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Abstract 
For over 60 years, the masculinization hypothesis dominates our understanding of sex 
effects on the brain. According to this view, the male distribution for single brain 
measures and for the brain as a whole is shifted away from the female distribution. In 
the last decade this view has been challenged by evidence that sex effects on single 
brain features may be opposite under different conditions, resulting in brains 
comprised of unique mosaics of female-typical and male-typical features. Analysis of 
289 MRI-derived measures of grey and white matter from 23935 brains revealed only 
three brain measures for which the masculinization hypothesis was not rejected in 
favor of the alternative hypothesis that women and men sample from the same two 
phenotypes. Moreover, at the individual level, sampling was not consistent across 
brain measures, as some measures were likely sampled from the female-favored 
phenotype while others were likely sampled from the male-favored phenotype. Last, 
considering the relations between brain measures, the brain architecture of women 
and men was remarkably similar. These results do not support the masculinization 
hypothesis but are consistent with the mosaic hypothesis as well as with other lines of 
evidence showing that the brain architectures typical of women are also typical of 
men, and vice versa, and that sex category explains a very small part of the variability 
in human brain structure. 
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Introduction 
 
In spite of conflicting evidence (recently reviewed in 1), the 60 years old 
masculinization hypothesis still dominates our understanding of sex effects on the 
brain. According to this hypothesis, sex-related factors masculinize specific features 
of the brains of males away from a default female form (for review see 2, 3). 
McCarthy had further suggested that sex effects on the brain are “subject to 
canalization to assure that males and females are robustly different on multiple end 
points, but to also assure not too much” (4, p.4). In line with these views, animal and 
human studies often reveal group-level differences between females and males on 
macroscopic and microscopic measures of the brain (e.g., brain region volume, 
number of neurons, 1, 5). Furthermore, in humans, although there is overlap between 
the distributions of females and males for all currently known brain measures which 
show a sex difference, the distribution of one sex often seems to be shifted compared 
to the distribution of the other sex (e.g., 5, 6). 
 
Studies in laboratory animals reveal, however, that a change in environmental 
conditions (e.g., group housing instead of individual housing) may result in a reversal 
of the phenotypes typical of females and males (e.g., in layer III of the visual cortex, 
the dendritic morphology typical of males housed individually was typical of females 
housed in groups, and the dendritic morphology typical of females housed 
individually was typical of males housed in groups, 7; for review of similar findings, 
see 8). Such studies further show that a manipulation (e.g., chronic stress) that may 
reverse sex differences in one brain measure (e.g., density of CB1 receptors in the 
dorsal hippocampus) may have a different effect on sex differences in another brain 
measure (e.g., density of CB1 receptors in the ventral hippocampus, where the stress 
led to the disappearance of a sex difference, 9).  
 
Keeping in mind the canalization hypothesis, such observations suggest that females 
and males are not canalized into the ‘female’ and ‘male’ phenotypes of a brain 
feature, but rather that females and males differ in their probability of manifesting 
each of a feature’s two phenotypes. These observations further suggest that the 
probabilities of manifesting each phenotype may be affected by environmental 
factors, and that these effects may be different for different brain features. As a result 
of the latter, different features within a single brain may not be internally consistent 
with regard to phenotype – always sampling from the phenotype more common in 
females or always sampling from the phenotype more common in males. Instead, 
some features will have the phenotype more common in females, while other features 
will have the phenotype more common in males – the ‘mosaic’ hypothesis (8, 10-12). 
Using the density of CB1 receptors as an example, in a colony of rats kept under 
standard laboratory conditions, males would have high receptor density in the dorsal 
and ventral hippocampus, and females would have low receptor density in the two 
hippocampal regions (9). However, females in this colony that experienced chronic 
stress (e.g., because of being housed with a dominant rat), would show in the dorsal 
hippocampus the phenotype typical of males in that colony (high receptor density), 
whereas in the ventral hippocampus they would exhibit the phenotype typical of 
females in that colony (low receptor density). 
 
