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Abstract

Shedding light on the relationship between protein sequences and their
functions is a challenging task with implication in our understanding of
protein evolution, diseases, or protein design. However, due to its com-
plexity, protein sequence space is hard to comprehend with potential nu-
merous human bias. Generative models able to learn and recreate the
data specificity can help to decipher complex systems. Applied to protein
sequences, they can help to pointing out relationships between protein
positions and functions or to capture the different sequence patterns as-
sociated to functions. In this study, an unsupervised generative approach
based on auto-encoder (AE) is proposed to generate and explore new
protein sequences with respect to their functions. AE are tested on three
protein families known for their multiple functions, of which one has man-
ually curated annotations. Functional labelling of encoded sequences on
a two dimensional latent space computed by AE for each family shows a
good agreement regarding the ability of the latent space to capture the
functional organization and specificity of the sequences. Furthermore,
arithmetic between latent spaces and latent space interpolations between
encoded sequences are tested as a way to generate new intermediate pro-
tein sequences sharing sequential and functional properties of sequences
issued of families with different sequences and functions. Using structural
homology modelling and assessment, it can be observed that the new pro-
tein sequences generated using latent space arithmetic display intermedi-
ate physico-chemical properties and energies relatively to the sequences of
the families used to generate them. Finally, interpolated protein sequences
between data points of the input data set show the ability of the AE to
smoothly generalize and to produce meaningful biological sequences from
un-charted area of the latent space. Code and data used for this study
are freely available at https://github.com/T-B-F/aae4seq.

1 Introduction

Protein sequences diversity is the result of a long evolutionary process. This
diversity, or sequence space, is constrained by natural selection and only a frac-
tion of amino acid combinations out of all possible combinations are observed.
Given its huge size, exploring the sequence space and understanding its hidden
constrains is very challenging. Protein families are groups of related protein, or
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part of proteins, and represent a useful description to reduce the sequence space
complexity. Many resources have been developed over the year to group protein
sequences in families whose members share evidence of sequence similarity or
structural similarity [8, 11, 22]. However, even a family is not without diversity
and one family may group together several proteins with different molecular
functions [5]. Navigating the sequence space with respect to the functional di-
versity of a family is therefore a difficult task whose complexity is even increased
by the low number of proteins with experimentally confirmed function. In this
regard, computer models are needed to explore the sequence space in relation
to the functional space of the protein families.
Understanding the relationships between amino acids responsible of a particular
molecular function has a lot of implication in molecular engineering, functional
annotation and evolutionary biology. In this study, an unsupervised deep learn-
ing approach is proposed to model and generate protein sequences. The ability
of this approach to capture the functional diversity and specificity of protein is
evaluated on different protein families.

Variational autoencoders (VAE) have been applied on biological and chem-
ical data to explore and classify gene expression in single-cell transcriptomics
data [17], predict the impact of mutations on protein activity [26, 31] or to
explore the chemical space of small molecules for drug discovery and design
[14, 25] Their ability to reduce input data complexity in an latent space and
performs inference on this reduced representation make them highly suitable to
model, in an unsupervised manner, complex systems. In this study, Adversarial
AutoEncoders (AAE) [19] are proposed as an application of a new and efficient
ways to represent and navigate the functional space of a protein family.
Autoencoders are able, using the encoder, to reduce high dimensional data by
projection to a lower dimensional space (also known as a latent space or hid-
den code representation) which in turn can be reconstructed by the decoder.
AAE [19] architecture corresponds to a probabilistic autoencoder, but with a
constraint on the hidden code representation of the encoder which follow a de-
fine prior distribution. This constraint is performed by a generative adversarial
networks (GAN) [12] between the latent space and the prior distribution, and
ensures that meaningful samples can be generated from anywhere in the la-
tent space defined by the prior distribution. Therefore, applied to biological
sequences of a protein family, it is possible to encode the sequence diversity
to any prior distributions and to analyze the ability of the AAE to learn a
representation with respect to the functions of the protein family considered.
Furthermore, and contrary to dimensional reduction techniques such as PCA or
t-SNE [18], AAE networks have the ability to perform inference on the latent
space, meaning that any sampled point of this distribution can be decoded as
as a protein sequence. Sampling of the latent space was therefore analysed,
with a particular focus on latent space arithmetic between proteins of different
sub-families with different functions to validate the ability of the model to learn
a meaningful representation of the sequence space. Arithmetic operations on
latent space have previously been reported to transfer features between images
of different classes and may therefore have interesting potential for molecular
design. Interpolations between points (encoded protein sequences) of the latent
space were also performed to evaluate the ability of the AAE to navigate and
generate new protein sequences from unseen data points.

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.375311doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375311
http://creativecommons.org/licenses/by-nc/4.0/


To test these hypothesis, three different protein families were selectionned in-
cluding one, the sulfatase family, for which the functions of some sub-family have
been recently manually curated [2]. The sulfatases are a group of proteins acting
on sulfated biomolecules. This group of proteins is found in various protein fam-
ily databases, such as in Pfam (PF00884, Sulfatases). However, as mentioned
previously, they can have different substrate specificity despite being in the same
family. The SulfAtlas database [2] is a collection of curated structurally-related
sulfatases centered on the classification of the substrate specificity. The majority
of sulfatases (30,726 over 35,090 Version 1.1 September 2017) is found in family
S1 and is sub-divised into 73 sub-families corresponding to different substrate
specificity. Sub-families S1 0 to S1 12 possessed experimentally characterized
EC identifier. The two other protein families, HUP and TPP families are not
manually crated, but were selected as they are known to have multiple functions
[5].

For each family an AAE network is trained on the protein sequence space
and the functional diversity of the family in the AAE latent space is analyzed.

2 Results

A structurally constrained MSA was computed using Expresso [1] from T-Coffee
webserver [9] between sequences of S1 sulfatases structures. This MSA was
processed into a Hidden Markov Model and hmmsearch was used to retrieved
aligned sequence matches were against the UniRef90 sequence database.

