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Abstract 

As high-throughput genomics assays become more efficient and cost effective, their 

utilization has become standard in large-scale biomedical projects. These studies are often 

explorative, in that relationships between samples are not explicitly defined a priori, but rather 

emerge from data-driven discovery and annotation of molecular subtypes, thereby informing 

hypotheses and independent evaluation. Here, we present K2Taxonomer, a novel unsupervised 

recursive partitioning algorithm and associated R package that utilize ensemble learning to 

identify robust subgroups in a “taxonomy-like” structure 

(https://github.com/montilab/K2Taxonomer). K2Taxonomer was devised to accommodate 
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different data paradigms, and is suitable for the analysis of both bulk and single-cell 

transcriptomics data. For each of these data types, we demonstrate the power of K2Taxonomer 

to discover known relationships in both simulated and human tissue data. We conclude with a 

practical application on breast cancer tumor infiltrating lymphocyte (TIL) single-cell profiles, in 

which we identified co-expression of translational machinery genes as a dominant transcriptional 

program shared by T cells subtypes, associated with better prognosis in breast cancer tissue bulk 

expression data.  

 
Introduction 

As high-throughput transcriptomic assays become more efficient and cost-effective, 

they are being routinely integrated into large-scale biomedical projects1–4. Bulk gene expression 

profiling by RNA sequencing (RNAseq) has been widely adopted in multiple high-throughput 

genomics studies, the paramount example being The Cancer Genome Atlas (TCGA) data 

commons, which currently include 10,558 bulk RNA sequencing (RNAseq) profiles across 33 

cancer types (https://portal.gdc.cancer.gov/). Furthermore, since its first published application 

in 20095, the size of single-cell RNA sequencing (scRNAseq) studies has exploded, such that is 

now commonplace for studies to generate tens of thousands of profiles6. As the scale of these 

studies and the associated datasets increases, so does their utility as a resource from which 

biological information can be extracted through the application of machine learning 

approaches. Common deliverables of these types of analysis include the discovery and 

characterization of molecular subtypes, which are prevalent in both bulk and single-cell gene 

expression studies. For example, TCGA bulk expression data have been utilized to characterize 

subtypes of numerous cancers7, including but not limited to: breast8, colorectal9, liver10, and 
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bladder cancer11,12. Similarly, the characterization of molecular subtypes is a standard 

component of the scRNAseq data analysis workflow, insofar as estimation and annotation of 

subpopulations of cells is one of the primary goals of the assay13.  

The general framework for subtype characterization can be summarized in two steps: 

1) estimation of data-driven groups of observations via application of an unsupervised learning 

procedure, followed by 2) annotation of each group based on the identification of distinct 

patterns of gene expression relative to other groups. While most approaches focus on 

discovering a “flat” set of non-overlapping groups or subtypes, in this manuscript we present an 

alternative approach, devised to emphasize “taxonomy-like” hierarchical relationships between 

observations to discover nested subgroups. 

Whereas a wide range of unsupervised learning algorithms is available for the analysis 

of bulk gene expression data, the considerable sparsity of scRNAseq data has motivated the 

development of novel methods specifically tailored to the analysis of this type of sparse, high-

dimensional data. Popular software packages, such as Seurat14 and Scran15, generate “flat” 

clusters, in which a finite set of mutually exclusive cell types is estimated. In so doing, they fail 

to capture the “taxonomy-like”, hierarchical structure that may exist among subgroups of 

observations at multiple levels of resolution, driven by transcriptional signatures based on 

different factors, including but not limited to: shared lineage, cell state, pathway activity, or 

morphological origin. Complementary methods exist to model such relationships, such as 

Neighborhood Joining16,17 and more recent single-cell trajectory inference approaches18, which 

estimate “pseudo-temporal” states of individual cells indicative of developmental progression. 

Given the stringent interpretation of such models, their suitability depends on the assumption 
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that the measured similarity between neighbors of cell profiles arises from a distinct continuous 

progression of molecular activity. However, the relative similarity between cell profiles may be 

confounded by numerous factors, including: cell cycle, spatial patterning, and cell stress, and 

batch effects19. To overcome these shortcomings, one recent method, partition-based graph 

abstraction (PAGA)20, was devised to model complex topologies by estimating a graph of “high-

confidence” connections between labeled cell types based on their shared nearest neighbors. 

This method has the advantage of being able to first identify disconnected subgraphs from 

which to model separate trajectories. Even so, a ubiquitous step of trajectory inference 

approaches, including PAGA, is that all distances between cell profiles are computed based on a 

single set of features, generated by selection filtering and/or dimensionality reduction21, thus 

precluding the discovery of nested structures defined by distinct transcriptional programs 

shared by relatively few cells. 

Hierarchical clustering (HC) algorithms at face value address the need for a multi-

resolution representation of the relationship among observations, and while originally adopted 

for the analysis of bulk gene expression data22, numerous packages have also been developed 

for scRNAseq analysis, such as pcaReduce23, ascend24, and BackSPIN25. However, since the 

number of possible subgroupings increases with the number of observations, robustly 

identifying such relationships can be challenging. As a result, tree-cutting methods are often 

applied, ultimately yielding a flat set of non-overlapping clusters. Furthermore, as with 

trajectory inference, the bottom-up nature of HC’s sample aggregation procedure forces the 

use of the same set of genes/features to drive the agglomeration at all levels of the hierarchy.  
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Here we introduce K2Taxonomer, a novel taxonomy discovery approach and associated 

R package for the estimation and in-silico characterization of hierarchical subgroup structures in 

both bulk and single-cell data. An important feature of the approach is that it can analyze both 

individual samples as well as sample groups such as, but not limited to, those corresponding to 

scRNAseq cell types. The package employs a recursive partitioning algorithm, which utilizes 

repeated perturbations of the data at each partition to estimate ensemble-based K=2 

subgroups. For scRNAseq analysis, K2Taxonomer utilizes the constrained k-means algorithm26, 

to estimate partitions of the data at the cell type level, while preserving the influence of each 

individual cell profile. A defining feature of the method is that each recursive split of the input 

data is based on a distinct set of features selected to be most discriminatory within the subset 

of samples member of the current hierarchy branch. This makes the approach quite distinct 

from a standard clustering algorithm, and particularly apt to discover nested taxonomies. In 

addition, the package includes functionalities to comprehensively characterize and statistically 

test each subgroup based on their estimated stability, gene expression profiles, and a priori 

phenotypic annotation of individual profiles. Importantly, all results are aggregated into an 

automatically generated interactive portal to assist in parsing the results. 

In this manuscript, we assess the performance of K2Taxonomer for partitioning both bulk gene 

expression and scRNAseq data, using both simulated and publicly available data sets, and we 

compare it to agglomerative clustering procedures. For bulk gene expression data, performance 

is assessed in terms of unsupervised sorting of breast cancer subtypes and established 

genotypic markers, using breast cancer patient tumor tissue data from the Molecular 

Taxonomy of Breast Cancer International Consortium (METABRIC)27 and the TCGA compendia. 
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For scRNAseq data, performance is assessed in terms of recapitulation of established 

relationships between 28 annotated cell types of the airway of healthy subjects28. We conclude 

with a case study where we perform a K2Taxonomer-based analysis of breast cancer tumor 

infiltrating lymphocytes (TILs) profiled by scRNAseq29. Our analysis significantly expands upon 

previously published results and identifies a phenotypically diverse subgroup of CD4 and CD8 

cells, characterized by constitutive up-regulation of a subset of translation machinery genes. 