Building on the hypothesis that specific features in the brains of males are 
masculinized away from a default female form and McCarthy’s canalization 
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hypothesis (4), the assumption underlying the present study was that two phenotypes 
(distributions) underlie the observed distributions of brain measures, and the aim was 
to discover the relations between these underlying phenotypes and sex category 
(female, male). We analyzed 289 MRI-derived measures of both grey matter (volume) 
and white matter (mean diffusivity [MD] and fractional anisotropy [FA]) in the brains 
of 12,466 women and 11,469 men obtained from the UK Biobank (13). Because these 
measures are correlated with total brain volume (e.g., 14-16), all analyses were 
conducted with brain volume taken into account using the power method (14, 17). For 
each brain measure, the expectation-maximization algorithm (18) was used to 
compute maximum likelihood estimators of the parameters (mean and variance) of 
each of a measure’s two underlying distributions as well as the proportions of men 
and women who sample1 from each of the distributions. We then tested whether 
women and men sample from different phenotypes (‘pure-types’ hypothesis, Fig. 1A) 
or from the same two phenotypes (‘mixed-types’ hypothesis, Fig. 1B-E); whether they 
sample from the two phenotypes with different probabilities (Fig. 1C-D); and whether 
this sampling is consistent across brain features (e.g., always sampling from the male-
favored phenotype). (Note that the analyses reported here were performed under the 
working assumption that the underlying distributions are Gaussian. We explain in the 
Supplementary Materials that our approach yields essentially the same answers under 
a much broader class of distributions, and provide data regarding the suitability of the 
Gaussian assumption for the data analyzed here). 
 
Results 
 
Out of the 289 brain measures analyzed, in 282 the pure-types hypothesis was 
rejected – that is, women and men sampled from the two underlying distributions in 
positive proportions.  
 
Brain measures better described by a pure-types model 
The seven measures for which the pure-types hypothesis was not rejected are listed in 
Table S1. In four of these measures, the sex difference in the observed data was trivial 
(|Cohen’s d| < 0.04; and in three of these also not statistically significant). It therefore 
seems safe to conclude that each of these four measures is best described as reflecting 
a single phenotype. In the remaining three pure-types measures – the volumes of: the 
anterior division of the right cingulate gyrus, the right planum polare, and the left 
postcentral gyrus – there was a (small) sex difference in the observed data (0.17 < 
|Cohen’s d| < 0.28), suggesting a shift in the distribution of one sex compared to the 
other, in line with the masculinization hypothesis. The observed distributions of 
women and men for the measure showing the largest sex difference (the volume of 
the left postcentral gyrus, Cohen’s d = 0.273) are presented in Figure 1A. 
 
 
 

 
1 References to ‘sample’ here and elsewhere in the text are used with the following meaning: Each 
phenotype contains a range of possible values which occur with different frequencies, and the specific 
value of a brain measure for an individual brain is sampled from this distribution. This value may be 
sampled from one of two phenotypes, and the major question of the present study concerns the 
relations between a person’s sex category (female, male) and the phenotype from which the value of 
each of their brain measures is sampled. ‘Sample’ as used in this paper does not imply an intentional 
process on the part of brains or humans.   
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Figure 1. Observed scores and model-derived phenotypes. (A-E) Frequency distributions of the 
observed scores of women (orange) and men (light blue) for specific brain measures, and of the scores 
of women (red) and men (blue) on the model-fitted underlying phenotypes - one presented with a 
dashed line and the other with a solid line. (A) An example of a pure-types measure. Of the seven 
measures for which the pure-types hypothesis was not rejected, the volume of the left postcentral gyrus 
showed the largest sex difference in the observed data (Cohen’s d = 0.273). (B) An example of a 
mixed-types measure in which men and women sample with the same probability from the two model-
fitted phenotypes (p = q). (C) An example of a mixed-types measure in which both men and women 
‘favor’ the same model-fitted phenotype, but with significantly different probabilities (p ≠ q, Q1&Q3). 
(D) An example of a mixed-types measure in which men ‘favor’ one model-fitted phenotype and 
women ‘favor’ the other (p ≠ q, Q2&Q4). Of the 41 such measures, the volume of the left lateral 
occipital cortex showed the largest sex difference in sampling probabilities (Cohen’s h = 0.764) and in 
the observed data (Cohen’s d = 0.338). (E) An example of a mixed-types measure with a “tail” – only a 
small proportion of humans sample from one of the model-fitted phenotypes. In this example, men and 
women sample with the same probability from the two model-fitted phenotypes (p = q). 
 