A total of 76,427 protein sequence hits were found matching UniRef90. The
sequences were prepossessed to remove columns and hits with more than 90%
and 75%, respectively, of gap characters. The final alignment comprised 41,901
sequences. The Sulfatases protein dataset was separated in a train, validation
and test sets with a split ratio of: 0.8, 0.1, and 0.1.

A comparison of architectures for protein sequence family modelling is out-
side of the scope of this study whose focus is on the ability of the AAE architec-
ture to model and infer protein sequences. Three different AAE architectures
were trained (see Method section), but without extensive hyper-parameters op-
timization. The three architectures were trained on the train set and tested on
the validation set. The test set was only evaluated on the final selected architec-
ture. Table 1 shows the top k accuracy metric for k=1 and k=3 computed for
the different autoencoders. The accuracy scores scaled down with the number
of parameters, but without any large differences. To avoid over-fitting, the ar-
chitecture with the fewest number of parameters (architecture 3) was therefore
selected and the final accuracy scores on the test were of 62.5% and 80.2% (k=1
and k=3).

The selected architecture was subsequently independently trained on the
protein sequences of the HUP and TPP families.
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Table 1: Accuracy metrics (k=1 and k=3) on the train and validation sets of
sulfatases using different models (see Method)

Architecture Accuracy (%) Top 3 accuracy (%) Number of
Train Validation Train Validation Parameters

1 67.3 66 83.9 82.3 11 198 553
2 65.1 64 82.4 81 9 769 593
3 63.3 62.4 81.2 80.1 8 073 337

2.1 Latent space projection

AAE can be used as a dimensional reduction techniques by fixing the dimension
of the latent space to two or three dimensions for plotting and data exploration.
The final MSA of the sulfatase family was therefore used to train an AAE using
two latent dimension. For comparison, the MSA projection using the first two
component of a PCA decomposition was also computed.

Figure 1: Sequences of the SulfAtlas MSA projected using the encoding learned
sing an AAE (number of latent dimension: 2) and a PCA (two first component).
Grey data points correspond to protein sequences not found in the first 12 sub-
families.

Figure 1 shows the protein sequences encoded by the AAE in two latent di-
mension and the PCA projections. Each dot correspond to a protein sequence,
and the dot are colored according to their sub-family. Grey dot corresponds to
protein sequences not belonging to any of the 12 curated sulfatases sub-families.
In this figure, the AAE displays a clear superior power to disentangle the se-
quence and functional spaces of the S1 family than a PCA. Interestingly, it can
be observed in the AAE projection some separated grey spikes (sequences not
belonging to any curated sub-family). These spikes may correspond to groups
of enzymes sharing common substrate specificity.
For some cases, the the sub-family with identical functions are projected closely
on the encoded space. For instance, sub-families S1 6 (light magenta) and S1 11
(yellow) have both the activity EC 3.1.6.14 (N-acetylglucosamine-6-sulfatase)
and are close in the encoded space. Interestingly some sub-family projec-
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tions appear entangled such as the S1-1 sub-family (light blue, Cerebroside
sulfatase activity EC 3.1.6.8), the S1-2 (orange) and the S1-3 (green) sub-
families (Steryl-sulfatase activity, EC 3.1.6.2) the S1-5 (pink) sub-family (N-
acetylgalactosamine-6-sulfatase activity, EC 3.1.6.4), and the S1-10 (grey) sub-
family (Glucosinolate sulfatase activity EC 3.1.6.-). The five families correspond
to four different functions, but are made of Eukaryotic protein sequences only
and their entanglement may be due to their shared common evolutionary his-
tory. This separation based on the sequence kingdoms can clearly be visualized
in the PCA projections with Eukaryotic sequences on the right side on sub-
families with a majority of Bacteria sequences on the left side. The example
of the protein B6QLZ0 PENMQ is also interesting. The protein is classified in
the SulfAtlas database as part of the S1-4 and S1-11 sub-families but projected
(yellow dot at coordinates (0.733, -1.289)) inside the space of the S1-4 family
(red). Similar bi-classification can also be found for proteins between of the
S1-4 and S1-8 sub-families: F2AQN8 (coordinates (0.795, -0.982)), M2AXU0
(coordinates ( 0.858, -0.994)), and Q7UVX7 (coordinates (0.883, -1.052)).

Projection of sequence spaces using AAE with 2 latent dimensions were also
tested on the HUP and TPP families. The AAE projections can be visualized
on Figure 2. There is fewer functional annotations for these two families but
it can clearly be seen a strong separation between the major functions of the
families.
HUP points colored in yellow correspond to protein with EC 6.1.1.1 and 6.1.1.2,
pink colored points to proteins with EC 6.1.1.1 and violet colored points to pro-
teins with EC 2.7.11.24 and 6.1.1.2. TPP sequences have more annotated func-
tions than HUP sequences (57 different EC assignation), but a global pattern
can be found in the projection corresponding to two groups of proteins (brown
and violet) annotated with EC 2.2.1.1 (Transketolase), oxidoreductase proteins
(EC 1.-.-.-, in orange, pink, red, and green shades), and proteins with function
EC 2.2.1.9 (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid
synthase, in yellow and grey shades).

Figure 2: Encoded sequences of HUP (left) and TPP (right) multiple sequences
alignments using AAEs with 2 latent dimensions. Data points are colored ac-
cording to their enzyme classification annotation retrieved from GOA.