We further show that high expression of these genes in breast cancer tissue bulk expression is 

associated with better survival, supporting recent findings on the role of the translation 

machinery assembly in T cell activation30,31, and demonstrate that this coordinated expression 

of the translation machinery is pervasive among T cell subpopulations to such an extent that 

the expression levels of these genes in bulk measurements of tumor tissue is predictive of the 

degree of immune infiltration. The complete suite of analysis results is accessible through an 

automatically generated and publicly accessible portal (https://montilab.bu.edu/k2BRCAtcell/). 

While we focus on the analysis of transcriptomics data, we emphasize that our approach 

is applicable to other ‘omics’ data, such as those generated by high-throughput proteomics and 

metabolomics assays. Moreover, applications of K2Taxonomer are not limited to cancer-centric 

studies. For example, we applied an earlier prototype of K2Taxonomer to the analysis of a 

toxicogenomic study on the effects of environmental exposures on adipocyte activity, and the 

tool proved to be instrumental to the identification of  chemical subgroups and the pathways 

contributing to either their deleterious or beneficial effects on energy homeostasis32.  

 

Results 
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K2Taxonomer discovers hierarchical taxonomies on simulated data  
 

We first evaluated K2Taxonomer's capability to recapitulate hierarchical relationships 

induced in simulated data, as measured by the Baker’s gamma coefficient estimate of similarity 

between the structure of two dendrograms, where the structure of each dendrogram is 

quantified by a matrix based on the number of partitions separating each pair of leaves33. We 

evaluated the method’s performance both on data where the analysis end-points were single 

samples (observation-level), and groups of samples (group-level). The latter corresponds to 

scenarios where the goal is to define a taxonomy over sample groups, such as cell types in 

single-cell experiments, or chemical perturbations profiled in multiple replicates34. As a term of 

reference, we compared K2Taxonomer’s performance to Ward’s agglomerative method. 

For observation-level analysis, K2Taxonomer demonstrated robust performance for 

moderate levels of background noise, e.g. standard deviations equal to 0.5 and 1.0, regardless 

of the proportion of features with signal or the number of terminal clusters (Figure 2a, Table 

S1). For higher levels of background noise, e.g., standard deviations equal to 2.0 and 3.0, the 

performance of K2Taxonomer was more dependent on either parameter, performing better 

with more features with signal and fewer terminal clusters. K2Taxonomer significantly 

outperformed Ward’s method in 221 out of the 400 combinations of parameters tested (FDR < 

0.05), while Ward’s performed better for 17 combinations (Figure 2a, Table S1). Furthermore, 

the differences between Baker’s gamma coefficients for the 221 results significantly in favor of 

K2Taxonomer were generally larger than the 17 results significantly in favor of Ward’s method, 

with median differences of 0.14 and 0.03, respectively. In general, K2Taxonomer significantly 

outperformed Ward’s method when the background noise, the number of terminal groups, and 
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percent features with signal increased. Remarkably, for group-level analysis K2Taxonomer 

outperformed Ward’s method for all 400 combinations of variables tested (Figure 2b, Table S3). 

Using the square root of the total number of features as the partition-specific feature 

filtering parameter for running K2Taxonomer demonstrated stable performance. When 

compared to selecting a fixed percentage of the total number of features (Figure S1, Table S2), 

the square root outperformed larger percentages when the number of features was large, and 

outperformed smaller percentages when the number of features was small. 

 

K2Taxonomer accurately sorts breast cancer subtypes without pre-filtering of features 
 

We evaluated K2Taxonomer‘s ability to sort Pam50 subtypes, ER-status, PR-status, and 

HER2-status from bulk gene expression data from METABRIC and the TCGA BRCA bulk gene 

expression data, separately. A fourth variable, defined by the Cartesian product of ER-status, 

PR-status, and HER2-status was also assessed. Performance was assessed in terms of the 

decrease in entropy as the number of cluster estimates, K, increased from 2 to 8 (Figure 3a-b). 

We also compared K2Taxonomer’s performance to two agglomerative clustering methods, 

Ward’s and average. Since standard hierarchical clustering is sensitive to the level of feature 

filtering, the comparison was repeated for multiple pre-filtering levels.  

In general, K2Taxonomer accurately segregated the known subtypes and phenotypes, 

performing as well or better than either method (Figure 3b, Table S6, Table S7). When applied 

to the METABRIC data, K2Taxonomer analysis yielded the lowest entropy score compared to all 

other methods for K=3 and higher with few exceptions. Other methods produced similar 

entropy measurements at selected higher levels of K. For example, Ward’s method resulted in 
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similar entropy scores for Pam50 subtypes and HER2-status at K=4 and K=5, respectively, but 

for different pre-filtering levels, 5% and 100%, respectively. When applied to the TCGA BRCA 

data, the difference in performance was less pronounced. K2Taxonomer resulted in the lowest 

entropy score for Pam50 scores, genotype, ER-, and PR-status for K=4. Ward’s method at 5% 

pre-filtering level produced the smallest entropy score for HER2-status for K=4.  

It should be emphasized that the pre-filtering level to be used with hierarchical 

clustering is not known a priori, and it would thus preclude us in practice from selecting the 

level yielding the best results shown in the above comparison. 

 

K2Taxonomer accurately identifies and organizes subgroups of shared progenitors and 

epithelial cells from healthy airway scRNAseq cell clusters. 

To assess the capability of K2Taxonomer to recapitulate biologically relevant 

subgroupings of cell types estimated from scRNAseq data, we ran group-level analysis using 29 

cell types estimations assigned to 77,969 cells of airway tissue from 35 samples across 10 

healthy subjects and multiple locations (Figure 4a, b)24. In addition to agglomerative methods, 

we evaluated K2Taxonomer’s performance against that of partition-based graph abstraction 

(PAGA)20, which has been shown to outperform similar methods, especially for analyzing large-

scale scRNAseq data sets18. 

K2Taxonomer was remarkably accurate in capturing the higher-order organization of the 

28 cell types. The first partition separated all epithelial cell subtypes from non-epithelial cell 

types (Figure 4b). Further partitioning of the 17 epithelial cell subtypes yielded five subgroups, 

characterized by shared morphology, labeled as “Ciliated”, “Basal”, “Submucosal”, “Brush-like”, 
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and “AE” (Alveolar Epithelium). The “Ciliated” subgroup was comprised of differentiated 

multiciliated cells and their precursor, deuterosomal cells28. The “Basal” subgroup was 

comprised of epithelial cell progenitors, basal and cycling basal cells, as well as epithelial cell 

intermediary, suprabasal cells35. The “Brush-like” subgroup was comprised of three rare airway 

epithelial cell types: brush, ionocyte, and pulmonary neuroendocrine cells (PNECs), as well as 

their likely shared “brush-like” precursor cells36, as suggested in the original publication of these 

data28. Further partitioning of the 11 non-epithelial cell types yielded two main subgroups 

characterized by shared progenitor cells: immune37 and mesenchymal stem cells38, with the 

immune cell subgroup also including endothelial cells. Further partitions of the immune cell 

subgroup included progeny of monoblasts: monocytes, dendritic cells, and macrophages39, 

followed by endothelial cells separated from all non-monoblast progeny immune cells subtypes 

in the adjacent subgroup.  

