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Abstract

Episodic memory has a dynamic nature: when we recall past episodes, we retrieve not
only their content, but also their temporal structure. The phenomenon of replay, in
the hippocampus of mammals, offers a remarkable example of this temporal dynamics.
However, most quantitative models of memory treat memories as static configurations,
neglecting the temporal unfolding of the retrieval process. Here we introduce a con-
tinuous attractor network model with a memory-dependent asymmetric component in
the synaptic connectivity, that spontaneously breaks the equilibrium of the memory
configurations and produces dynamic retrieval. The detailed analysis of the model
with analytical calculations and numerical simulations shows that it can robustly re-
trieve multiple dynamical memories, and that this feature is largely independent on the
details of its implementation. By calculating the storage capacity we show that the dy-
namic component does not impair memory capacity, and can even enhance it in certain
regimes.

Introduction

The temporal unfolding of an event is an essential component of episodic memory. When
we recall past events, or we imagine future ones, we do not produce static images but
temporally structured movies, a phenomenon that has been referred to as ”mental time
travel” [1], [2].

The study of the neural activity of the hippocampus, known to be heavily involved
in episodic memory, has provided many insights on the neural basis of memory retrieval
and its temporal dynamics. A particularly interesting example is the phenomenon of
hippocampal replay, i.e. the reactivation, on a compressed time scale, of sequences
of cells active in previous behavioural sessions. Replay takes place during sharp wave
ripples, fast oscillations of the hippocampal local field potential that are particularly
abundant during sleep and restful wakefulness [3], [4]. Indeed, replay has been observed
during sleep [5], [6], inter-trial rest periods [7], [8], and during still periods in naviga-
tional tasks [9], [10]. Replay activity has been hypothesized to be crucial for memory
consolidation [11] and retrieval [12], as well as for route planning [10], [13].

A temporally structured activation takes place also before the exposure to an en-
vironment [14], a phenomenon known as preplay, and a recent study showed that this
dynamical feature emerges very early during development, preceding the appearance
of theta rhythm [15]. The fact that sequential activity can be present before the ex-
posure to the environment suggests that their dynamical nature is not specific to a
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role in spatial cognition, but is inherent to hippocampal operation in general. More-
over, in a recent study Stella et al. [16] have shown that the retrieved positions during
slow wave sleep are not always replaying experienced trajectories, but are compatible
with a random walk on the low dimensional manifold that represents the previously
explored environment. This suggests that what is essential are not the sequences them-
selves, but the tendency to produce them: neural activity tends to move, constrained
to abstract low-dimensional manifolds, which can then be recycled to represent spatial
environments, and possibly non-spatial ones as well.

However, the activity is not constrained to a single subspace: replay in sleep can
reflect multiple environments [17], [18], the content of awake replay reflects both the
current and previous environments [12], and during behaviour fast hippocampal se-
quences appear to switch between possible future trajectories [19]. Further evidence
comes from a recent study with human participants learning novel word pair associa-
tions [20]. The study shows that the same, pair-dependent neural sequences are played
during the encoding and the retrieval phase.

A similar phenomenology – a dynamic activity on low dimensional manifolds – is
present in memory schemata, cognitive frameworks that constrain and organize our
mental activity [21], and have been shown to have a representation in the medial tem-
poral lobe [22]. When we retrieve a schema, our memory follows a spontaneous flow
guided by the schema. Yet another examples of dynamical continuous memories is of-
fered by motor programs, which have been described as low-dimensional, temporally
structured neural trajectories [23], [24], [25]. Fig.1 schematically illustrates the concept
of dynamical continuous attractors and their possible role in some cognitive processes.

Mechanistic models of memory usually neglect the dynamic component, treating
memories as static objects, either discrete [26] or continuous [27], [28], [29], [30]. The
production of sequences of discrete memories can be implemented with a heteroasso-
ciative component [31], usually dependent on the time integral of the instantaneous
activity, that brings the network out of equilibrium and to the next step in the se-
quence. A similar effect can be obtained with an adaptation mechanism in a coarse
grained model of cortical networks [32], with the difference that in this case the transi-
tions are not imposed, but driven by the correlations between the memories in so-called
latching dynamics [33], [34]. Moreover, adaptation-based mechanisms have been used
to model the production of random sequences on continuous manifolds [35], and shown
to be crucial in determining the balance between retrieval and prediction in a network
describing CA3-CA1 interactions [36]. In the case of continuous attractor networks,
movement can be induced also by mechanisms that integrate an external velocity input
and make use of asymmetric synaptic strengths [37], [38], [39]. In the simplest instanti-
ation, this system does not necessarily reflect long-term memory storage: the activity is
constrained on a single attractive manifold, which could well be experience independent.