Latent spaces were evaluated for each protein family based on enzyme clas-
sification (EC) and taxonomic specificities. Given a set of protein sequences,
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the encoded sequences in latent space of dimension 100 were clustered using
HDBSCAN and the clusters were evaluated according to the enzyme class or
taxonomic group with the highest propensity inside a cluster.
For the sulfatase family 27 clusters were found for which taxonomic and EC
annotations could be extracted (Supplementary Table 3). All these clusters dis-
played either strong taxonomic or EC specificities. Enzymatic specificity was
found stronger than taxonomic specificity for 16 clusters, found equal in one
cluster and lower for 10 clusters.
In the HUP family, all clusters have very high EC specificity (Supplementary
table 4). Only two clusters out of 47 could be found with higher taxonomic
specificity than EC specificity and for this two clusters enzymatic specificity
values were high and only marginally different (cluster 5, taxonomic specificity
of 100% an EC specificity of 99% and cluster 31, taxonomic specificity of 99 %
and EC specificity of 97%). Five clusters were found with equal taxonomic and
EC specificities.
Similarly, in the TPP family, all clusters have also very high EC specificity
(Supplementary table 5). Five clusters out of 51 could be found with higher
taxonomic specificity than EC specificity. For these 5 clusters the differences
between taxonomic specificity and EC specificity is higher than the differences
observed for the HUP clusters. Six clusters were found with equal taxonomic
and EC specificity.
These results highlight the ability of the encoding space to capture both enzy-
matic specificity and taxonomic features.

Figure 3: Projection of SulfAtlas MSA encoded sequences using an AAE (num-
ber of latent dimension: 2) and colored according to the retrieved GOA Enzyme
Classification annotation (left) or computed clusters using HDBSCAN on the
encoded sequences using an AAE with 100 latent dimensions (right).

2.2 Protein latent space arithmetic

It has been shown that latent space arithmetic was able to transfer learned fea-
tures between different classes. This ability is interesting to test in the case of
protein sequences has it may allow to explore protein families by transferring
features of a first sub-family to a second sub-family while maintaining its the
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general property (such as its structure).
To test this hypothesis, Sulfatases sub-families with at least 100 labelled mem-
bers but with less than 1000 members (to avoid pronounced imbalance between
classes) were selected: S1-0 (308 proteins), S1-2 (462 proteins), S1-3 (186 pro-
teins), S1-8 (290 proteins), S1-11 (669 proteins). The only sub-family with more
than 1000 members is the S1-4 sub-family (2064 proteins).
Different arithmetic strategies (see Methods and Figure 4) were tested between
latent spaces of a query sub-family and a different source sub-family with the
aim to transfer features of the source sub-family to the query sub-family.

Figure 4: Modelling pipeline used to generate sequences sharing properties of
two sub-families. The hmmsearch MSA is filtered and passed to the encoder
to project each sequence to the latent space. Latent space projections can be
used for visualization (see Figure 3). Different strategies (1 to 4) are tested to
generate new latent space and generate new sequences through the decoder. The
new sequences are used in combination with structures of the sub-families to
create homology based structural models and evaluated using the DOPE energy
function of MODELLER.

Figure 5 displays logo plots of two regions corresponding to Prosite motifs
PS00523 and PS00149 to illustrate the amino acid content of the protein se-
quences generated by latent space arithmetic (Supplementary data Information
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for the full logo plots). The regions correspond to the most conserved regions
of the sulfatase family and have been proposed as signature pattern for all the
sultatses in the Prosite database. Panels A and D correspond to the sequences
of the S1-0 sub-family and of the S1-2 sub-family respectively. Panels B and C
correspond to generated protein sequences using either the Sulfatase sub-family
S1-0 as source and S1-2 as query (Panel B) and to which the background latent
space has been subtracted (strategy 2 on Figure 4) and reciprocally (Panel C).

Different amino acid patterns can be observed between the different motifs of
the sequence groups. In the first fragment corresponding to motif PS00523, G55
and T55 are the most frequent amino acid of sub-families S1-0 and S1-2 (Panels
A and D) and it can be observed a “competition” between these two amino acids
for generated sequences (Panel B and C) with a slightly higher probability for
the amino acid of the family used as query (G in Panel B and T in panel C). The
residue S57, implicated in the active site of the sulfatases [3], is less frequent
in the query sub-family S1-2 (panel D) than in sub-family S1-0 (panel A). The
high frequency of S at position 57 in sub-family S1-0 compared to sub-family
S1-2 may have an impact when performing the latent space arithmetic as S
is predominant in the generated sequences. This influence of a very frequent
amino acid in one of the source or query sub-family on the generated sequences
can also be observed at position 70 and is less visible when multiple amino acid
frequencies are more balanced. In the second fragment corresponding to motif
PS00149, residue R at position 101 follows this pattern. It is highly frequent in
sub-family S1-0 (panel A) and less frequent in sub-family S1-2 (panel D). The
generated protein sequences display a R at position 101 with high frequency.
The inverse can be observed for Y at position 105, highly frequent in sub-family
S1-2 (panel D).

Other positions are however displaying much more complex pattern and
cannot be summarize as a frequency competition between source and query sub-
families For instance, G at position 71 is very frequent in sub-family S1-2 but
have a comparable frequency with R in sub-family S1-0. The generated protein
sequences don’t display G has the only possible residue but seem to follow the
frequency of their respective query sub-families. Amino acids at positions in
generated sequences where the multiple amino acid share comparable frequencies
in the source and query sub-families, such as in positions 53, 59, 67, 98, or 106,
have usually also mixed frequencies.

These behaviours can be observed several times through the logo plots but
are still positions specifics, meaning that the bits scores pattern observed in
the source sub-families (Panels A and D) do not necessary allow to predict the
amino acids bits scores in the generated sub-families (Panels B and C). For in-
stance, W at positions 113 as a high bit score value in the MSA of sub-family
S1-2 but little influences in the amino acids of the generated sequences where
the T of sub-family S1-0 is found predominantly. Moreover, these observations
are performed on residues of the Prosite motifs which are by definition con-
served in sulfatases. In other positions, the patterns are harder to explains (see
Supplementary Figure XX).

Furthermore, protein structural modelling was performed to assess and com-
pare the properties of the sequences generated by latent space arithmetic and the
protein sequences of the natural sub-families. For each sub-family, 100 original
sequences were randomly selected along the corresponding generated sequences.
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Figure 5: Logo plot of MSAs parts from the S1-0 and S1-2 (panels
A and D) sub-families, and generated sequences using S1-0 as query
and S1-2 as source (panel B) and S1-2 as query and S1-0 as source
(panel C).

All the generated sequences were aligned to protein structures of their corre-
sponding source and query sub-families, and the alignments were used to create
structural models by homology. The models were evaluated with the DOPE
function of MODELLER.