In contrast, agglomerative hierarchical clustering of these cell clusters, even if evaluated 

at multiple F-statistic-based pre-filtering levels, yielded significantly different results poorly 

reflective of the known taxonomic cell type organization (Figure 4c, Figure S2). While the 

mesenchymal stem cell subgroup, comprised of fibroblasts, smooth muscle, and pericytes, was 

identified by Ward’s method, and while there were other instances of concordant subgroups, 

none of these consisted of more than two cell types.  

PAGA-based trajectory analysis20 of the cell performed better than agglomerative 

clustering, and demonstrated both improvements and drawbacks compared to K2Taxonomer. 

(Figure 4d, Figure S3). Figure 4d shows what we selected to be the “best” PAGA result for runs 

on a grid of F-statistic-based pre-filtering levels (25% of genes) and principal component-based 
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dimensionality reduction size (15 principal components). In this case, PAGA recapitulated four 

subgroups identified by K2Taxonomer as disconnected subgraphs: “Immune”, “Epithelial”, 

“Submucosal”, and “Mesenchymal”. Unlike K2Taxonomer, this model accurately segregated 

endothelial cells as its own disconnected vertex. However, all PAGA models failed to include 

basal cells in the epithelial cell subgraph (Figure 4d, Figure S3). Furthermore, PAGA segregated 

the histologically separated submucosal cells lines: SMG goblet and serous, from the other 

epithelial cell lines. The most apparent difference between the K2Taxonomer and PAGA results 

is the high connectedness of the PAGA subgraphs, especially considering that these are all 

“near perfect-confidence” connections. As a result, subgroup relationships within these 

subgraphs are difficult to distinguish, and approaches to estimate tree-like graphs, such as 

minimum spanning tree algorithms, yield multiple equivalent solutions. Finally, the PAGA 

results varied based on the feature pre-filtering level and number of principal components, 

most notably in the estimations of connections between immune cells and epithelial cells 

(Figure S3). 

 

K2Taxonomer identifies subgroups of TILs characterized by differential regulation of TNF 

signaling, translation, and mitotic activity from BRCA tumor scRNAseq cell clusters 

We performed K2Taxonomer analysis on scRNAseq data of 13 TIL cell clusters reflecting 

further subdivision of the 10 cell types reported in the original study29. The higher resolution was 

achieved by reproducing the reported methods29 with the exception of selecting a higher 

resolution parameter when performing clustering with Seurat14 (Table S8). 
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The results of K2Taxonomer partitioning and annotation of breast cancer TIL cell clusters 

estimated from scRNAseq data is summarized in Figure 5a. Biologically informative subgroups, 

characterized by strongly significant differential expression of gene expression and sample-level 

pathway enrichment are highlighted and labeled within each boxed sub-dendrogram. The full set 

of differential results for genes and pathways across all partitions are reported in Table S9 and 

Table S10, respectively. Three distinct multi-cell subgroups emerged, labeled as: “Trm All”, “CD4+ 

CCL5-“, and “Translation+”, characterized by consistent up-regulation of PD-1 signaling 

(Reactome PD-1 signaling, FDR = 1.1e-241), translation (Reactome eukaryotic translation 

initiation, FDR = 5.6e-137), and TNF signaling (Reactome TNFS bind their physiological receptors, 

FDR ~ 0.00), respectively (Figure 5b). “Trm All” and “Treg” subgroups each included a mitotic cell 

subgroup characterized by high cell cycle activity (Figure 5B). Furthermore, the “CD4+ CCL5-” 

subgroup, comprised of the “CD4+ CXCL13+” cell cluster and “Treg” subgroup, is characterized 

by consistent down-regulation of CCL5 (FDR ~ 0.00) and up-regulation of TNFRSF4 (FDR ~ 0.00) 

(Figure 5c, d). Furthermore, additional up-regulation of TNFRSF4 (FDR = 1.1e-7) and RGS1 (FDR = 

4.3e-55) distinguish non-mitotic “Treg” subgroups (Figure 5c). Gene-level markers of the 

“Translation+” subgroup included numerous ribosomal proteins, epitomized by up-regulation of 

RPS27 (FDR = 9.6e-246) (Figure 5c, d). 

 

Confounding effects of inflammation and proliferation on the association between tumor 

infiltrating cell activity and patient survival 

To assess the clinical relevance of K2Taxonomer annotation of single-cell immune cell 

subgroups, we performed survival analysis, via Cox proportional hazards testing, modeling the 
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relationship between K2Taxonomer subgroup gene signature scores and patient survival in the 

METABRIC breast cancer bulk gene expression data set.  

For these models, we examined two possible sources of confounding factors. First, 

inflammation has a well-described paradoxical role in breast cancer progression40, such that the 

content of different subpopulations of lymphocytes has been associated with both better and 

worse prognosis41. Given the physiological similarities between different lymphocyte subtypes42, 

we hypothesized that expression patterns associated with tumor-promoting inflammation could 

mask those associated with tumor-suppressing TILs subsets. Second, we hypothesized that the 

signatures of the two mitotic T cell subgroups were similar enough to that of signatures of 

proliferative activity in non-immune tumor cells to result in a spurious association between T cell 

mitosis and worse prognosis. To assess and correct for these confounding effects, multivariate 

survival models were run without and with the inclusion of inflammation and proliferation scores 

as individual covariates. These patient-level scores were estimated by projecting published 

signatures of “bad” inflammation43 and proliferation44, each of which had been previously 

reported to be associated with poor prognosis in breast cancer. 

The results of each of these analyses are summarized in Figure 5a. The full set of survival 

results for unadjusted and adjusted models, including the genes belonging to each subgroup 

signature are reported in Table S12. Controlling for inflammation and proliferation scores 

increased the overall significance of the association between subgroup-driven signatures of TILs 

and improved survival (hazard ratio < 1, FDR < 0.05). Furthermore, signatures of two cell 

subgroups, “CD8+ mit. Trm” and “Treg mit.”, characterized by increased cell cycle activity (Figure 

5b), were associated with worse patient survival in models ignoring inflammation and 
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proliferation scores, but were subsequently statistically insignificant in models including these 

covariates, likely reflecting the effect of confounding by proliferation activity (Figure 5a). This is 

further illustrated in Figure 5e, which shows the 95% confidence intervals of hazard ratios of 

“marginal” inflammation and proliferation models (left-most), as well as the confidence intervals 

of hazard ratios of select subgroups of cell subtypes, unadjusted and adjusted for inflammation 

and proliferation. Controlling for inflammation and proliferation allowed us to disentangle the 

contribution to survival of different components. For example, in the “CD8+ mit. Trm” subgroup, 

we observed that the “CD8+ mit. Trm” signature score was highly associated with worse patient 

survival in the unadjusted model, but the association became insignificant in the full model 

adjusted for proliferation and inflammation. On the other hand, there were instances where the 

hazard ratio achieved or improved significance (i.e., patient survival was significantly better) only 

after controlling for inflammation and proliferation in the full adjusted model, as observed in the 

“Trm All” subgroup and, to a lesser extent, in the “Translation+” subgroup (Figure 5e).  

 

High expression of TNFRSF4, a marker for Treg cell activity is associated with worse survival 

when adjusting for CCL5 expression. 

