-time response of 5-minute bleached silver wires versus a tungsten wire in standard buffers (pH = 4, 7, 
and 10) after being stored in PBS for four days, (b – e) the calibration curves for each individual sensors. N = 
4. The decrease in pH is shown by red colors, and the increase in pH is shown in black color.    

 

4.4 pH sensitivity of tungsten and chlorinated silver wires: Applications in a narrow pH range 

To assess the pH sensitivity of tungsten wires with custom-made reference electrodes, different standard buffer 
solutions with narrower pH values ranging from 7.05 to 9.1 were prepared. In contrast to the previous 
experiments, where all custom-made reference electrodes (chlorinated silver wires) were tested against a similar 
tungsten wire to reduce variation in potential measurement, four pairs of pH sensors consisted of tungsten wire 
and a custom-made reference electrode were fabricated and studied. This would enable us to recognize the 
difference in pH sensitivity of sensors from one batch to another batch. In addition, the sensors were only 
conditioned in DI water for an hour to see how fast the sensor could be conditioned. An extra buffer solution 
with a pH of 7.50 was also added to the experiment when pH was increased from the neutral to the basic 
conditions. Figure 5a shows the real-time pH response of these sensors. The open circuit potential of these 
sensors was relatively stable at all pH tested, and a small hysteresis was observed (e.g., E was -650 mV and -
644 mV equal to 1% drift). Figure 5b to Figure 5e represents the open circuit potential of each sensor for the 
tested pH. While pH was decreased, the average pH sensitivity of the sensors was – 51.1 ± 1.2 mV/pH. 
However, the average pH sensitivity was decreased to – 47.9 ± 0.3 mV/pH when pH was increased.              

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.375683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375683
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5: The pH sensitivity of tungsten wires and the custom-made reference electrodes for measuring pH in 
a narrower range: (a) Real-time response of 5-minute bleached (NaClO) silver wires versus a tungsten wire in 
a different set of buffers with narrower pH range after being conditioned for 1 hour in DI water, (b – e) the 
calibration curves for each individual sensors. N = 4. The decrease in pH is shown by red colors, and the 
increase in pH is shown in black color.    

 

4.5 pH performance of sensors in a cell culture medium 

PDMS macro-wells with integrated sensors were fabricated and evaluated with cell culture medium. The cell 
culture medium did not contain bicarbonate as a pH buffer. The macro-well array included three wells, each 
with a volume of ~ 800 µL (Figure 6a). In the beginning, wells were rinsed with PBS (pH = 7.4) and the first 
media (pH = 9.00) for three times. Media was changed with a micropipette, followed by PBS rinse, and rinsing 
with the next media three times. The real-time pH response of these sensors in media with various pH is plotted 
in Figure 6b. First, the potential transition between media was smooth and did not show a discernible shift. A 
slight difference in the open circuit potential between sensor three and two others was seen, which was smaller 
than 1.5 %. Nonetheless, the pH sensitivity of the sensors was significantly decreased to – 36.4 ± 0.6 mV/pH 
when they were tested in this cell culture media (Figure 6c to Figure 6e).  

A silver/silver chloride layer without any ion-selective barrier is highly sensitive to chloride ions, resulting in 
changes to the electrochemical behavior of this type of reference electrode when exposed to a high chloride ion 
concentration environment 56–59. A cell culture media usually contains a significant amount of chloride ions (in 
order of 100 – 200 mM). Although the custom-made chlorinated reference electrode interfered with chloride 
ions present in the media, the pH response still behaved linearly and produced a repeatable and predictable 
response because of having the same chloride concentration in all media. 

Calu-3 cells were cultured in three wells with sensor wires and in three wells without wires as a control. In the 
first 48 hours, the wires were not brought in contact with the media to ensure that all cells uniformly adhered to 
the collagen-coated PDMS surfaces under identical growth conditions. Then, the media was changed, and its 
level was increased to cover the wires as well. The cells were grown for 48h following reaching confluency 
before being stained with Calcein AM and Hoechst dyes for viability assay. Figure 6f to Figure 6k displays the 
stained cells without observing any negative impacts on cells. In both cases, a uniform distribution of live cells 
can be seen with some brighter patches of live cells showing that the cells were grown on the top of each other. 
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Therefore, it can be concluded that the integration of wires (tungsten and a custom-made chlorinated reference 
electrode) in the wells did not affect the growth and morphology of cells to confluency and even over-
confluency.                       