Figure 6 shows an example of the energy distribution computed from models
using the second strategy with query sub-family S1-0 and source sub-family S1-
2.

The lowest energies (best models) are found when modelling the original pro-
tein sequences of a sub-family to the structures of the same sub-family (Struct.
0 Seq. 0 and Struct. 2 Seq. 2). Inversely, the highest energies are found
when modelling the original protein sequences of a sub-family to the structures
of another sub-family (Struct. 0 Seq. 2 and Struct. 2 Seq. 0). Interest-
ingly, sequences generated using addition and subtractions of latent space have
intermediate energy distributions. This can be clearly observed in Figure 7,
where generated sequences are mostly between the two dotted lines represent-
ing the energies of original protein sequences modelled on their corresponding
sub-family structures (vertical line at 0) and the energies of original protein
sequences modelled on structures of another sub-family (top left diagonal line).
Generated sequences modelled on structures belonging to the same sub-family
than their query latent space sub-family (ex: Struct. 0 Seq.S1-0m2 and Struct.
2 Seq. S1-2m0 on Figure 6 and MQS/Q on Figure 7) have slightly lower en-
ergy than when modelled on structures corresponding to the sub-family of their
source latent space sub-family (ex: Struct. 0 Seq. S1-2m0 and Struct. 2 Seq.
S1-0m2 on Figure 6 and MSQ/Q on Figure 7). This trend is true for all query
/ source pairs of sub-families and all strategies except for sequences generated
using the fourth strategy (local background subtraction of query latent space
using a KD-tree and addition of source latent space), see Supplementary Figures
11, 12, 13 and Methods.
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Figure 6: Energies distribution of models computed using structures from sub-
family S1-0 (reds) or sub-family S1-2 (blues) and sequences from biological pro-
teins or inferred using latent space arithmetic between spaces encoded by the
S1-0 and S1-2 sub-families. Each violin plot corresponds to a specific targeted
structures and sequences couples. For example, Struct. 0 Seq. 0 indicates that
the energy distribution corresponds to sequences of the S1-0 sub-family modelled
on structures of the S1-0 sub-families and Struct. 2 Seq. S1-0m2 corresponds to
the energy distribution of sequences inferred using the latent space of sub-family
S1-2 added to the latent space of sub-family S1-0 and modelled on structures of
the S1-2 sub-family.

In this strategy, the generated sequences do not display energy distributions
in-between the energy distributions of the original sequences modelled on struc-
tures of the query or the source sub-families. The energy distributions of gen-
erated sequences using the fourth strategy are closer to the energy distribution
of their corresponding original query sequences. No clear differences could be
observed between the first, second and third strategy.
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Figure 7: Differences between mean DOPE distributions. Mean value for each
distribution, such as the distributions presented in Figure 6, were computed.
The y axis represent the differences between the mean values computed for
query sequences modelled on structures of the same sub-family and mean values
computed for source sequences modelled on structures of the query sub-family
(ex: differences between mean of Struct. 0 Seq. 0 and mean of Struct. 0
Seq. 2 distributions in Figure 6). The x axis corresponds ot the differences
between the mean values computed for query sequences modelled on structures
of the same sub-family and mean values computed for query sequences to which
latent space of the source sub-family sequences have been added and modelled
on structures of the query sub-family (MQS/Q), or source sequences to which
latent space of the query sub-family sequences have been added and modelled on
structures of the source sub-family (MSQ/Q) (ex: differences between mean of
Struct. 0 Seq. S1-0m2 and mean of Struct. 0 Seq. 0 distributions in Figure 6).
Points in the red area correspond to mean distribution values from generated
sequences whose modelled structures have a higher energy than models created
using pairs of sequences/structures from different sub-families. Points in the
blue are correspond to mean distribution values from generated sequences whose
modelled structures have a lower energy than models created using pairs of
sequences/structures from the same sub-family.

2.3 Protein latent space interpolation

Interpolation between encoded sequences in the latent space can be used to
“navigate” between proteins of two sub-families. Applied in computer vision,
interpolation has proven its capacity to generate meaningful intermediate repre-
sentations between different input images. In this study, ten pairs of sequences
from sub-families S1-0 and S1-4 (respectively blue and red data points in figure
1) were selected to test the capacity of the AAE in this task, and 50 intermedi-
ates data points were generated between each pair.

The resulting sequences can be found in the Supplementary Data. Several
interesting point can be observed. First, when gaps are found in the query
sequence but not in the target sequence (and inversely), the gaped area is pro-
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gressively filled (or break down) starting from the flanking amino acids to the
center (or inversely from the center to the flanking amino acids). This indicates
an organized and progressive accumulation of amino acids (or gaps) to extend
(or shrink) the region of the sequence previously without residues. For instance
gap reduction can be observed in the generated sequences between sequence ID
2 of the sulfatase S1-0 family (query) and sequence ID 2196 of the sulfatase
S1-4 family (target) at positions 75 to 86 (Figure 8), and can be found in all
the other generated intermediates. Second, amino acids specific to a family are
progressively replaced in key positions. For instance, in the interpolation be-
tween the same query and target sequences, it can also be observed at positions
21 and 22 of the MSA a replacement of residues S and C by G and A (Figure
8).

Most transitions are not abrupt and do not occurs at the 25th generated
intermediate sequences but are smooth and correspond to plausible sequences.
An abrupt transition can be observed at position 53, G (S1-0 query) to S (S1-
4 target), and 51 [VI] (S1-0 query) to T (S1-4 target), corresponding to very
conserved residues in Prosite motif PS00523 (see Figure 5. The other positions of
the motif are a less affected by abrupt transition but appear to be less fluctuating
than other columns. A similar behaviour can only be observed for columns 111,
T (S1-0 query) to W (S1-4 target), of motif PS00149 (positions 102 to 112).
The other positions of the motifs are either very conserved (T105, G109, K110)
or accepting more fluctuations (columns 103, 104, 107).