Brain measures better described by a mixed-types model  
Figure 2 displays for each of the 282 brain measures that were better described by a 
mixed-types model than by a pure-types model the probability that a man (p, X axis) 
and a woman (q, Y axis) will sample from the distribution with the higher mean. In 84 
of the mixed-types measures, men and women sampled from the two distributions 
with the same probabilities (𝑝 = 𝑞, e.g., Fig. 1B, 1E), whereas in the remaining 198 
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measures (marked with a plus symbol in Fig. 2), women and men sampled with 
significantly different probabilities (𝑝 ≠ 𝑞, e.g., Fig. 1C, 1D). In 104 measures, the 
sex difference in sampling probabilities was small (|Cohen’s h| < 0.2), in 86 moderate 
(0.2 < |Cohen’s h| < 0.5), and in eight large (0.5 < |Cohen’s h| < 0.765; Figure 1D 
presents the distributions of women and men for the volume of the left lateral 
occipital cortex, which showed the largest sex difference in sampling probabilities 
(Cohen’s h = 0.764) and in means in the observed data (Cohen’s d = 0.338)). To 
further appreciate the magnitude of the sex differences in sampling probability, we 
compared the likelihood that a woman and a man would sample from the same 
phenotype of a brain measure to the likelihood that two women or two men would 
sample from the same phenotype. The ratio between the first likelihood and the other 
two was, on average, 0.979 (range, 0.699-1.170). For comparison, for the 84 p=q 
measures, the corresponding ratio was, on average, 0.998 (range, 0.902-1.078). 
 

 
Figure 2. The probability that a man (p, X axis) and a woman (q, Y axis) will sample from the high-
mean distribution of the 282 mixed-types measures. The color-code represents the effect size (Cohen's 
d) of the sex difference in the observed data; Measures for which there was a significant sex difference 
in the probability of sampling are marked with a plus symbol. 
 
Is sampling consistent across brain measures?  
To test whether different measures within a brain are consistent or mosaic in the 
phenotype from which they sample, we chose the 41 p ≠ q mixed-types features for 
which one phenotype was sampled mainly by women (‘female-favored’ phenotype) 
and the other mainly by men (‘male-favored’ phenotype). These measures are located 
at Quadrants 2 and 4 of the graph in Fig. 2, and listed in Table S2. Figure 1D presents 
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the distributions of women and men for one such measure, which showed the largest 
difference in sampling probabilities. For every participant and for each of these 
measures the posterior probability2 that this measure was sampled from the ‘male-
favored’ phenotype was calculated. Then the correlation coefficients between these 
probabilities were assessed, separately for women and for men, for all possible pairs 
of same-type measures (i.e., regional volume, mean FA, and mean MD; There were 
no such measures among the weighted-mean FA and weighted-mean MD). If brains 
are consistent in the phenotype from which they sample, then high positive 
correlations are expected between all pairs of measures, whereas if brains are 
‘mosaics’ – each brain with a unique combination of features, some in the ‘male-
favored’ phenotype and some in the ‘female-favored’ phenotype - then most 
correlations are expected to be low. 
 
Figures 3a-c present these correlations in women (lower triangle) and men (upper 
triangle), separately for regional volume, mean FA, and mean MD measures. 
Correlation strength is represented using a red (-1) – white – blue (+1) color scale, 
and the absolute size is represented by the size of the dot. Measures of volume were 
largely uncorrelated, indicating that with respect to regional volume, brains are not 
consistent in sampling from the male-favored phenotype. In contrast, the correlation 
coefficients between FA and MD measures occupied a wider range, with both positive 
and negative moderate correlations. Negative correlations reflect a situation in which 
sampling the male-favored phenotype in one region correlates with sampling the 
female-favored phenotype of another region. To better understand these unexpected 
negative correlations, we assessed the correlations in the same set of measures, but 
this time between the posterior probabilities to select from the high-mean distribution 
(Fig. 3D-F). This analysis resulted in positive correlations only (as was also the case 
in the correlations between the posterior probabilities to select from the high-mean 
distribution for all other measures of mean FA and mean MD; data not shown), 
indicating that value (high versus low) is more important than sex category in 
explaining variability in FA and MD even for measures for which the majority of men 
sampled from one phenotype and the majority of women sampled from the other. This 
may also be true for the few moderate-to-large positive correlations between measures 
of volume (Fig. 3A), which are positive also in Fig. 3D – these correlations may 
reflect not the consistent effects of sex but rather the consistent effects of other 
factors. Indeed, the strongest correlations were found between homologous regions in 
the two hemispheres (the right and left hippocampus; the right and left cuneal cortex; 
and the right and left superior frontal gyrus). 
 