 
Figure 6: In vitro studies of wire format sensors placed in an array of macro wells: (a) the schematic and 
dimensions of macro wells, (b) real-time response of 5-minute bleached silver wires versus a tungsten wire in 
cell culture medium without bicarbonate and adjusted pH after being conditioned in PBS for one day, (c – e) 
the calibration curves for each individual sensors, (f-h) in vitro viability assay of Calu-3 cells cultured in PDMS 
macro wells without the present of wire sensors, and (i-k) in vitro viability assay of Calu-3 cells cultured in 
PDMS macro wells with the present of wire sensors. N = 3. The decrease in pH is shown by red colors, and 
the increase in pH is shown in black color.    

 
4.6 The effect of pH sensor on cell cytotoxicity or cytokine responses 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.375683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375683
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lactate dehydrogenase is a cytoplasmic enzyme found in almost all cells in the body, including lung tissue, 
responsible for converting lactate into pyruvate 60. Upon compromise to cell plasma membrane integrity, it is 
released into the extracellular environment 60. As such, it has been used in the past to assess cytotoxicity and 
cell death 61. An LDH Assay was used in our study to quantify the degree of cytotoxicity to Calu-3 cells from 
the presence of the silver/silver chloride wire and tungsten wire relative to the control condition (no wires). We 
showed that the presence of the silver/silver chloride + tungsten wires would not induce significant cytotoxicity 
to the cells. As shown in Figure 7a, LDH concentration as a percent of the maximal LDH release was noticeably 
lower in the presence and absence of the silver/silver chloride + tungsten wires, respectively. In addition, our 
data suggested that relative to the maximal LDH release possible, and there was significantly less LDH 
measured in both the control and silver/silver chloride + tungsten conditions, suggesting that the wires did not 
induce any toxicity to the cells. Similarly, we showed that the presence of silver/silver chloride +tungsten would 
not significantly impact the production of IL-6 and IL-8 cytokines, which are associated with inflammation 
Figure 7b and Figure 7c.  Collectively, we demonstrate that cell cytotoxicity and IL-8 and IL-6 responses were 
not perceivably impacted by our sensor. 

 
Figure 7: In vitro studies of wire format sensors placed in an array of macro wells: (a) cytotoxicity of wire-
format sensors adjacent cells using LDH assay, (b) the production of IL-8, and (c) the production of IL-6. The 
error bars are standard deviations. 

 

4.7 A 3D-printed wire sensors holder for measuring pH inside a Transwell Insert 

Commercial pH sensors, even “micro” pH sensors, cannot be introduced into a small reservoir that contains a 
very small amount of a solution to measure pH in situ. As a result, a 3D-printed holder was designed so that it 
could introduce both tungsten wire and a custom-made reference electrode onto the cultured cells in a Transwell 
insert assembled in a new biosensor device - PHAIR, as depicted in Figure 8a. This device could be easily 
removed form one Transwell insert, rinsed, and placed to another one.  

Calu-3 cells can be grown at an air-liquid interface (ALI) and be used as an in vitro model for studying drugs 
that involve the regulation of cystic fibrosis transmembrane conductance regulator (CFTR) such as cystic 
fibrosis (CF) 13,16,62. Therefore, Calu-3 cells were grown at an ALI and were stimulated by adding forskolin in 
the basal compartment while a home-made Ringer’s solution was added to the apical side. Since the cells were 
releasing their secretions to an environment (Ringer’s solution) enriched in chloride ions, the sensor made of a 
tungsten wire and the custom-made chlorinated reference electrode was tested and calibrated in Ringer’s 
solutions with various pH prior to the main experiment. The calibrated sensor was thoroughly rinsed with DI 
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water and stored in Ringer’s solution until it was used for measuring the apical pH. The real-time pH response 
of the sensor in Ringer’s solution with different pH is shown in Figure 8b, suggesting that the open circuit 
potential was quickly stabilized and experienced a small hysteresis similar to the earlier observations. 
Nevertheless, a drop in the pH sensitivity of the sensor was observed, which was expected because Ringer’s 
solution had a high chloride concentration (the pH response was linear and had an R2 of ~ 0.990). 