The ability of the AAE to generate interpolated sequences with emerging
or disappearing features of two sub-families, reflects its capacity to generalize
the decoding to points not corresponding to encoded sequences and thus not
previously observed, and point out to a structured organization of the computed
latent space.
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Figure 8: First 130 amino acids fo sequences generated using inter-
polated latent space. Interpolation is performed between latent spaces of
protein ID 2 of the sulfatase S1-0 family (query) and of protein ID 2196 of the
sulfatase S1-4 sub-family. Amino acids color coding is based on physo-chemical
properties. Large transitions between gaped to amino acids and amino acids to
gaps can be observed at positions 75 to 86 and positions 116 to 122. Amino acid
columns transformation can be observed at multiple positions: 21 (S to G), 51
(V/I to T/S), 53 (G to S) etc.
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3 Discussion

In this study, a new framework is presented to analyse and explore the protein
sequence space regarding functionality and evolution. Some previous attempt,
such as the FunFam database [6, 7], were built upon CATH protein families and
trained in a supervized manner to construct model specific of a functionality.
Variational Autoencoder (VAE) have previously been reported and used to dis-
entangle complex biological information and used for classification tasks (such
as single cell gene expression data) [23, 34] or for generation of new molecules
(such as drug) [14, 24, 25, 27, 28]. AAE are able to disentangle the information
contained in protein sequences to capture functional and evolutionary specific
features and more importantly without supervision. They also have the ad-
vantage over VAE to constrain the latent space over a prior distribution which
allow sampling strategies to explore the whole latent distribution. It can also be
noted that Restricted Boltzmann Machine [33] have also been recently proposed
in a similar task showing very promising results despite the difficulty to train
RBM which required markov chain sampling.

AAE are trained on protein sequence families known to have different sub-
functions. The results present the ability of AAEs to separate sequences accord-
ing to functional and taxonomic properties for the three studied family. This
point out to the ability of the AAEs to extracted and encoded features in the
latent space which are biological relevant.
Furthermore, and contrary to dimensional reduction techniques, AAE can be
used to generate new protein sequences. Latent space arithmetic have been used
in image generation tasks with striking ability to produce relevant images with
intermediate features. Latent space arithmetic is an interesting concept for pro-
tein generation particularly in the context of extracting and transferring features
between protein families. Three out of the four different experiments carried
on where able to generate sequences with intermediate features as measured
from their sequence identity distributions and modelling energy assessment. Bi-
ological experiments will be needed to confirm the functional relevance of the
transferred features, but the strategies could have many application should it
be validated.

The absence of measured differences between three out of four strategies
used to generate intermediate sequences may also indicates that a more optimal
approaches could be design. In this regard, the model architecture could also be
improved. Currently, the model used as input a filtered MSA, but improved ar-
chitectures could probably benefit from full protein sequences of different sizes
without filtering. It is for instance known that motifs in the TPP and HUP
family plays important roles in the family sub-functions ??. As protein specific
motifs, they are not necessary conserved and may not reach filtering thresh-
olds. Recent advances have been made regarding the application of GAN to
text generation [13, 37, 38] and transferring these progresses to the field of pro-
tein sequence generation could greatly benefit the design of functionally relevant
proteins.

The results of this study show that AAE, in particular, and deep learning
generative models in general, can provide original solutions for protein design
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and functional exploration.

4 Methods

4.1 Data

4.1.1 The sulfatase family

A initial seed protein multiple sequence alignment was computed from sequences
of the protein structures of SulfAtlas [2] database sub-families 1 to 12. This
seed was used to search for homologous sequence on the UniRef90 [32] protein
sequence database using hmmsearch [10] and with reporting and inclusion e-
values set at 1e− 3.
A label was assigned to each retrieved protein if the protein belongs to on
of 12 sub-families. The MSA computed by hmmsearch was filtered to remove
columns and sequences with more than 90% and 75% gap character respectively.
Proteins with multiple hits on different part of their protein sequence were also
merged into a single entry. From 105181 initial protein sequences retrieved by
hmmsearch, the filtering steps lead to a final set of 41901 proteins.

4.1.2 HUP and TPP protein families

A similar protocol was followed for the HUP and TPP protein families. Instead
of using a initial seed alignment made of sequence of protein structure, the
CATH protein domain HMM [21, 30] was used to search homologous sequences
in the UniRef90 database. CATH model 3.40.50.620 corresponds to the HUP
protein family and model 3.40.50.970 corresponds to the TPP protein family.
A sequence filtering pipeline identical than the one used for the sulfatase family
was applied to each of the resulting multiple sequence alignment.
The final number of protein in each dataset was: 25041 for the HUP family
(32590 proteins before filtering) and 33693 for the TPP family (133701 before
filtering).

4.2 Model

4.2.1 Generative Adversarial Network

A complete description of Generative Adversarial Network can be found in
Goodfellow et al. [12]. To summarize, the GAN framework correspond to a
min-max adversarial game between two neural networks: a generator (G) and
a discriminator (D). The discriminator computes the probability that a input
x corresponds to a real point in the data space rather than sample from the
generator. Concurrently, the generator maps samples z from prior p(z) to the
data space with the objective to confuse the discriminator. This game between
generator and discriminator can be expressed as :

minG maxD Ex∼pdata
[logD(x)] + Ez∼p(z)[log(1−D(G(z))] (1)

4.2.2 Adversarial auto-encoder

Adversarial autoencoders were introduced by Makhzani et al. [19]. The proposed
model is constructed using an encoder and decoder networks, and a GAN to
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match the posterior distribution of the encoded vector with an arbitrary prior
distribution. Such, the decoder of the AAE learned from the full space of
the prior distribution. The model used in this study compute the aggregated
posterior q(z|x) (the encoding distribution) using a Gaussian prior distribution.
The mean and variance of this distribution is predicted by the encoder network:
zi ∼ N(µi(x), σi(x)). The re-parameterization trick introduced by Kingma and
Welling [16] is used for back-propagation through the encoder network.