TNFRSF4 and CCL5 were found to be the top two markers constitutively up- and down-

regulated, respectively, within Treg subgroups, with TNFRSF4 the top marker further 

discriminating between the two non-mitotic Treg subgroups, Treg TNFRSF4+ and Treg RGS1+ 

(Figure 5a, c, d). Furthermore, their expression was highly correlated in the METABRIC data set 

(rho = 0.66, p-value = 3.2e-245) (Figure 5f), supporting a pattern of co-expression within TIL 

microenvironments. To assess whether TNFRSF4 and CCL5 expression levels could serve as 
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markers for immunosuppressive activity of Treg cells, we performed survival analysis of each 

gene modeled separately and in a combined model (Figure 5g). When modeled separately, the 

expression of TNFRSF4 is not associated with patient survival (P-Value = 0.32), while CCL5 is 

associated with better patient prognosis (P-Value = 1.94E-4). However, in the combined model 

both genes are associated with patient survival, with TNFRSF4 associated with worse patient 

survival (P-Value = 0.015).  

Taken together these results indicate that, in bulk gene expression data, markers of Treg 

cell activity are highly correlated with markers of overall tumor immune infiltration, confounding 

associations between expression of these markers and patient survival. 

 

Up-regulation of specific translation genes characterizes a subgroup of TILs and is associated 

with better survival prognosis, independent of inflammation activity 

The “Translation+” subgroup was a notable instance where the subgroup-specific 

signature projection was associated with better patient survival, regardless of adjustment for 

inflammation and proliferation (Figure 5a, e). To assess the extent to which up-regulation of 

translation-specific genes in this subgroup associated with better patient prognosis, we ran 

separate survival analysis for each of the 112 genes from the Reactome Eukaryotic Translation 

Initiation gene set, which were shared between the single-cell BRCA gene set and METABRIC 

data set. Of the 112 genes, 61 were up-regulated in the “Translation+” subgroup (FDR < 1E-5), 

including 26 genes within the top 50 marker “Translation+” subgroup signatures (Figure 5h, i). 

The full set of survival results for these 112 genes are shown in Table S13. The test statistics 

derived from single gene Cox proportional hazards models were negatively correlated with the 
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corresponding genes’ test statistics of their up-regulation in the “Translation+” subgroup (rho = 

-0.23, p-value = 0.014) (Figure 5i). Furthermore, seven of the 112 genes were associated with 

better patient survival (FDR < 0.1). All of these genes were significantly up-regulated in the 

“Translation+” subgroup. Of these seven genes, RPL36A had the minimum “Translation+” 

subgroup associated test statistic (FDR = 1.34e-25) and two (RPS28 and RPS27) were members 

of the top 50 markers, comprising the “Translation+” subgroup signature. RPS27 was the top 

translation gene associated with the “Translation+” subgroup (FDR = 9.6e-246). 

In summary, we employed K2Taxonomer to characterize the up-regulation of 

translational machinery as the dominant transcriptional program shared by a diverse subgroup 

of TILs. These findings informed additional analyses, which demonstrated that associations 

between expression of translational machinery genes and better patient survival were 

concordant with that of over-expression in TILs. Taken together these findings suggest that the 

up-regulation of specific translational machinery genes is widespread across TILs, serving as a 

predictor of the level of immune infiltration in breast cancer tissue from bulk gene expression 

data. 

 

Discussion 

In this manuscript, we presented extensive assessment and practical applications of 

K2Taxonomer, a novel unsupervised recursive partitioning algorithm for taxonomy discovery in 

both bulk and single-cell high-throughput transcriptomic profiles. An important distinctive 

feature of the algorithm is that each partition is estimated based on a feature set selected to be 

most discriminatory within that partition, thus permitting the use of large sets of features to be 
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used as input, without pre-filtering or dimensionality reduction approaches. Additionally, to 

minimize generalization error, each partition is based on an ensemble45 of partition estimates 

from repeated perturbations of the data. The adoption of an ensemble approach also makes it 

possible to compute a stability measure for each partition, which can be used to assess the 

robustness of each partition, as well as a stopping criterion for limiting the number of subgroup 

estimates. Finally, to facilitate comprehensive exploration of the results, as well as to share 

results for independent interrogation, the K2Taxonomer R package includes functionality to 

automatically generated interactive web-portals. One of these portals was utilized extensively 

to annotate subgroups as part of our analysis of breast cancer TILs in scRNAseq data, and is 

publicly available (https://montilab.bu.edu/k2BRCAtcell/). 

As we have shown in its multiple applications, K2Taxonomer may be applied in a fully 

unsupervised mode to partition individual-level data, or it can take group-level labels as input 

to estimate inter-group relationships among the known groups. In the latter scenario, partition 

estimates are based on the constrained K-means algorithm26, which estimates clusters at the 

level of known group labels. This approach is perfectly suited to the downstream analysis of 

scRNAseq data, following the estimation of mutually exclusive cell types using scRNAseq 

clustering methods such as Seurat14 or Scran15. By preserving the single observation 

information within each group, and by thus being able to tailor the feature set to each of the 

groups, we expect our approach to outperform methods in which group-level information is 

summarized into single statistical measures. This conclusion is supported by our simulation 

analysis, where K2Taxonomer was shown to significantly outperform Ward’s agglomerative 

method based on group-level test statistics. Even when adopted for observation-level analysis, 
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where inference was performed on the full set of individual observations, K2Taxonomer was 

still shown to significantly outperform standard agglomerative methods, on both simulated and 

real data, although not to as large an extent.  

In our analysis of healthy airway cell types’ annotation28, we employed K2Taxonomer to 

(re)discover subgroups of cell types characterized by shared lineage. Remarkably, our analysis 

accurately recapitulated the known taxonomic structure relating the different cell types to an 

extent not matched by the other methods evaluated. This example illustrates a prototypical use 

of the tool: in those cases where a data set and its associated cell type estimations are publicly 

available, K2Taxonomer facilitates their immediate repurposing for additional insight and 

discovery.  

 It is important to emphasize that in many data sets continuous lineage trajectories are 

non-existent or obscured by phenotype-driven inter-group transcriptional relationships. While 

K2Taxonomer cannot identify precursor relationships between cell types, the strategy of pairing 

recursive partitioning with local feature selection allows the discernment of relative 

relationships between groups rather than “all-or-nothing“ connections as in graph-based 

trajectory models. The advantages of this strategy are exemplified by the analysis of the healthy 

airway, in which the data included samples of multiple individuals and airway locations. PAGA 

analysis of these data produced highly-connected graphs with no decipherable trajectories or 

subgroups beyond that of disconnected subgraphs.  On the other hand, K2Taxonomer 

recapitulated clear lineage-driven hierarchies of airway cell subgroups. While the subgrouping 

of endothelial cells as a subset of immune cells does not reflect the expected hierarchy, 

K2Taxonomer generated this model without parameterization. The “best” PAGA model had the 
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unfair advantage of having been chosen from a set of distinct models generated from 

combinations of feature selection and dimensionality reduction parameters. In practice, the a 

priori choice of the optimal values of these parameters is challenging. 

Our extensive analysis of single-cell data from breast cancer TILs showcased the 

incorporation of K2Taxonomer in an advanced in-silico study that yielded significant novel 

insights. In contrast to bulk gene expression, which captures average expression across all cells, 

identifying dominant transcriptional programs driving phenotypic similarities between 

subgroups of cell populations offers additional insights to deconvolute the cellular 

microenvironment of these samples beyond their individual transcriptional signatures. 