 
The most remarkable observation over the images presented in Figure 3 is that the 
correlation matrices in men and women are almost identical (the numerical values of 
the correlations are given in Figure S4). This remarkable similarity is also evident 
when considering the correlations between all possible same-type pairs of the 282 
mixed-types measures (Fig. 4. Note that the correlations here are between the 
posterior probabilities of each individual to select from the high-mean distribution, 
rather than from the male-favored distribution). The correlations in men (blue) are 

 
2 ‘Posterior probability’ refers to the probability that this measure was sampled from the ‘male-favored’ 
phenotype, given the observed value of this brain measure in this brain and the underlying distributions 
parameters. 
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sorted from lowest to highest, and the correlations in women (red) are presented in the 
men’s order.  
 

 
 
Figure 3. Assessing internal consistency. (A-C) The correlation coefficients in women (lower triangle) 
and men (upper triangle) between the posterior probabilities of each individual to select from the male-
favored distribution in all possible pairs of the 41 measures that have a female-favored and a male-
favored distribution, separately for three types of brain measures - (A) volume, (B) mean FA, and (C) 
mean MD. Correlation strength is represented using a red (-1) – white – blue (+1) color scale, and the 
absolute size is also represented by the size of the dot. The numbers correspond to the number of each 
measure in Table S2. (D-F) Same as A-C but for the posterior probabilities of each individual to select 
from the high-mean distribution. 
 
Discussion  
 
The present analysis does not support the 60 years old assumption that the brains of 
males are masculinized away from a default female form. Of the 289 brain measures 
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analyzed, such a description was appropriate for only three measures in which a small 
shift was evident in the distribution of one sex compared to the distribution of the 
other sex. For 282 brain measures, the hypothesis that women and men sample from 
different phenotypes was rejected in favor of the hypothesis that men and women 
sample from the same two phenotypes. This suggests that if brain measures are 
described as reflecting two underlying Gaussian-shaped phenotypes (rather than, for 
example, one non-Gaussian-shaped phenotype, or three Gaussian-shaped 
phenotypes), then women and men sample from both phenotypes, and for the most 
part do so with quite similar probabilities. The overall small sex differences in 
sampling probabilities would contradict also a “soft” version of the masculinization 
hypothesis, if this existed, according to which the large majority of men sample from 
one phenotype whereas the large majority of women sample from the other 
phenotype.  
 
The conclusion that brains of human males are not masculinized away from a default 
female form was further supported by the pattern of correlations between the posterior 
probabilities of each individual to select from the male-favored distribution. These 
correlations were either mainly around zero (for measures of volume), indicating that 
sampling from the male-favored phenotype for one region provided no information on 
whether the male-favored or the female-favored phenotype of another region was 
sampled, or in a pattern suggesting the existence of factor(s) that are more important 
than sex category in explaining variability in brain measures. 
 
The possibility that sex category is not a major predictor of variability in human brain 
structure is further supported by the almost identical correlations in women and men 
between the posterior probabilities to select from the high-mean distribution for all 
possible pairs of same-type brain measures (Fig. 4). This remarkable similarity 
suggests that the same principles are governing brain architecture in women and men.  
 

 
Figure 4. The correlation coefficients in women (red) and men (blue) between the posterior 
probabilities of each individual to select from the high-mean distribution in all possible same-type pairs 
of the 282 mixed-types measures. The correlations in men are sorted from lowest to highest, and the 
correlations in women are presented in the men’s order. 
 
Our findings add to other lines of evidence revealing that sex category is not a major 
predictor of variability in human brain structure and function. Thus, on the basis of a 
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review of studies of sex differences in human brain structure, Eliot concluded that 
when brain size is controlled for, sex category accounts for less than 2% of the 
variability in brain structure (19). Recent studies, which assessed the contribution of 
several factors to variability in brain function (measured using functional MRI), 
reported that sex category explained only a small fraction of this variability (20, 21). 
Finally, an assessment of the relations between the number of sex differences in 
functional MRI studies and sample size did not reveal the positive correlation 
expected if brain function of women and men belonged to two populations (22).  
 