Network architecture. Three different architectures were evaluated. The
general architecture is as follow and Table 2 provided an overview of the dif-
ferences between architectures. A representation of architecture number 3 can
be found on Supplementary Figure 9. The encoder comprises one or two 1D
convolutional layers with 32 filters of size 7 and with stride length of 2, and one
or two densely connected layers of 256 or 512 units. The output of the last layer
is passed to two different densely connected layers of hidden code size units to
evaluate µ and σ of the re-parameterization trick [16].
The decoder is made of two or three densely connected layers of length of the
sequence family time alphabet units for the last layers and of 256 or 512 units
for the first or the two first layers. The final output of the decoder is reshaped
and a softmax activation function is applied which corresponds to a probability
for every positions associated to each possible amino acids. To convert the prob-
ability matrix of the decoder to a sequence, a random sampling according to
the probability output was performed at each position. The selected amino acid
at a given position is therefore not necessary the amino acid with the highest
probability. The sampling was also performed using a temperature factor T of
0.5 to scale the probability values as follow:

Pi =
P

1/T
i∑N

j P
1/T
ij

with Pi the probability vector at position i of length N which corresponds
to the number of amino acids considered for decoding, and T the temperature
factor.

The discriminator network is made of two or three densely connected layers,
the last layers has only one unit and corresponds to the discriminator classifi-
cation decision through a sigmoid activation function, the first or the first two
layers are made of 256 or 512 units.

Table 2: Differences between layers of the evaluated model architectures
Architecture 1 2 3

Encoder Conv 1D (32, 7) 2 x Conv 1D (32, 7) 2 x Conv 1D (32, 7)
Dense (512) 2 x Dense (512) 2 x Dense (256

Decoder Dense (512) 2 x Dense (512) 2 x Dense (256)
Discriminator Dense (512) 2 x Dense (512) 2 x Dense (256)
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Training. The network was trained for each of the protein family indepen-
dently. The autoencoder is trained using a categorical cross-entropy loss func-
tion between the input data and the predicted sequences by the autoencoder.
The discriminator is trained using binary cross-entropy loss function between
the input data encoded and the samples from the prior distribution.

4.3 Analyses

4.3.1 Dimensionality reduction

The AAE model can be used to reduce the dimensionality of the sequence space
by setting a small latent size. Two dimensionality reductions were tested with
latent size of 2 and 100. Latent size of 2 can be easily visualized and a larger
latent size of 100 should represent the input data more efficiently as more infor-
mation can be stored.

4.3.2 Clustering

HDBSCAN [4, 20] was used to cluster the sequences in the encoded space due to
its capacity to handle clusters of different size and density and its performances
in high dimensionality. The Euclidean distance metric was used to compute
distances between points of the latent space. A minimal cluster size of 60 was
set to consider a group as a cluster as the number of protein sequences is rather
large. The minimal number of samples in a neighborhood to consider a point
as a core point was set to 15 to maintain relatively conservative clusters.

4.3.3 Functional and taxonomic analyses

Enzyme functional annotation (EC ids) and NCBI taxonomic identifiers were
extracted when available from the Gene Ontology Annotation portal (Januaray
2019) using the UniProt-GOA mapping [15]. Protein without annotation were
not taken into account in these analyses.
The annotation homogeneity for each computed cluster. Considering a cluster,
the number of different EC ids and taxonomic ids were retrieved. For each dif-
ferent EC ids (taxonomic ids) its percentage in the cluster was computed. A
EC id (taxonomic id) of a cluster with a value of 90% indicates that 90% of
the cluster member have this EC id (taxonomic id). A cluster with high values
correspond to functionally or evolutionary related sequences.
Homogeneous clusters computed from the AAE encoded space will therefore
indicates the ability of the AAE model to capture and to distinguish protein se-
quences with functionally or evolutionary relevant features without supervision.

4.3.4 Latent space arithmetic

Subtraction and addition of latent spaces have been shown to be able to transfer
features specific to some sub-group of data to other sub-group of data (ex.: men
women with and without glasses). This property is tested in the context of pro-
tein sub-families. Different arithmetic strategies (Figure 4) were tested between
latent spaces of a query sub-family and a different source sub-family with the
aim to transfer features of the source sub-family to the query sub-family.
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A fist strategy consists to add the mean latent space, computed using the en-
coder on the sequences of the source sub-family, to the encoded sequences of
the query sub-family. In the second tested strategy differs from the first one by
subtracting the mean background latent space, computed from the latent space
of all sub-families, from the latent space of the query sub-family. The third
strategy differs to the second as the background strategy is computed using all
sub-families except sub-families source and query. Finally, in the fourth strat-
egy, the subtraction is performed using a local KD-tree to only remove features
shared by closest members of a given query and addition is performed randomly
selecting a member of the the source family and it’s closest 10 members.
For each strategy, new sequences were generated using the latent spaces of all
query proteins in the sub-families. Thus, for one original encoded protein se-
quences there is a direct corresponding with the original amino acid sequence
and the amino acid sequences generated with the different strategies and dif-
ferent source sub-families. The generate sequences by latent space arithmetic
are compared to the initial sub-families in term of sequence and structural con-
strains.

To evaluate the generated sequences by latent space arithmetic, the se-
quences are compared to the biological sequences of the two initial sub-families
using the hamming metric excluding positions corresponding to two gaps in
the sequences. The hamming distances between sub-families are also computed.
The distributions of hamming distances allow to explore the ability of the latent
space arithmetic operations and of the decoder to produce meaningful interme-
diate protein sequences from unexplored encoded data points.

Furthermore, protein structural models are computed using the structures
of the initial sub-families as template for MODELLER [35] and evaluated using
the DOPE energy [29]. Models are computed using the generated sequences
by latent space arithmetic on structure of their source and query sub-families.
Their DOPE energy are also compared to models computed using the sequences
of their source sub-family modelled on structures of their query sub-family and
using sequences of their query sub-family modelled on structures of their source
sub-family. If the generated sequences by latent space arithmetic correspond to
intermediate proteins with properties from two sub-families they should have
intermediate DOPE energy compared to computed structures using source se-
quences on source structures (or query sequences on query structures) and source
sequences on query structures (or query sequences on source structures).