Here we propose a continuous attractor network model able to store and retrieve mul-
tiple independent manifolds in a dynamical way. The model relies on a map-dependent
asymmetric component in the connectivity, that produces a robust shift of the activ-
ity on the retrieved manifold. This connectivity profile is thought to be the result of a
learning phase in which the mechanism of spike timing dependent plasticity (STDP) [40]
produces the asymmetry. Crucially, the asymmetry is not treated here as a “patholog-
ical” feature, assumed to level out in the limit of long learning, but as a defining trait
of the stored memories. The balance between two components – one symmetric and
trajectory-averaged, the other asymmetric and trajectory-dependent – is explicit in the
formulation of the model, and allows to study their effects on memory storage.

In what follows we develop an analytical framework that allows to derive the depen-
dence of important features of the dynamics, such as the shift speed and the asymmetry
of the activity cluster, as a function of the relevant parameters of the model. We show
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with numerical simulations that the behaviour of the model is robust with respect to
the details of the model, depending weakly on the shape of the interactions. Finally, we
estimate the storage capacity for dynamical memories and we find it to be of the same
order of the capacity for static continuous attractors, and even higher in some regimes.

Figure 1: Schematic illustration of dynamic continuous attractors and their possible
roles. Top row: a scheme of continuous attractive manifolds, with a dynamic component
in 1D (a), 2D (b) and 3D (c). The neural activity quickly converges on the attractive
manifold (dotted arrows), then slides along it (full arrows), producing a dynamics that
is temporally structured and constrained to a low dimensional subspace. Bottom row:
multiple dynamic memories could be useful for route planning (top left), involved in
mind wandering activity (bottom left) or represent multiple learned motor programs
(right).

A mechanistic model for dynamic retrieval

The model we consider is a continuous attractor neural network, with an additional
anti-symmetric component in the connectivity strength. We consider a population of
N neurons, with recurrent connectivity described by an interaction matrix Jij , whose
entries represent the strength of the interaction between neuron i and j. The activation
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function of the neurons is threshold-linear, i.e. the output Vi of neuron i, given the
input hi, is

Vi = [hi]
+ = g(hi − h0)θ(hi − h0) (1)

where θ is the Heaviside step function and the gain g and threshold h0 are global
parameters of the network. The variables Vi are positive and continuous, and thought
to represent the firing rates of the units.

The dynamic evolution of the network is regulated by the equations:

τ
∂Vi
∂t

+ Vi =

∑
j 6=i

JijVj + b

(
1

N

∑
i

Vi

)
− h0

+

(2)

The first term on the right hand side represent the excitatory inputs provided to neuron
i from the rest of the network through recurrent connections. b(.) is a global inhibition
term that, together with h0 and g, regulates the average activity and the sparsity of the
activity pattern [41]. For the purpose of this work, the global inhibition term b can be
reabsorbed in h0, and will no longer be explicitly written.

A recurrent network of this kind can encode continuous maps in its connectivity
matrix. In a basic model expressing static continuous attractors, each neuron is assigned
a preferential firing location xi in the stimulus space, and the strength of the interaction
between pairs of neuron is a decreasing, symmetric function of the distance between their
preferred firing locations

Jij ∼ KS(xi − xj). (3)

This formula is assumed to come from a time-averaged Hebbian plasticity rule: neurons
with nearby firing fields will fire concurrently and strengthen their connections, while
firing fields far apart will produce weak interactions. The symmetry of the function K,
usually called interaction kernel, ensures that the network reaches a static equilib-
rium, where the activity of the neurons represents a certain position in the map and, if
not pushed, remains still.

The shift mechanism

The assumption of symmetric interactions neglects any temporal structure in the learn-
ing phase. In case of learning a spatial map, for example, the order in which recruited
neurons fire along a trajectory may produce an asymmetry in the interactions as a
consequence of the phenomenon called Spike Timing Dependent Plasticity [40], that
requires the postsynaptic neuron to fire after the presynaptic one in order to strengthen
the synapse. This phenomenon can be accounted for in the definition of the interaction
kernel. Any asymmetric kernel can be decomposed in two contributions:

K(xi − xj) = KS(xi − xj) + γKA(xi − xj) (4)

where KS is the usual symmetric component and KA is an anti-symmetric function
(KA(xi − xj) = −KA(xj − xi)). The parameter γ regulates the relative strength of
the two components. KA generates a flow of activity along the direction of asymme-
try: neuron i activates neuron j that, instead of reciprocating, will activate neurons
downstream in the asymmetric direction. Mechanisms of this kind have been shown to
produce a shift of the activity bump, without its disruption [37], [39], [38]. This effect
is illustrated in Fig.2, and its quantitative properties are analyzed in detail in the next
section.
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Storing multiple dynamic memories