Molecular convergence of cells of disparate lineages is exemplified by subpopulations of CD8+ 

and CD4+ T cells, each of which exists in various functional states as naïve, effector, and 

memory subpopulations46. Importantly, our K2T-based analysis showed that concordant 

subpopulations of CD8+ and CD4+ T cells share transcriptional signatures that may outweigh 

those arising from their shared lineage. For example, both CD8+ Trm and CD4+ Trm cells have 

been reported to express surface molecules, CD69 and CD11a47. Concordantly, CD8+ Trm and 

CD4+ Trm cells were segregated into a common subgroup by K2T, demonstrating the relative 

dominance of their shared transcriptional activity. Projection of the expression signature of Trm 

cell subgroups was associated with better survival in the METABRIC data set. Past studies 

focusing on CD8+ Trm cell markers have reported similar findings29,48. 

Unlike Trm cells, the presence of immune-suppressing Treg cells in the micro-

environment has been associated with poor prognosis in breast cancer49–51. After identifying 

TNFRSF4 as heterogeneously expressed across the Treg cell subgroup, we showed that TNFRSF4 
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expression was associated with worse patient survival in the METABRIC data set when adjusted 

for CCL5 expression, which was down-regulated among all Treg cells. This supports previous 

findings that TNFRSF4, also known as OX40, is a marker of high Treg cell immunosuppressive 

activity52,53. The high level of co-expression of TNFRSF4 and CCL5 in the METABRIC data set 

suggests that either gene is associated with immune infiltration in breast cancer tumors. 

Additionally, this provides a resolution as to why projections of the signature of the Treg cell 

subgroup were associated with better patient survival, while the signature of the Treg cell 

subset, characterized by high TNFRSF4 expression, was not. These results are consistent with 

previous studies establishing the ratio between Treg and CD8+ T cell abundance as a prognostic 

marker of breast cancer that reflects immune inhibitory function of Treg cells54.  Moreover, 

these results strongly suggest a prognostic value for markers that capture the degree of 

immune inhibitory activity of Treg cell populations. 

 Finally, K2Taxonomer identified a diverse subgroup of breast cancer TILs characterized 

by consistent up-regulation of translational genes. Increased ribosomal biogenesis has been 

previously implicated in increased tumorigenesis55–58, but has only recently been implicated in T 

cell activation30 and expansion31. Unlike the majority of other subgroups, the signature of the T 

cell subgroup overexpressing translational machinery genes was associated with better patient 

survival in METABRIC patients regardless of adjustments for inflammation43 and proliferation44 

signatures. Furthermore, the association of the expression of specific translational genes with 

better patient survival was significantly correlated to their overexpression in this T cell 

subgroup. These results suggest that overexpression of these T cell-specific translational genes 
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is not masked by tumor-specific gene expression and is therefore indicative of CD4+ and CD8+ T 

cell tumor infiltration. 

In summary, K2Taxonomer demonstrated a remarkable ability to discover biologically 

relevant taxonomies when applied to the analysis of both bulk gene expression and scRNAseq 

data and to outperform standard agglomerative methods. In multiple practical applications, we 

showcased the versatility of K2Taxonomer to analyze scRNAseq data toward the 

characterization of genes and pathways distinguishing specific subgroups, thereby generating 

hypotheses that were then in-silico validated in independent bulk gene expression data. As 

noted, while we here focused on the analysis of transcriptomics data, the proposed approach is 

equally applicable to other bulk and single-cell ‘omics’ data, such as those generated by high-

throughput proteomics and metabolomics assays.  

 

Methods 

 

K2Taxonomer Algorithm Overview 

K2Taxonomer implements a recursive partitioning algorithm that takes as input either a 

set of individual observations or a set of sample groups and returns a top-down hierarchical 

taxonomy of those samples or groups (Figure 1). To achieve robust model estimation, each 

partition is defined based on the aggregation of repeated partition estimations from distinct 

perturbations of the original set. Each of these partition estimates is created in three steps. 

First, a perturbation-specific data set is generated by bootstrapping features, i.e., sampling 

features from the original data set with replacement. Next, this perturbation-specific data set 
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undergoes variability-based feature selection filtering. Finally, a K=2 clustering algorithm is run, 

producing a perturbation-specific partition estimate. These three steps are repeated, 

generating a set of perturbation-specific partition estimates, which are aggregated into a cosine 

similarity matrix (see Supplementary Methods). The aggregate partition is then estimated 

based on a K=2 tree cut following hierarchical clustering of the transformed cosine similarity 

matrix into a distance matrix, calculated as 1 - cosine similarity, with a user-specified 

agglomeration method.  

The current implementation of K2Taxonomer includes many options for parametrizing 

steps in this procedure. By default, K2Taxonomer performs these perturbation-specific partition 

estimates via agglomerative clustering of the Euclidean distance matrix of the bootstrapped 

data set. Additionally, the K2Taxonomer package includes functionalities for performing group-

level recursive partitions, i.e., partitioning data sets where observations have a priori-assigned 

group labels, whereby the objective of the K2Taxonomer procedure is to identify intermediate 

relationships between these groups. This functionality was specifically incorporated to enable 

partitioning and annotations of cell types estimated by scRNAseq clustering algorithms, but it is 

applicable to any data set with group-level labels. Finally, to allow for further customization of 

analyses, the K2Taxonomer R package permits the use of user-specified functions for 

performing perturbation-specific partition estimates. 

 

K2Taxonomer R Package Functionalities 

In addition to running the recursive partitioning algorithm, the K2Taxonomer R package 

provides functionalities for comprehensive annotation of the estimated subgroups, via 
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subgroup-level statistical analyses, including: differential analysis, gene set enrichment analysis, 

and phenotypic variable testing. Differential analysis of gene expression is carried out using the 

limma R package, which is well-suited to the analysis of normally distributed data such as 

microarray gene expression, as well as log-transformed and normalized RNAseq data59. Gene 

set enrichment analysis is carried out on a set of user-provided gene sets and implemented in 

two ways: over-representation analysis based on a hypergeometric test, and differential 

analysis of single-sample gene set projections scores based on the GSVA R package60. Finally, 

phenotypic variable testing is carried out on user-provided variables labeling individual 

observations or groups, supporting both continuous and categorical variables. Testing of 

association between continuous variable and taxonomy subgroups can be performed based on 

the parametric Student’s t-test or the nonparametric Wilcoxon rank-sum test, while categorical 

testing is carried out using Fisher’s exact test. All subgroup-level statistical analyses are 

corrected for multiple hypothesis testing based on the FDR procedure61. The full set of results 

are compiled into an interactive-web portal for exploration and visualization. Differential 

analysis comparisons are carried out at the partition-level, i.e., comparing only the two 

subgroups at a particular node. However, the web portal includes functionality for performing 

post-hoc differential analysis of any combination of user-selected subgroups.  

 

Statistical analysis 

The implementation of K2Taxonomer for this manuscript was run with R (v3.6.0), limma 

(v3.42.2), and GSVA (v1.34.0). All p-values reported in this manuscript are two-sided.  
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Simulation-based performance assessment 

 The performance of K2Taxonomer was assessed in comparison to Ward’s agglomerative 

method for recapitulating induced hierarchical structure in simulated data. See supplementary 

methods for a comprehensive description of the strategy implemented for data generation and 

performance assessment for observation- and group-level analyses. 