4.3.5 Latent space interpolation

Ten pairs of protein sequences were randomly chosen between sub-families S1-0
and S1-4. The two sub-families were chosen based on their opposite positions
in the projection performed with the AAE using two dimensions (see Figure 1).
The coordinates of the selected sequences in the encoded space with 100 dimen-
sions were retrieved and spherical interpolation using 50 steps were performed
for each of the pairs. Spherical interpolation has previously been reported to
provide better interpolation for the generation of images [36]. A linear interpola-
tion was also tested but no clear differences could be observed. The interpolated
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points were given to the decoder and new sequences were generated according
to the procedure previously describe.

Scripts and notebooks are available for reproducibility at https://github.
com/T-B-F/aae4seq.
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6.1 Deep Neural Network architecture
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Figure 9: The Adversarial AutoEncoder architecture number 3 presented in Ta-
ble 2. The discriminator (in red) take as input data from a prior distribution or
the latent space computed by the encoder/generator. Using a sigmoid activa-
tion function, the discriminator is trained to distinguish between the two types
of data. By updating the weight of the encoder/generator based on the dis-
criminator performances, the encoder/generator learn to approximate the prior
distribution and fool the discriminator. The autoencoder architecture (in blue)
corresponds to a variational autoencoder. Latent space is decoded by a decoder
and new sequences are generated using a softmax activation function.

6.2 Enzymatic and taxonomic specificity
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Table 3: Enzymatic classes and taxonomic homogeneity of encoded sulfatases
after clustering by HDBSCAN.

cluster index Taxonomic percentage of proteins Enzyme percentage of proteins
group with identical taxa class with identical EC

12 Proteobacteria 0.34 EC:3.1.6.1 0.96
27 Proteobacteria 0.98 EC:3.1.6.1 0.89
28 Proteobacteria 0.93 EC:3.1.6.1 1.00
34 Bacteroidetes 0.65 EC:3.1.6.6 0.67
38 Ascomycota 0.63 EC:3.10.1.1 0.50
39 Arthropoda 0.48 EC:3.10.1.1 1.00
44 Ascomycota 0.91 EC:3.1.6.1 1.00
45 Chordata 0.60 EC:3.1.6.14 1.00
46 Actinobacteria 1.00 EC:3.1.6.14 0.67
47 Bacteroidetes 0.69 EC:3.1.6.6 0.69
63 Bacteroidetes 0.67 EC:3.1.6.1 0.60
64 Bacteroidetes 0.81 EC:3.1.6.1 0.70
65 Bacteroidetes 0.64 EC:3.1.6.14 0.50
66 Bacteroidetes 0.69 EC:3.1.6.1 1.00
67 Ascomycota 0.49 EC:3.1.6.1 0.50
68 Bacteroidetes 0.95 EC:3.1.6.6 0.67
73 Planctomycetes 0.46 EC:3.1.6.6 0.71
74 Bacteroidetes 0.80 EC:3.1.6.6 0.50
76 Planctomycetes 0.51 EC:3.1.6.6 0.67
84 Chordata 0.42 EC:3.1.6.13 1.00
86 Bacteroidetes 0.62 EC:3.1.6.13 0.40
87 Bacteroidetes 0.74 EC:3.1.6.13 0.83
101 Chordata 0.88 EC:3.1.6.2 0.44
102 Chordata 0.80 EC:3.1.6.4 1.00
103 Chordata 0.89 EC:3.1.6.8 1.00
111 Chordata 0.82 EC:3.1.6.12 1.00
112 Arthropoda 0.97 EC:3.1.6.12 1.00
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Table 4: Enzymatic classes and taxonomic homogeneity of encoded HUP pro-
teins after clustering by HDBSCAN.

cluster index Taxonomic percentage of proteins Enzyme percentage of proteins
group with identical taxa class with identical EC

0 Candidatus 0.70 EC:6.1.1.1 1.00
1 Candidatus 0.74 EC:6.1.1.1 1.00
2 Candidatus 0.38 EC:6.1.1.1 1.00
3 Euryarchaeota 0.98 EC:6.1.1.2 1.00
4 Euryarchaeota 0.96 EC:6.1.1.1 1.00
5 Streptophyta 1.00 EC:6.1.1.1 0.99
6 Chloroflexi 0.90 EC:6.1.1.1 1.00
7 Arthropoda 0.98 EC:6.1.1.1 1.00
8 Ascomycota 0.99 EC:6.1.1.1 1.00
9 Crenarchaeota 0.46 EC:6.1.1.1 1.00
10 Chordata 1.00 EC:6.1.1.1 1.00
11 Euryarchaeota 0.94 EC:6.1.1.1 1.00
12 Streptophyta 0.36 EC:6.1.1.1 1.00
13 Euryarchaeota 0.24 EC:6.1.1.2 1.00
14 Ascomycota 0.32 EC:6.1.1.2 0.94
15 Bacteroidetes 1.00 EC:6.1.1.1 1.00
16 Candidatus 0.35 EC:6.1.1.1 1.00
17 Ascomycota 0.41 EC:6.1.1.1 1.00
18 Euryarchaeota 0.96 EC:6.1.1.2 1.00
19 Ascomycota 0.99 EC:6.1.1.2 1.00
20 Candidatus 0.86 EC:6.1.1.2 1.00
21 Chloroflexi 0.28 EC:6.1.1.2 1.00
22 Proteobacteria 0.92 EC:6.1.1.1 1.00
23 Candidatus 0.71 EC:6.1.1.2 1.00
24 Cyanobacteria 0.98 EC:6.1.1.1 1.00
25 Proteobacteria 0.99 EC:6.1.1.1 1.00
26 Firmicutes 0.96 EC:6.1.1.1 1.00
27 Firmicutes 0.98 EC:6.1.1.1 1.00
28 Proteobacteria 0.98 EC:6.1.1.1 1.00
29 Firmicutes 1.00 EC:6.1.1.1 1.00
30 Firmicutes 0.98 EC:6.1.1.1 1.00
31 Actinobacteria 0.99 EC:6.1.1.2 0.97
32 Chordata 0.86 EC:6.1.1.2 1.00
33 Bacteroidetes 0.96 EC:6.1.1.1 1.00
34 Firmicutes 0.98 EC:6.1.1.1 1.00
35 Actinobacteria 0.99 EC:6.1.1.1 1.00
36 Actinobacteria 1.00 EC:6.1.1.1 1.00
37 Proteobacteria 0.99 EC:6.1.1.1 1.00
38 Proteobacteria 0.99 EC:6.1.1.1 1.00
39 Proteobacteria 0.56 EC:6.1.1.2 1.00
40 Proteobacteria 0.99 EC:6.1.1.2 1.00
41 Firmicutes 0.73 EC:6.1.1.2 1.00
42 Proteobacteria 0.99 EC:6.1.1.2 1.00
43 Bacteroidetes 0.97 EC:6.1.1.2 1.00
44 Actinobacteria 1.00 EC:6.1.1.2 1.00
45 Actinobacteria 1.00 EC:6.1.1.2 1.00
46 Proteobacteria 0.96 EC:6.1.1.2 1.00
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Table 5: Enzymatic classes and taxonomic homogeneity of encoded TPP pro-
teins after clustering by HDBSCAN.