A network with the connectivity structure described in Eq. 4 has a single dynamical
attractor. In order to model the autoassociative memory properties of the hippocampus,
we want the system to be able to store and retrieve multiple manifolds, each with its
own temporal structure. We construct an interaction matrix Jij that is the sum of the
contributions from p different, independent memories:

Jij =
1

N

p∑
µ=1

K(xµi − x
µ
j ) (5)

Here each xµi represent the preferred firing location of neuron i in the manifold repre-
senting memory µ, and K, given by eq. 4, contains a symmetric and anti-symmetric
component for each memory. The dynamic of this network, for low memory loads
α = p/N , evolves in two phases: a fast convergence to the retrieved manifold, and then
a rigid movement along it, that replicates its temporal structure. The same activity,
if projected on the other, unretrieved manifolds, appears as random noise. When the
memory load α is increased above a certain value αc, a phase transition occurs, and the
network is not able to retrieve any memory, falling instead into a disordered state.

The value of αc, the storage capacity of the network, is estimated in section and
shown to be large enough to allow a network with biologically plausible connectivity
density to store hundreds of different dynamical memories. Its dependence on the
asymmetry parameter γ shows a non-trivial behaviour that depends crucially on the
density of the connectivity of the network.

Before considering the multiple maps case, in the next section we present a quanti-
tative study of the dynamics of the network in the case of a single map.

Dynamic retrieval

The presence of an asymmetry in the connection strengths prevents the system from
reaching a stationary equilibrium. Instead, it generates a steady flow of activity in the
direction of the asymmetry. This flow is illustrated in Fig. 2, obtained with numerical
simulation of a network encoding a one-, two- or three-dimensional map, respectively.
Note that the bump of activity translates without disruption, producing a steady flow
in the asymmetric direction.
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t1 t2 t3

(a) (b) (c)

Figure 2: Dynamic retrieval in different dimensions. Three snapshots of the network
activity at three different times (t1, t2 and t3) are shown for a system encoding a
one dimensional (a), two dimensional (b) and three dimensional manifold (c). In (c),
activity is color-coded (blue represents low activity, red high activity, silent neurons
are not plotted for better readability). In all cases the anti-symmetric component is
oriented along the x axis.

The dynamic behaviour of the system and its features can be described analytically
with a generalization of the framework developed by Battaglia & Treves [27]. For this
purpose, it is easier to formulate the problem in the continuous limit, and describe the
population activity by its profile V (x) on the attractive manifold parametrized by the
coordinate x, and the dynamical evolution as a discrete step map, equivalent to Eq. 2.

V (x, t+ 1) = g[h(x, t)]+ (6)

h(x, t) =

∫ ∞
−∞

dx′K(x− x′)V (x′, t)− h0 (7)

The requirement of a rigid shift of population activity is then imposed by setting the
activity at time t+ 1 to be equal at the activity at time t, but translated by an amount
∆x, proportional to the speed of the shift. In this way we find the equation:

V (x+ ∆x) = g

[∫ ∞
−∞

dx′K(x− x′)V (x′)− h0

]+

(8)

that we can rewrite as:

V (x+ ∆x) =

{
g
∫

Ω
dx′K(x− x′)V (x′)− h0, if x ∈ Ω

0 otherwise
(9)

where Ω is a compact domain for which there exist a solution of Eq. 8 that is zero at the
boundary. This allows to exploit the fact that our threshold-linear system is, indeed,
linear in the region in which V (x) > 0.

Equation 9 is valid in general, but we will focus here, to derive an analytical solution,
on the one dimensional case and on an exponential kernel in the form

K(x− x′) = e−|x−x
′| + γsign(x− x′)e−|x−x

′| (10)

Differentiating twice Eq. 9, we obtain the differential equation

V ′′(x+ ∆x) = V (x+ ∆x) + 2gV (x) + 2gγV ′(x) + gθ (11)
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This is a second order linear ODE, with constant coefficients. The presence of the shit
term ∆x inside the unknown function makes the equation non-trivial to solve. To solve
it, we proceed in the following way: first, we look for a particular solution, that is easily
found in the constant function

Vc =
gθ

1− 2g
(12)

Then, we consider the associated homogeneous equation, and look for a solution in the
form V (x) = ekx, where k is a solution of the characteristic equation C(k) = 0, with

C(k) = k2ek∆x + 2gγk + 2g − ek∆x. (13)

This trascendental equation has to be solved graphically in the complex domain, as
shown in Fig. 3.