 

METABRIC breast cancer primary tumor bulk gene expression processing 

METABRIC breast cancer primary tumor Illumina HT-12 v3 microarray bulk gene 

expression data was obtained from the CBioPortal, https://www.cbioportal.org/datasets62,63. 

The data set includes normalized expression values for 24,360 genes and Pam50 cancer subtype 

estimations for individual primary breast cancer tumor samples across 1,974 female patients. 

Additional clinical variables considered for this analysis, included: patient age at diagnosis, 

survival status, ER-status, PR-status, and HER2-status. The distribution of these variables across 

patients is summarized in Table S4. 

 

TCGA breast cancer primary tumor bulk gene expression processing 

The cancer genome atlas (TCGA) breast cancer (BRCA) primary tumor bulk RNAseq data 

was obtained from Genomic Data Commons (GDC), https://gdc.cancer.gov/access-data/64. The 

data set includes raw gene expression counts for 36,812 genes and Pam50 cancer subtype 

estimations for individual primary breast cancer tumor samples across 973 female patients. 

Additional utilized clinical variables, included: patient age at diagnosis, ER-status, PR-status, and 

HER2-status. The distribution of these variables is summarized in Table S5.  
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Raw counts were normalized by the trimmed mean of M-values (TMM) method and log-

normalized using edgeR (v3.28.1) R package65 and genes with fewer than 2 reads in more than 

90% of samples were removed, resulting in 25,729 genes in the processed data set. 

 

Performance assessment using breast cancer primary tumor bulk gene expression data 

 K2Taxonomer was evaluated for its ability to recover the Pam50 subtypes [REF], as well 

ER-, PR-, and HER2-status, and the aggregate three-gene genotype of ER-, PR-, and HER2-status, 

in the TCGA and METABRIC breast cancer datasets, independently. K2Taxonomer was also 

compared to two agglomerative clustering algorithms, Ward’s and average. These specific 

methods were chosen because they have been previously shown to outperform other common 

agglomerative methods22,66. Given the sensitivity of hierarchical clustering to the level of feature 

filtering, analyses included individual runs on four filtered data subsets of the total number of 

features: 100%, 25%, 10%, and 5%, while K2Taxonomer was only run on the full set of 100% of 

the total number of features. This should be kept in mind when comparing performances, since 

the best-performing pre-filtering level is not known a priori, and it is in general dataset dependent. 

For every pre-filtering level, the median absolute deviation (MAD) score was used for feature 

selection, and Euclidean distance was used to estimate observation-level distance. Performance 

was assessed as the entropy of each of the phenotypes (e.g., PAM50 labels), induced by the 

inferred sample sub-grouping, with lower entropy indicating “purer” subgroups, hence better 

performance67. The different methods were evaluated and compared by the relative decrease in 

entropy as the number of mutually exclusive clusters, K, increased from 2 to 8 based on tree cuts 

of the dendrograms produced by each model. 
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Healthy airway tissue scRNAseq gene expression analysis 

Publicly available scRNAseq data of normalized, batch corrected, and log-transformed 

gene expression estimates from airway tissue of healthy subjects were obtained from the UCSC 

Cell Browser portal, published as a supplement to the original manuscript for which these data 

were used, https://www.genomique.eu/cellbrowser/HCA/?ds=HCA_airway_epithelium28. This 

data set includes expression estimates for 18,417 genes and 77,969 individual cells from 35 

samples across 10 subjects. Multiple samples taken from individual subjects were collected from 

distinct locations of the human airway including: nasal biopsies, nasal brushings, tracheal biopsies, 

intermediate bronchial biopsies, and distal brushings. Also, this data set included cell type 

estimations for each of the 77,969 cells and comprised 28 estimated cell types in total. The 

methods of data processing, as well as distributions of subject-level sample identities and 

estimated cell types, can be found in the original publication28. 

K2Taxonomer partitioning of these 28 estimated cell types was evaluated against the 

known relationships among the included cell types and was compared to the partitioning 

obtained by two agglomerative methods, Ward’s and average, as well as PAGA, a graph-

estimation and trajectory inference aglorithm20. For agglomerative methods, cell type-level data 

processing and feature selection were performed consistent with the results of group-level 

analysis of simulated data (See supplementary methods). Analyses with PAGA were carried out 

using the scanpy (v1.6.0) python package. As with agglomerative methods, PAGA was run on F-

statistic-based pre-filtered feature sets at different percentages of the full 18,417 genes: 100%, 

25%, 10%, and 5%. Following component-based dimensionality reduction of these feature sets, 
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the neighborhood graphs were estimated using “pp.neighbors()” for three numbers of principal 

components: 10, 15, and 20, such that a total of 12 unique PAGA models were estimated. Finally, 

the PAGA algorithm was run, setting the “group” argument of “tl.paga()” as the cell type labels. 

 

Breast cancer immune cell scRNAseq gene expression analysis 

Publicly available scRNAseq gene expression of raw counts from immunocytes of two 

TNBC patients was obtained from GEO, accession number GSE11093829. The data was processed 

in accordance with the original manuscript29, recapitulating the reported 5,759 individual cells, 

4,844 and 915 from either sample, with 15,623 genes passing QC criteria, selection of 1,675 highly 

variable genes, and 10 latent variables estimated by ZINB-WaVE (v1.8.0)68. To enable exploration 

of the data at finer resolution, clustering of the latent variables with Seurat (v1.3.4) was modified 

by setting the “resolution” argument of “FindClusters()” to 1.1, rather than the default, 0.869. This 

resulted in 13 estimated cell clusters. Of the 10 cell clusters reported in the original manuscript, 

two cell clusters, “CD4+ FOXP3+” and “CD4+ IL7R+”, were further split into three and two 

individual clusters, respectively (Table S8). 

K2Taxonomer partitioning of these 13 estimated cell subtypes was performed on the 

normalized count matrix estimated by ZINB-WaVE. According to the developers, ZINB-WaVE, 

normalized count estimates are not recommended for differential analysis68, hence differential 

analysis was performed based on drop-out imputed and batch-corrected normalized counts 

estimated using the bayNorm (v1.4.14) R package70. Pathway-level analysis was carried out using 

Reactome gene sets downloaded from mSigDB (v7.0)71. Signatures of up-regulated genes were 

derived from each subgroup based on their FDR corrected p-value (FDR < 1e-10) and minimum 
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subgroup-specific expression, (mean[log2 counts] > 0.5), then restricted to a maximum of 50 

genes. 

To validate the clinical relevance of signatures of tumor infiltrating lymphocytes (TILs) 

derived by K2Taxonomer we performed survival analysis based on gene signature projection 

scores, as well as on selected genes in the METABRIC breast cancer primary tumor gene 

expression data set. Gene set projection was carried out using GSVA60. Multivariate Survival 

analysis was performed using Cox proportional hazards tests. All models included age and Pam50 

subtype as covariates. To account for possible confounding effects of inflammation and 

proliferation, we generated separate patient-level activity scores for each, using a gene set 

projections of published signatures of deleterious breast cancer inflammation markers43 and 

breast cancer proliferation44 (Table S11). 
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Figures 
 

 
Figure 1: Schematic of the K2Taxonomer recursive partitioning algorithm. 
For each partition, K2Taxonomer generates an ensemble of K=2 estimates from the feature 
bootstrapped data followed by variability-based feature selection. This ensemble is aggregated 
to a cosine matrix followed by hierarchical clustering and tree cutting. A stability estimate, 
indicative of the consistency of K=2 estimates, is calculated based on an eigendecomposition of 
the cosine matrix. See supplementary methods for a more thorough description of the elements 
of this procedure. 
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Figure 2: Simulation-based performance assessment of K2Taxonomer and Ward’s 
agglomerative method. 
Mean Baker’s gamma correlation estimates measuring the similarity of either K2Taxonomer 
and Ward’s agglomerative method estimates to the true hierarchy from which the simulated 
data was generated. Each combination of parameters was simulated 25 times. The red and blue 
lines are indicative of statistically significant differences between the correlation estimates (FDR 
< 0.05) based on a Wilcoxon signed-rank test. 
 