cluster index Taxonomic percentage of proteins Enzyme percentage of proteins
group with identical taxa class with identical EC

0 Firmicutes 0.75 EC:2.2.1.1 1.00
1 Bacteroidetes 1.00 EC:2.2.1.1 1.00
2 Thermotogae 0.32 EC:2.2.1.1 1.00
3 Ascomycota 0.73 EC:1.2.4.1 1.00
4 Proteobacteria 0.44 EC:1.2.7.3 1.00
5 Proteobacteria 0.84 EC:1.2.4.4 1.00
6 Proteobacteria 0.67 EC:2.2.1.1 0.96
7 Proteobacteria 0.73 EC:2.2.1.1 1.00
8 Proteobacteria 0.90 EC:2.2.1.7 1.00
9 Actinobacteria 0.82 EC:1.2.4.1 0.68
10 Candidatus 0.80 EC:2.2.1.1 1.00
11 Firmicutes 0.67 EC:2.2.1.7 1.00
12 Proteobacteria 0.64 EC:2.2.1.1 1.00
13 Firmicutes 0.54 EC:2.2.1.1 1.00
14 Firmicutes 0.89 EC:2.2.1.1 0.98
15 Euryarchaeota 0.91 EC:2.2.1.1 1.00
16 Actinobacteria 0.44 EC:2.2.1.1 0.99
17 Proteobacteria 0.74 EC:1.2.4.1 1.00
18 Actinobacteria 0.68 EC:1.2.3.3 0.33
19 Proteobacteria 0.57 EC:1.2.7.1 1.00
20 Verrucomicrobia 0.77 EC:2.2.1.7 1.00
21 Candidatus 0.46 EC:2.2.1.1 1.00
22 Bacteroidetes 0.97 EC:2.2.1.1 0.86
23 Firmicutes 0.62 EC:3.7.1.22 0.95
24 Verrucomicrobia 0.88 EC:2.2.1.1 1.00
25 Proteobacteria 0.97 EC:3.7.1.22 1.00
26 Proteobacteria 1.00 EC:3.7.1.22 1.00
27 Firmicutes 1.00 EC:2.2.1.7 1.00
28 Proteobacteria 0.98 EC:1.2.4.1 1.00
29 Actinobacteria 0.87 EC:1.2.4.1 1.00
30 Proteobacteria 0.93 EC:2.2.1.1 0.99
31 Firmicutes 0.98 EC:2.2.1.7 1.00
32 Cyanobacteria 0.33 EC:1.2.4.1 1.00
33 Ascomycota 0.99 EC:2.2.1.3 0.50
34 Actinobacteria 0.92 EC:3.7.1.22 0.72
35 Firmicutes 0.99 EC:2.2.1.7 1.00
36 Proteobacteria 0.83 EC:2.2.1.7 1.00
37 Bacteroidetes 0.98 EC:2.2.1.7 1.00
38 Firmicutes 0.35 EC:1.2.7.1 0.68
39 Bacteroidetes 0.97 EC:2.2.1.7 1.00
40 Bacteroidetes 0.98 EC:2.2.1.7 1.00
41 Actinobacteria 0.99 EC:2.2.1.7 1.00
42 Actinobacteria 0.98 EC:2.2.1.7 1.00
43 Actinobacteria 0.99 EC:2.2.1.6 0.99
44 Proteobacteria 0.93 EC:2.2.1.6 1.00
45 Cyanobacteria 1.00 EC:2.2.1.6 1.00
46 Proteobacteria 0.88 EC:2.2.1.6 1.00
47 Proteobacteria 0.98 EC:2.2.1.6 1.00
48 Ascomycota 1.00 EC:2.2.1.6 1.00
49 Proteobacteria 0.58 EC:2.2.1.1 1.00
50 Proteobacteria 0.58 EC:2.2.1.1 0.92
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6.3 Latent space arithmetic

6.3.1 Strategy 1

First strategy consists to add the mean latent space, computed using the encoder
on the sequences of the source sub-family, to the encoded sequences of the query
sub-family.

Figure 10: See Figure 7 for legend.

6.3.2 Strategy 2

Second tested strategy differs from the first one by subtracting the mean back-
ground latent space, computed from the latent space of all sub-families, from
the latent space of the query sub-family.

Figure 11: See Figure 7 for legend.
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6.3.3 Strategy 3

Third strategy differs to the second as the background strategy is computed
using all sub-families except sub-families source and query.

Figure 12: See Figure 7 for legend.

6.3.4 Strategy 4

In the fourth strategy, the subtraction is performed using a local KD-tree to
only remove features shared by closest members of a given query and addition
is performed randomly selecting a member of the the source family and it’s
closest 10 members.

Figure 13: See Figure 7 for legend.
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