Figure 3: Analytic solution of equation (11).The top row shows the graphical procedure
to find the complex zeros of the characteristic C(k) given in (13), for three different
values of γ. Black and red lines show the zeros of the real and imaginary part of C(k),
respectively. Their intersections are the complex solutions to C(k) = 0. The blue line
represent the sparsity constraint ki = kSi . The bottom row shows the corresponding
solution shapes.

For each value of γ and ∆x, the equation shows a pair of complex conjugate solutions

k∗1,2(γ,∆x) = kr(γ,∆x)± iki(γ,∆x) (14)

The general solution of the equation will therefore have the form

V (x) =

{
Cekrx cos(kix) + gθ

1−2g if −R ≤ x ≤ R
0 if −R > x or x > R

(15)

In the limit case γ = 0, ∆x = 0 (Fig. 3, first column), the solutions are pure imaginary
(kr = 0), and we recover the solution of the symmetric case studied in [27]. From
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Eq.15 we can see that the absolute value of ki is related to the width of the bump, and
therefore to the sparsity of the solution, by the relation

R =
π

2ki
(16)

We focus here on the case in which R is kept constant when γ changes, i.e. the case
in which the network is constrained to operate at a certain sparsity. This constraint is
enforced by requiring that the zeros of 13 lie in the subspace ki = kSi , i.e. we have the
same sparsity of the solution kSi of the symmetric case. This imposes a relation between
γ and both ∆x (related to the speed of the shift) and kr (related to the asymmetry
of the shape of the solution). These relationships are shown in Fig. 4. The similarity
between this two relationships can be understood intuitively by thinking that, for a
fixed kernel shape, the larger the asymmetry of the solution, the more the bump with
be translated by the evolution Eq. 8.

(a) (b)

Figure 4: Dependence of speed and shape on γ. (a) ∆x = −vτ as a function of gamma.
(b) Deviation of the position of the maximum of the bump from zero. This quantity is
related to the value of the real part kr of the solution of the characteristic equation by
the relation xmax = arctan(kr), and is one way to quantify the asymmetry in the bump
shape produced by increasing γ. Note that the scale is logarithmic in γ.

The analytical results are presented here for a specific choice of the kernel, but the
qualitative behaviour of the model is extremely general. In fact, numerical simula-
tions show that a shifting bump can be obtained with a wide variety of interaction
kernels, without any relationship required, for example, between the symmetric and
anti-symmetric components. Some examples are illustrated in Fig. 5.
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t1 t2 t3

(a)

t1 t2 t3

(b)

t1 t2 t3

(c)

Figure 5: Different interaction kernels produce similar behaviour. Three examples of
dynamics with the same symmetric component and three different anti-symmetric com-
ponents. Top row: shape of the anti-symmetric component KA. Bottom row: three
snapshots of the retrieval dynamics for the corresponding KA. (a) Gaussian derivative;
(b) Sinusoidal; (c) Anti-symmetric step function, θ∗ = θ(d)θ(1− d)− θ(−d)θ(d− 1).

Despite the robustness of the general features of the behaviour, the shape of the
interaction kernel affects the details of the dynamics. Two parameters are particularly
important: the relative strength γ between the symmetric and anti-symmetric compo-
nents, and the characteristic length ξ of the anti-symmetric component. Their effect on
the dynamics are shown in Fig. 6.

(a) (b) (c)

Figure 6: Effect of the kernel strength γ and its width ξ, in the case of the exponential
kernel K(d) = e−|d|+γsign(d)e−|d|/ξ .(a) Shift speed (e) Maximum value of the activity
bump and (e) Skewness of the activity bump.

Taken together, these results show that the model can implement a dynamic memory
system, whose dynamics is constrained to approach a memorized attractive manifold and
to move along it at constant speed without disruption. This behaviour depends weakly
on the details of the connectivity kernel and can be implemented with a rather general
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type of asymmetric connections. However, in order to effectively work as a memory, the
model has to be able to store and retrieve multiple manifolds. The estimation of the
storage capacity is addressed in the next section.

Storage capacity for dynamic continuous attractors

A network with the connectivity profile described in section is able to store and retrieve
multiple dynamic maps. The retrieval process, as in the single map case, unfolds in two
phases: a fast transient in which the dynamics converges to one of the stored manifolds,
and a subsequent stable shift. The second phase is illustrated in Fig. 7, obtained with
numerical simulations.