A) Observation-level analyses with 300 observations and 10,000 features. 
B) Cohort-level analyses with 1,000 observations and 10,000 features. 
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Figure 3: Breast cancer subtyping performance assessment of bulk gene expression data. 
Comparison of sorting of breast cancer Pam50 subtypes and genotypes (ER-, PR-, and ER-status) 
for two bulk gene expression data sets, METABRIC and TCGA.An aggregate, three gene 
genotype status was also included by combining the individual genotypes. Performance was 
assessed based on reduction of entropy as the number cluster estimate increased based on 
tree cutting. K2Taxonomer was only run on the full set of features, while either agglomerative 
method, average and Ward’s, were run on three additional subset of the data. 

A) Illustration of the results generated by K2Taxonomer and Ward’s method for the 
METABRIC dataset. These results reflect Ward’s method run on 5% of the total number 
of features, which demonstrated the best performance among agglomerative methods. 

B) Entropy measurements for each method as K increased across the METABRIC and TCGA 
data sets. 
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Figure 4: Subgrouping of healthy airway cell types from scRNAseq data. 

A) tSNE dimensionality reduction of healthy airway scRNAseq data with labels for 28 cell 
types annotated by 28. Note cell types labelled ending in “N” indicate those which only 
included cells from nasal samples.  

B) K2Taxonomer results with nine annotated subgroups. The “*” in the “Immune” 
subgroup label indicates the impurity of this subgroup caused by the presence of 
endothelial cells. 

C) Ward’s agglomerative clustering results for a selected analysis performed on 10% of the 
total number of genes. The results for both Ward’s method and Average method run on 
additional gene subsets: 100%, 25%, 10%, and 5%, are shown in Figure S2. 

D) PAGA graph-based trajectory results for a selected analysis performed on 15 principal 
components estimated from 25% of the total number of genes with four annotated 
disconnected subgraphs. The “*” in the “Epithelial” subgroup label indicates the 
incompleteness of this subgraph caused by the absence of basal cells and submucosal 
cells. Edges indicate PAGA connectivity estimates > 0.8. The results for analyses run on 
additional numbers of principal components: 10, 15, and 20, as well as additional gene 
subsets: 100%, 25%, 10%, and 5%, are shown in Figure S3. 
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Figure 5: K2Taxonomer annotation of scRNA-seq clustering of breast cancer immune cell data 
and in-silico validation via patient survival on METABRIC breast cancer bulk gene expression 
data set. 

A) K2Taxonomer annotation of 13 cell subtypes of breast cancer immune cell populations. 
Cell type labels are in accordance to the original publication of these data29. Color and 
thickness of each edge indicates the association between the projected signature of up-
regulated genes of each subgroup and patient survival in METABRIC breast cancer 
cohort via Cox proportional hazards testing. The top and bottom dendrograms show the 
results without and with adjusments of covariates for inflammation and proliferation. 
Blue and red are indicative of hazard ratio < 1 and hazard ratio > 1, respectively. All 
models included age and PAM50 subtype as covariates. 

B) Boxplots of gene set projection scores of selected REACTOME pathways, enriched in 
subgroups of immune cells. These pathways include: PD-1 Signaling, enriched in the Trm 
All subgroup, Translation, enriched in the Translation+ subgroup, TNF Signaling, 
enriched in the CD4+ CCL5- and Treg TNFRSF4+ subgroups, and Cell Cycle, enriched in 
the CD8+ mit. Trm and Treg mit. Subgroups. The center line, hinges, and whiskers 
indicate the median, interquartile range, and extreme values truncated at 1.5 * the 
interquartile range, respectively.  
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C) Boxplots of markers constitutively regulated among selected K2Taxonomer subgroups. 
GZMB is upregulated in the Trm All subgroup. CCL5 and TNFRSF4 are up- and down-
regulated, respectively, in the CD4+ CCL5- subgroup. TNFRSF4 is further up-regulated in 
the Treg TNFRSF4+ subgroup, while RGS1+ is up-regulated in the Treg RGS1+ subgroup. 
Finally, RPS27 is up-regulated in the Translation+ subgroup. The center line, hinges, and 
whiskers indicate the median, interquartile range, and extreme values truncated at 1.5 * 
the interquartile range, respectively. 

D) tSNE dimensionality reduction of the single-cell breast cancer immune cell data, 
indicating the cell subtype label assignment of every cell, as well as Z-scored expression 
of selected genes from C. 

E) 95% confidence intervals of hazard ratios from Cox proportional hazards testing of gene 
set projections of cellular subgroups on the METABRIC data set. Covariates shows the 
results of the survival model of sample-level inflammation and proliferation scores 
without a K2Taxonomer derived signature. Every other models shows the confidence 
interval of the subgroup-specific model without and with adjusting for inflammation and 
proliferation score, as well as the confidence intervals of inflammation and proliferation 
in the full model. All models included age and Pam50 breast cancer subtype as 
covariates. 

F) Scatterplot of the comparison of the expression of CCL5 and TNFRSF4 expression in the 
METABRIC dataset.  

G) 95% confidence intervals of hazard ratios from Cox proportional hazards testing of gene-
level expression of CCL5 and TNFRSF4, modelled separately, Sep., and combined in a 
single model, Comb.. These models also included age, Pam50 breast cancer subtype, as 
well as sample-level inflammation and proliferation score as covariates. 

H) Volcano plot of differential expression analysis of the Translation+ subgroup in 
scRNAseq data of individual genes in the REACTOME eukaryotic translation initiation 
gene set. An alternative coding of the y-axis indicating the absolute value of the test 
statistic is shown on the right side of the plot. The colors indicates the association of 
each gene with survival in the METABRIC data set. The names of genes, significantly 
associated with better survival (hazard ratios < 1, FDR < 0.1) are labelled. 

I) Comparison of the associations of expression of the REACTOME eukaryotic translation 
initiation gene set to survival in the METABRIC data set and the test statistics indicating 
up-regulation in the Translation+ subgroup. Genes that were included as top markers of 
the Translation+ subgroup are highlighted. The names of genes, significantly associated 
with better survival (hazard ratios < 1, FDR < 0.1) are labelled. The blue line indicates the 
linear fit of these two variables. 
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Supplementary Figures 

Figure S1: Simulation-based performance assessment of running K2 Taxonomer using different 
partition-specific feature subset sizes of the full data set 

Difference of mean Baker’s gamma correlation estimates measuring the similarity of K2 Taxonomer 
estimates to the true hierarchy from which the simulated data was generated between. Each line shows 
the difference between a set percentage of the total number of features and the square root of the total 
number of features. Each combination of parameters was simulated 25 times. 
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Figure S2: Additional subgrouping results of healthy airway cell types from scRNAseq data 

Ward’s (left) and average (right) agglomerative clustering results for analyses performed on different 
subsets of the total number of genes. 
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Figure S3: Additional PAGA graph-based trajectory results of healthy airway cell types from scRNAseq 
data 

PAGA graph-based trajectory results for analyses performed on different combinations of numbers of 
principal components and subsets of the total number of genes. 