After stimulation of the cells with forskolin, the sensor device was placed in each Transwell, and the pH was 
reported (Figure 8d). Compared to DMSO vehicle control, 10 µM of forskolin in basal media induced a 
significant increase in ASL pH according to both methods of pH measurement (Figure 8e). This observation 
was consistent with current models of ASL pH regulation and results from similar studies, which have reported 
increases in HCO3

- secretion, ASL buffer capacity, and pH due to forskolin stimulation 13,15,16,63,64. In response 
to ASL acidification, as simulated in our experiment by the addition of HCO3

- and K+-free saline Ringer's 
solution (pH 6.0) to the apical surface, epithelial monolayers are capable of normalizing pH to the alkaline 
range 15,17,65,66. By activating CFTR, a major mechanism of base secretion in Calu-3 cells, through intracellular 
cAMP elevation, this process can be accelerated. After 3.5 hours without forskolin stimulation, ASL pH, as 
measured by the commercial microelectrode, was 6.98 ± 0.17 (mean ± SD). With forskolin stimulation, ASL 
pH was significantly higher at 7.81 ± 0.35, although this effect appears to be greater than what has been 
reported in the literature, which varies but are typically less than 0.5 13,15,17,64. Such differences may be 
attributable to heterogeneity in methodology, including cell type, stimulation conditions, and measurement 
tools. Crucially, the forskolin-induced increase in ASL pH in Figure 8e was verified by two independent 
methods of measurement; there were no statistical differences between readings from the commercial 
microelectrode and calculated values from our custom sensors for each experimental condition. 

After the in situ measurement of pH, the apical solution was collected to check the chloride ion concentration of 
the solution. The chloride ion concentration in the apical side did not change for both the control samples 
(DMSO) and the stimulated samples (DMSO + forskolin), confirming that the chloride ion concentration was 
constant and did not affect the pH evaluation of the samples. After pH measurements, the cells were stained 
with the live and dead stains to ensure that the cells were alive and not impacted by placing the sensor to the 
medium (Figure 8f and Figure 8g).               
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Figure 8: (a) a schematic of the 3D-printed holder for bringing wire sensors in tough with the apical testing 
solution, (b) real-time response of 5-minute bleached silver wires versus a tungsten wire in home-made 
Ringer’s solution without any buffer with various pH after being conditioned in PBS for one day, (c) the 
calibration curve for the sensor (decrease in pH is shown by red colors and increase in pH is shown by black 
color.), (d) the experimental setup for measuring pH of the apical solution in Transwell insert after being 
treated by DMSO or DMSO + Forskolin, (e) a comparison between the measured pH by the wire sensor and a 
commercial pH electrode (apical solutions were collected and pH of them were measured later by the 
commercial pH meter), and in vitro viability assay of Calu-3 cells treated by (f) DMSO or (g) DMSO + 
Forskolin. Scale bars are 1 cm.  

  

5 Conclusion 

In this study, we miniaturize pH sensing materials to made micro-wires in the form of main and reference 
electrodes. Tungsten metallic micro-wire was used as a pH sensing material to measure hydrogen ions. Out of 
four candidates for costume-made reference electrodes, silver micro-wires with a silver/silver chloride coating 
showed the most stable response over testing conditions. Both, Tungsten and Silver chloride elected were used 
to produce a novel device PHAIR to measure pH in simple buffer solutions and in vitro human airway cell 
culture simultaneously. PHAIR could operate in a smaller volume and cell culture well plates to measure 
change in pH in close proximity of the cell surface. In our further works, we will explore the usage of PHAIR in 
more complex cell culture systems and tissues. 
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