(a) (b)

Figure 7: Dynamic retrieval in the presence of multiple memories in one dimension (a)
and two dimensions (b). Each row represents a snapshot of the dynamics at a point in
time. The activity is projected on each of the three attractors stored in the network.
In both cases, the first attractor is retrieved, and the activity organizes in a coherent
bump that shifts in time. The same activity, projected onto the two non-retrieved maps
looks like incoherent noise ((a) and (b), second and third columns).

The number of maps that can be stored and retrieved in this way is typically pro-
portional to the number of inputs per neuron. Its magnitude, the storage capacity of
the system, is crucial to determine if it can effectively operate as a memory.

To estimate the storage capacity for dynamic continuous attractors, we proceed along
two complementary paths. For a fully connected network, where the analytical tools
developed for equilibrium systems are not applicable, we take advantage of the fact
that numerical simulations can be effective for the estimation of the capacity, since the
number of connections per neuron C (the relevant parameters in the definition of the
storage capacity αc = p/C) scales as the number of neurons. For a highly diluted system,
on the other hand, the number of neurons is much larger than C, making the simulation
of the system very difficult in practice. We then resort to an analytical formulation based
on a signal to noise analysis [27], that exploits the vanishing correlation between inputs
of different neurons in a highly diluted network, and does not require symmetry in the
connectivity [42]. The quantification of the effect of loops in the dense connectivity
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regime, developed in [43] and [44] for the case of static, discrete attractors, is beyond
the scope of the present work and remains an interesting open direction.

In both the fully connected and the highly diluted case we study the dependence of
the capacity on two important parameters: the map sparsity, i.e. the ratio between the
width of the connectivity kernel (fixed to one without loss of generality) and the size L
of the stored manifolds, and the asymmetry strength γ. We present the analytic solution
for the diluted case in the next section, showing that a simple approximation yields a
remarkably accurate estimation of the capacity and allows to decouple the effects of
map sparsity and asymmetry. The capacity is found to be monotonically but gently
decreasing with both sparsity and asymmetry.

In section we present the numerical results for the fully connected network. In this
case, the presence of asymmetry can enhance the storage capacity, that is found to be
maximal for finite values of γ and of map sparsity.

Analytical calculation of αc in the highly diluted limit

We consider here the highly diluted limit, the case in which the number of connections
per neuron C is much smaller than the total number of neurons N (C/N → 0), and
a number of maps α = p/C is stored. This scaling makes the system quite hard to
simulate, but allows us to exploit its tree-like structure and the vanishing correlations
between inputs to different neurons, and to study the network with a signal-to-noise
approach that does not require its connectivity to be symmetric.

This approach, illustrated in details in [27], involves writing the local field hi as the
sum of two contributions: a signal term, due to the retrieved – “condensed” – map,
and a noise term consisting of the sum of the contributions of the other, “uncondensed”
maps. In the diluted regime these contributions are independent and can be summarized
by a Gaussian term ρz, where z is a random variable with zero mean and unit variance.
In the continuous limit, assuming that map µ = 1 is retrieved we can write:

h(x1) = g

∫
L

dx1′K(x1 − x1′)V (x1′) + ρz (17)

The noise will have variance:

ρ2 = αyL2〈〈K2(x− x′)〉〉 (18)

Where L is the size of the map, 〈〈K2(x−x′)〉〉 is the spatial variance of the kernel and

y =
1

N

∑
i

V 2
i (19)

is the average square activity.
We can write the fixed point equation for the average activity profile m1(x), incor-

porating the dynamic shift with an argument similar to the one made for the single map
case:

m1(x+ ∆x) = g

∫ +

Dz(h(x)− h0) (20)

Where Dz = (e−z
2/2/
√

2π)dz and
∫ +

f(x)dx =
∫
f(x)θ(x)dx. The average square

activity y, entering the noise term, reads

y =
g2

L

∫
dx

∫ +

Dz(h(x)− h0)2 (21)
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Introducing the rescaled variables

w =
−h0

ρ
(22)

v(x) =
m1(x)

ρ
(23)

And the functions

N (x) = xΦ(x) + σ(x) (24)

M(x) = (1 + x2)Φ(x) + xσ(x) (25)

where Φ(x) and σ(x) are the Gaussian cumulative and the Gaussian probability mass
function respectively, we can rewrite the fixed-point equation as

v(x+ ∆x) = gN
(∫

dx′K(x− x′)v(x′) + w

)
(26)

y = ρ2g2

∫
dx

L
M
(∫

dx′K(x− x′)v(x′) + w

)
(27)

Substituting Eq.27 in the expression for the noise variance 18 we obtain

1

α
= g2L

〈〈
K2
〉〉 ∫

dxM
(∫

dx′K(x− x′)v(x′) + w

)
(28)

If we are able to solve Eq. 26 for the rescaled activity profile v(x), we can use Eq.
28 to calculate α. We can then maximize α with respect to g and w: this yields the
maximal value αc for which retrieval solutions can be found.