We would like to stress that the conclusion that sex category is not a major predictor 
of variability in human brain structure does not contradict evidence that sex-related 
genes and hormones affect specific brain measures (for a recent review see 1), nor 
evidence that supervised machine learning algorithms may use sex-related variability 
in brain structure to predict the sex category of a brain’s owner (e.g., 23-26). Indeed, 
one such approach (logistic regression, as in 23) over the 289 brain measures 
analyzed in the present study, accurately predicted the sex category of brains’ owners 
in 75% of cases (see Supplemental Materials; The lower classification rate compared 
to previous studies (e.g., 23-25) is expected given that we used data “corrected” for 
total brain size (26)). 
 
What our present and previous studies (1, 6, 27) challenge is the common assumption 
(e.g., 23, 24, 28) that sex-related effects consistently add up in individual brains so 
that the brains of women are meaningfully different from the brains of men. Different 
analytical approaches repeatedly demonstrate that this is not the case. Thus, animal 
studies show that sex effects interact in complex ways with multiple other factors, to 
create multimorphic, rather than dimorphic, brains (reviewed in, 8, 10). In humans, an 
analysis of internal consistency in MRI-derived brain measures that show large sex 
differences revealed that mosaic brains (consisting of some measures with scores 
more common in women compared to men, and some measures with scores more 
common in men compared to women) are much more prevalent than internally 
consistent brains (6). Mosaic brains were also observed when analyzing post mortem-
derived hypothalamic measures which show very large sex differences (1). In 
addition, unsupervised machine learning algorithms applied to the entire brain 
revealed that the brain architectures typical of women are also typical of men and vice 
versa; large sex differences were found only in the prevalence of some rare brain 
architectures (27). The present analysis adds to these the observations that for the vast 
majority of brain measures, women and men sample from the same phenotypes, often 
with very similar probabilities, and that the same factors are similarly accounting for 
co-variability of brain measures.    
 
The present study has several limitations. The sample is quite ethnically 
homogeneous (92.2% Caucasians) and restricted age-wise (all participants are over 42 
years old), restricting the generalizability of our conclusions across ethnicity and age. 
On the other hand, this relative homogeneity would have increased the chances of 
finding consistent sex effects, if these were present, as other studies have shown that 
sex differences in brain structure may differ across age (e.g., 29, 30) and across 
countries differing in their ethnicity composition (e.g., 6, 31). Another limitation of 
the present study is that we analyzed only MRI-derived brain measures, which show 
smaller sex differences compared to some post mortem-derived measures (e.g., 
number of neurons in specific hypothalamic nuclei). It is unlikely, however, that a 
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large enough dataset of the latter type of measures would be available to enable the 
analyses conducted here.  
 
 
Conclusions 
 
The decades old hypothesis according to which brains of males are masculinized 
away from a default female form should be replaced with a more complex model 
according to which sex-related variables are a part of a large set of factors which 
similarly interact in women and men to create a highly heterogenous population of 
human brains (6, 11, 12, 27). This population cannot be meaningfully divided into 
‘female’ and ‘male’ types nor aligned along a female-male continuum (8, 11). There 
is therefore a need to develop new methods for studying the human brain and its 
relations with sex-related variables that go beyond the common practice of comparing 
a group of females to a group of males (12, 27).  
 
 
Materials and Methods 
 
Data collection and preparation for analysis 
The present study was conducted as part of UK Biobank application 42111, and made 
use of imaging-derived measures generated by an image-processing pipeline 
developed and run on behalf of UK Biobank (32). Data were derived from the brains 
of 12,466 women (mean age = 65.16 years, SD = 7.28) and 11,469 men (mean age = 
66.52 years, SD = 7.56). The following measures were analyzed: the volume of 139 
regions of grey matter; the mean diffusivity (MD) and fractional anisotropy (FA) of 
48 tracts defined using the Tract-Based Spatial Statistics analysis; and the weighted-
mean MD and FA of a set of 27 major tracts, derived using probabilistic tractography-
based analysis (for details of the acquisition protocols, image processing pipeline, and 
derived measures, see 
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). All analyses were 
conducted with brain volume taken into account using the power method (14, 17). 
Total intracranial volume (TIV) was calculated as the sum of the following two 
variables from the UK Biobank dataset: volume of grey and white matter and volume 
of ventricular cerebrospinal fluid. For each brain measure, a linear regression of the 
log of its value versus log-TIV was fitted, and the residuals were used in all 
subsequent analyses. 
 