These equations are valid in general, but here we focus on the one dimensional case
and the exponential kernel of Eq. 10. In this case we have

〈〈K2(x− x′)〉〉 = (1 + γ2)〈〈K2
S(x− x′)〉〉. (29)

where KS(x − x′) = e−|x−x
′| is the symmetric component of the kernel. Eq. 26 can

be transformed it into a non-linear, delayed differential equation, that we can solve
numerically. This solution procedure is illustrated in appendix B. Plugging the obtained
form of v(x) into Eq. 28, we can calculate the capacity. The dependence of the capacity
on γ is shown, for L = 60, in Fig. 8.
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Figure 8: Dependence of the storage capacity on γ, for L = 60. The crosses show the
full solution of Eq. 26 and 28. The dashed line is obtained by taking the value of the
capacity α(0) obtained with full solution at γ = 0, and multiplying it by the scaling of
the kernel variance (1 + γ2). Full dots show the value of capacity obtained with the full
solution and the contribution of the kernel variance factored out.

We can see from the full dots in the figure that the contribution of the integral in
Eq.28 is remarkably constant in γ. This is due to the fact that the distortions of the
bump shape induced by the presence of the asymmetry have a negligible effect on the
average square activity y, whose value is dominated by the dependence on γ of the
spatial variance of the kernel (Eq.18).

This allows us to approximate the value of the integral in Eq. 28 with its value in
the γ = 0 case. We can then calculate the capacity as a function of γ and L by solving
the symmetric case for different Ls, and then incorporating the dependence on γ given
by the kernel variance:

αc(L, γ) ∼ αc(L, 0)/(1 + γ2) (30)

The result is shown in Fig 9.
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Figure 9: Dependence of the storage capacity on γ and 1/L (represented as log10(1/L)).

With this approximate decoupling we see that, for sparse maps and small values of
the asymmetry, the capacity scales as

αc ∼ −
1

ln (1/L)(1 + γ2)
(31)

The scaling with 1/L is the same found by Battaglia & Treves [27] in the analysis
of the symmetric case, as expected: for γ = 0 the two models are equivalent. The
presence of asymmetry decreases the capacity, but does not have a catastrophic effect:
the decrease is continuous and scales with a power of γ. There is therefore a large range
of values of asymmetry and map sparsity in which a large number of dynamic maps can
be stored and retrieved. We will see in the next section how this picture changes in a
fully connected network, in which the asymmetry can enhance the capacity.

Numerical estimation of αc for a fully connected network

To estimate the storage capacity for a fully connected network, we proceed with numer-
ical simulations. For a network of fixed size N , and for given γ, L and number of maps
p, we run a number of simulations D, letting the network evolve from a random initial
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configuration. We consider a simulation to have performed a successful retrieval if the
global overlap

mµ =
1

N2

∑
i 6=j

ViVjKS(xµi − x
µ
j ) (32)

that quantifies the coherence of the activity with map µ, is large for one map µ∗ (at
least 95% of the overlap value obtained in the case of a single map) and low in all others
maps µ 6= µ∗. We then define the retrieval probability as pr = Dr/D, where Dr is the
number of observed retrievals.

We repeat the process varying the storage load, i.e. the number of stored manifolds
p. As p is increased, the system reaches a transition point, at which the retrieval
probability rapidly goes to zero. This transition is illustrated, for various values of γ,
in Fig. 10.

The number of maps pc at which the probability reaches zero defines as the storage
capacity αc(γ, L) = pc(γ, L)/N . Repeating this procedure for a range of values of γ and
L, we obtain the plots shown in Fig. 11, for networks encoding one dimensional and
two dimensional dynamical memories.

The first thing that can be noticed is that, also in the fully connected case, the
network can store a large number of maps, for a wide range of γ and L. A network
with size in the order of ten thousand neurons could store from tens up to hundreds of
dynamical memories.

The capacity for one dimensional attractors is higher than the one for their two
dimensional counterparts. This is in line with what was found for symmetric networks
[27].

Finally, we see that the peak of the capacity is found not only for intermediate
values of map sparsity – again in line with what is known from the symmetric case –
but also for intermediate values of the coefficient γ. This shows that moderate values
of asymmetry can be beneficial for the storage of multiple continuous attractors, a non-
trivial phenomenon that may be crucial for the memory capacity of biological networks.
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Figure 10: Retrieval / no retrieval phase transition for different values of γ, obtained
from simulations with N = 1000, D = 10 and L = 10. The non-monotonic dependence
of the capacity from γ can be appreciated here: the transition point moves towards the
right with increasing γ up to γ ∼ 1, then back to the left.

(a) (b)

Figure 11: Storage capacity as a function of map sparsity 1/L and asymmetry strength
γ, for (a) one dimensional dynamic continuous attractors, (b) two dimensional dynamic
continuous attractors.
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Discussion

The results presented show how a continuous attractor neural network with memory-
dependent asymmetric components in the connectivity can function as a dynamic mem-
ory. Our model is simple enough to be treated analytically, robustly produces dynamic
retrieval for a large range of the relevant parameters and shows a storage capacity that
is comparable to – and in some cases higher than – the capacity for static continuous
attractors.

The analytical solution of the single attractor case shows that the interaction between
the strength of the asymmetry and the velocity of the shift can be modulated by global
features of the network activity such as its sparsity. This makes the network able to
retrieve at different velocities in different regimes, without necessarily requiring short
term synaptic modifications. The insensibility of the general features of the dynamics
to the fine details of the shape of the interactions suggests that this mechanism could
robustly emerge from learning or self organization processes in the presence of noise.
The analysis of the storage capacity shows that the asymmetry does not heavily impair
memory performance, and that, in densely connected networks, out of equilibrium effects
can be beneficial for memory.

The storage capacity of out of equilibrium continuous attractors has been calculated,
in a different scenario, by Zhong et al. [45]. The authors considered the case of an
external signal driving the activity bump along the attractor, in a network of binary
neurons, and proceeded to calculate the storage capacity with several assumptions that
allowed to model the interference of multiple maps as thermal noise. Interestingly, their
main result is broadly compatible with what we show here: in the highly diluted regime
the velocity of the external signal has a mild – detrimental – effect on the capacity.
This hints that out of equilibrium effects could show some form of universality across
different network models and implementations of the shift mechanism.

The possibility of dynamic retrieval makes attractor models suitable for the descrip-
tion and the quantification of complex memory phenomena such as hippocampal replay.
The model we propose suggests that tendency of the activity to move in the neural
population is a natural feature of networks with asymmetric connectivity, when the
asymmetry is organized along a direction in a low dimensional manifold, and that static
memories could be the exception rather than the rule. Indeed, Mehta et al. [46] have
shown that place fields can become more asymmetric in the course of spatial learning,
demonstrating that the idea that symmetry emerges from an averaging of trajectory-
dependent effects [47] does not always hold true. The model we presented can be useful
for the quantification of the effects that symmetry and asymmetry in the interactions
have on the acquisition, retention and retrieval of memory.

The dynamical retrieval of the model generalizes, in the framework of attractor
networks, the idea of cognitive maps, incorporating a temporal organization in the low-
dimensional manifold encoding the structure of the memory. This feature is reminiscent
of the idea of memory schemata – constructs that can guide and constrain our men-
tal activity when we reminisce about the past, imagine future or fictional scenarios or
let our minds free to wander [48]. The use of the presented model to describe mem-
ory schemata will require further steps, such as an account of the interaction between
hippocampus and neocortex, and a mechanism for the transition between different dy-
namical memories. Nevertheless, the idea of dynamic retrieval of a continuous manifold
and the integration of the model presented here with effective models of cortical memory
networks [49] open promising perspectives.

Our model can describe continuous attractors with more than one dimension; how-
ever, it is worth nothing that in the cases analysed here the asymmetry is constant along
a single direction in each attractor. This can describe the situation in which the tempo-
ral evolution of the memory is structured along a certain dimension, and free to diffuse,
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without energy costs, in the remaining ones. The description of several one-dimensional
trajectories, embedded in a two dimensional or three dimensional space and possibly
intersecting, would instead require a position-dependent asymmetric component [50]:
this is an interesting direction that will be pursued in future work.