Statistical analysis 
Expectation-Maximization Algorithm (EM) 
The EM algorithm (18) is applied to data assumed to be generated from a mixture of 
parametric distributions with unknown parameters and unknown mixture 
probabilities. The working assumption is that the data are sampled from two Gaussian 
distributions, one with parameters, 𝜇!, 𝜎!, and the other with parameters, 𝜇", 𝜎". The 
proportions of men and women who sample from the high-mean distribution are p and 
q, respectively. The EM method is used to compute maximum likelihood estimators 
(MLE) for both the distribution parameters (𝜇!, 𝜎!, 𝜇", 𝜎") and the proportions (p and 
q).  
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In all analyses, the p-value was computed using Wilks' theorem (33, 34) and adjusted 
for FWER using the Benjamini-Hochberg correction (35). Adjusted p-values smaller 
than 0.05 were considered statistically significant. 
 
A power analysis (described in the Supplementary Materials) confirmed that the size 
of the sample in the present study (12,466 women and 11,469 men) is large enough 
for the aims of the present study (Figure S1).  
 
Hypothesis testing 
Pure-types or mixed-types?   
For each brain measure, the null hypothesis is that the pair p and q is either (0,1) or 
(1,0) - that is, that women sample from a 'female' distribution and men sample from a 
'male' distribution. The alternative hypothesis is that there exist two latent 
distributions with parameters (𝜇!,𝜎!,and 𝜇",𝜎"), from which men and women sample 
with proportions that are larger than 0 and smaller than 1. Equations 1 and 2 describe 
the mixed-types model: Letting N stand for normal density, p stand for the proportion 
of men sampling from the high-mean distribution, and q stand for the proportion of 
women sampling from the high-mean distribution, the density of men's features (X) 
and women's features (Y) is 

(1) 𝑓#(𝑥, 𝛩) = 𝑝𝑁(𝑥; 𝜇!, 𝜎!) + (1 − 𝑝)𝑁(𝑥; 𝜇", 𝜎") 
(2) 𝑓$(𝑥, 𝛩) = 𝑞𝑁(𝑥; 𝜇!, 𝜎!) + (1 − 𝑞)𝑁(𝑥; 𝜇", 𝜎") 

For each brain measure, the MLE of these parameters was estimated by the EM 
method (see Supplementary Materials). A log-likelihood ratio test was conducted to 
test the null hypothesis of pure-types versus the alternative hypothesis of mixed-types.  
  
Is there a sex difference in the probability of sampling from the two phenotypes?  
Measures for which the pure-types hypothesis was rejected are those for which the 
observed data belong to a non-Gaussian distribution best described by a mixture of 
two Gaussians that are sampled by both women and men. To test whether men and 
women differ in their probabilities of sampling from the two Gaussians, a similar 
analysis was conducted, but this time the null hypothesis was that p = q, and the 
alternative hypothesis was that p ≠ q. For brain features for which p was significantly 
different from q, the size of the difference was estimated using Cohen’s h (36). 
 
Assessing internal consistency.  
Correlation matrices between the EM responsibilities (i.e., the posterior probabilities 
of each individual to sample from a reference distribution given his/her sex category, 
37) of two sets of measures were evaluated: I. The posterior probabilities to select 
from the high-mean distribution for all mixed-types measures; II. The posterior 
probabilities to select from the male-favored distribution for the 41 mixed-types 
measures for which p ≠ q and the female-favored distribution was different from the 
male-favored distribution (e.g., Fig. 1D). In both sets, Pearson correlation coefficients 
were computed only between measures of the same type (i.e., separately for measures 
of volume, mean FA, weighted mean FA, mean MD, and weighted mean MD). 
 
Code. 
        The data in this work were analyzed using the R programming language (38). 
The equal probability EM was computed using the mixtools package (39). Cohen's d 
was estimated using the effsize package (40).  The code for the paper is available at 
https://github.com/nitayalon/biobank_data_analysis. 
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