Finally, the full analytical description of a densely connected, asymmetric attractor
network is a challenge that remains open, and can yield valuable insights on the workings
of the neural circuits underlying memory.
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Appendix

A Numerical simulations

Numerical simulations were performed with python code, available at:

https://github.com/davidespalla/Dynamic-Continuous-Attractors

In the single map case, each of the N units (N = 1000 in 1D, N = 1600 in 2D) was
assigned a preferential firing location xi on a regular grid spanning the environment
with linear dimension L. From this preferred firing locations the interaction matrix Jij
was constructed, with the formula:

Jij = KS(|xi − xj |) + γKA(|xi − xj |) (33)

The precise shape of the symmetric and anti-symmetric parts of the kernel where chosen
differently in different simulations, according to the feature the analysis focused on, as
specified in the main text. Once the network was assembled, the dynamics was initialized
either with a random assignment of activity values to each unit in the range [0, 1], or
with a gaussian bump centered in the middle of the environment (note that, due to the
periodic boundary conditions and the translational invariance of the connectivity, the
choice of the starting point does not influence the outcome). The dynamics was then
evolved in discrete time steps, with the iteration of the following operations:

• Calculation of the local fields hi(t) =
∑
j JijVj(t− 1)

• Calculation of the activity values Vi(t) = g(hi(t)− h0)θ(hi(t)− h0)

• Dynamic adjustment of the threshold: h0 = f percentile of {Vi(t)}

• Dynamic adjustment of the gain: g = g/〈{Vi(t)}〉

• Recalculation of the activity Vi(t) with the adjusted gain and threshold

The adjustment of the parameters of the transfer function was enforced to constrain the
network to operate at a fixed sparsity f and a fixed mean, set to one without loss of
generality. The dynamics was iterated for a given number of steps (usually 200), large
enough to assure the convergence to the attractive manifold (reached usually in < 5
steps).
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In the case of multiple maps, the implemented dynamical evolution was the same,
but the interaction matrix was constructed with multiple assignments of the preferred
firing locations xi, one for each of the p stored maps:

Jij =

p∑
µ=1

(
KS(|xµi − x

µ
j |) + γKA(|xµi − x

µ
j |)
)

(34)

The multiple assignment of the preferred firing locations was performed by a random
shuffling of the labels of the units before the assignment to the position on the regular
grid spanning each map.

B Solution of the equation for the activity profile in
the case of many maps

We illustrate here the procedure for the numerical solution of the equation 26:

v(x+ ∆x) = gN
(∫

dx′K(x− x′)v(x′) + w

)
(35)

We consider the one dimensional case and the exponential kernel

K(x− x′) = e−|x−x
′| − γsign(x− x′)e−|x−x

′| (36)

First, following [27] we rewrite it with the transformation

u(x) = N−1

(
v(x)

g

)
(37)

obtaining

u(x+ ∆x) = g

∫
dx′K(x− x′)N (u(x′)) + w (38)

We then transform this integral equation in a differential one, by differentiating
twice. We obtain

u′′(x+ ∆x) + 2gγΦ(u(x))u′(x) + 2gN (u(x))− u(x+ ∆x) + w = 0 (39)

where we used the fact that N ′(x) = Φ(x). Eq.39 is a second order, nonlinear delayed
differential equation. To solve it, it is not sufficient to impose an initial condition on
a single point for the solution and the first derivative (i.e. something like u(x0) =
u0, u

′(x0) = u′0): we have to specify the value of the function and its derivative in an
interval [x0, x0 + ∆x].

To do so, we reason that, if we want a bump solution, u(x) has to be finite in for
x→ ±∞ and cannot diverge. We then require the function to be constant (u(x) = u0,
u′(x) = 0) before a certain value x0, whose value can be set arbitrarily without loss of
generality.

The value u0, at γ = 0 and ∆x = 0 determines the shape of u(x), as shown by the
numerical solution presented in Fig. 12 for u0 < u∗ the solution will diverge for x→∞,
for u0 > u∗ it will oscillate. We are then left with a single value u0(g, w) = u∗(g, w) for
which the solution has the required form.
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Figure 12: Solutions to Eq.39 for g = 1, w = −1.8, γ = 0, ∆x = 0.

Then, keeping u0 fixed, we can repeat a similar procedure to find ∆x for different
values of γ. Also in this case, the solution either diverges or oscillates, apart from
a single value ∆x∗, for which the solution has the desired shape (see Fig.13). This
eliminates the arbitrariness in the choice of ∆x since it imposes, for given g and w, a
relation ∆x = ∆x∗(γ).
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Figure 13: Solutions to Eq.39 for g = 1, w = −1.8, γ = 0.2.

We can then find the shape of the bump u(x) for given values of g,w and γ, from
which we can obtain the profile v(x) = gN (u(x)) that we need for the calculation of
the storage capacity. Some examples of the obtained profiles, for different values of γ,
are shown in Fig. 14.
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Figure 14: Activity profile v(x), obtained for the same g = 0.7 and w = −1.3, at
different values of γ.
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