K2 Taxonomer Results

Mesenchymal

Monoblast

Immune* CiliatedCiliated

CiliatedEpithelial

Basal

AE

Brush-like

Submucosal

10 Principal Components            15 Principal Components           20 Principal Components

  
  

1
0

0
%

 G
e
n
e
s 

  
  

  
  

  
2

5
%

 G
e
n
e
s 

  
  

  
  

  
  

 1
0

%
 G

e
n
e
s 

  
  

  
  

  
  

 5
%

 G
e
n
e
s

PAGA Results

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.370197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.370197
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Methods 

 

K2Taxonomer feature filtering 

A distinguishing property of K2Taxonomer when compared to other methods, such as 

traditional agglomerative hierarchical cluster or trajectory inference1is the manner in which 

feature selection is implemented. Even in large studies of high-throughput data sets, the 

number of features is typically much larger than the number of observations. This generally 

requires filtering the data set prior to modeling in order to reduce variance and computational 

expense of model fit. One way to do this is through feature selection, in which features 

suspected to contain more information about the relationship between observations are 

chosen for down-stream analysis. For unsupervised learning, relative information estimation is 

commonly calculated via variability-based metrics. Assuming the amount of noise is consistent 

across features, these metrics will capture the relative magnitude of the signal of individual 

features. Two common choices are standard deviation (SD) and median absolute deviation 

(MAD), of which the former is more statistically efficient with a small sample size and the latter 

is more robust to outliers2. Implementation of these feature selection techniques prior to 

modeling may be problematic when learning hierarchical models. The magnitude of variability-

based metrics is influenced by the frequency of observations for which the signal-to-noise ratio 

is higher, such that the subset of features is more likely to capture broader relationships 

between larger sets of observations and less likely to capture relationships between smaller 

sets of observations. This can obscure important relationships within smaller sets of 

observations, as when evaluating a sub-group of samples in a hierarchical procedure. In 
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addition, an appropriate choice of the number features to use for modeling is difficult to 

determine a priori and may be obscured by many factors, including: the number of subgroups, 

number of observations belonging to each subgroup, and the number of features distinguishing 

individual subgroups.  

To overcome these challenges, K2Taxonomer produces a model fit for each partition 

independently, such that feature selection is only performed within the subgroup of 

observations being evaluated at a given step. In particular, at each recursive step, the objective 

of partition estimation is to split the data based only on the dominant relationship between two 

subgroups. Since the selected features need only capture one relationship, a much smaller 

subset of features will be sufficient to discover this partition. By default, K2Taxonomer uses the 

square root of the total number of features, which is used in a related albeit supervised 

learning method, random forests3. In doing so, the percentage of filtered features is dependent 

on the total number of features. For example, if the data set consists of 1,000 or 10,000 

features, K2Taxonomer will estimate partitions using 3.2% or 1.0% of the total number of 

features, respectively. The appropriateness of using the square root of the total number of 

features against fixed percentages is later assessed with simulation-based testing.  

The K2Taxonomer package includes options to perform both SD and MAD based feature 

selection. In the case of group-level analysis, K2Taxonomer can perform F-statistic based 

feature selection based on the proportion of between-group variability and within-group 

variability implemented by the limma R package4. 

 

K2Taxonomer data partitioning 
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To estimate each partition, K2Taxonomer, performs feature-level bootstrap aggregation, 

similar to that of consensus clustering5. More specifically, each data partition represents the 

aggregation of a set of partitions estimated from perturbations of the original data set in which 

features have been sampled with replacement. Feature selection and K=2 clustering are 

independently performed within each perturbation-specific data set. The final partition 

estimate is calculated by aggregating the set of perturbation-specific partitions into a cosine 

similarity matrix (defined below), which further undergoes hierarchical clustering, followed by a 

K=2 tree cut.  

K2Taxonomer package implements separate clustering methods tailored to analysis of 

either observation-level and group-level data input. For observation-level data, the 

perturbation-specific partitions are estimated via hierarchical clustering of the Euclidean 

distance matrix, followed by a K=2 tree cut. By default, Ward’s agglomerative method is 

performed at this step because it has been shown to generally perform well compared to other 

hierarchical methods6. For group-level data, perturbation-specific partitions are estimated via 

constrained K-means clustering7. This algorithm performs semi-supervised clustering, in which 

group-level information is included as a pairwise “must-link” constraint, preserving 

relationships between observations from the same group.  

To assess the robustness of the partitioning of the aggregated results, hereby referred 

to as partition stability,  as well as to facilitate interpretability, a cosine similarity matrix is 

computed, with each pairwise cosine similarity measurement functionally equivalent to the 

Pearson correlation of standardized variables.  
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Let an “item” denote a single observation or group, depending on whether observation- 

or group-level analysis is being performed, respectively. The cosine similarity of two items is a 

measure proportional to the number of times across perturbation iterations that the two items 

are assigned to the same group in the perturbation-specific dichotomous partitions. It takes its 

maximum/minimum value when the two items are always/never assigned to the same group.  

If we represent with “-1” and “1” the assignments of an item to one or the other group 

in a dichotomous partition, we can then represent, and compare, the complete set of 

assignments of any two items across  perturbation-specific partitions as the vectors 

, 

where  and   represent the  and  item, respectively. 

We can then define the cosine similarity of  and  as 

. 

where  represents the dot product and  represents the product of the 

Euclidean norms of  and . Next, we prove the equivalence of the cosine similarity and 

Pearson correlation of two assignment vectors. The cosine similarity can be rewritten as 

follows: 

. 

p

Xi = (xi1,...,xip | xi ∈{−1,1})

X j = (x j1,...,x jp | x j ∈{−1,1})

Xi X j ith jth

Xi X j

CS(Xi ,X j ) =
Xi ⋅ X j

|| Xi |||| X j ||

Xi ⋅ X j || Xi |||| X j ||

Xi X j

CS(Xi ,X j ) =
Xi ⋅ X j

|| Xi |||| X j ||
= ( p − Z )− Z

p
= 1− 2Z

p
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In the above derivation, since  and  only take values in {-1,1}, their dot product, , is 

equal to the difference between the number of iterations, Z, the two items are assigned to the 

same group, and the number of iterations, p-Z, the two items are assigned to different groups. 

Furthermore, the product of the Euclidean norms of  and , , is equal to .  

Similarly, taking advantage of the relationship between Pearson correlation of 

standardized variables, , and Euclidean distance, , we have 

, 

where we used the fact that the squared Euclidean distance of  and , , is equal 

to . Furthermore, for , the difference between mismatched adjacent 

elements is 2 and the difference between matched adjacent elements is 0. Therefore, 

.  

The function, , is the Hamann similarity index8. Consistent with Pearson 

correlation, the range of possible values for the Hamann similarity is between 1 and -1; these 

extremes occur if Z is equal to p and 0, respectively, indicating that  and  are either 

identical or fully dissimilar. Furthermore, if elements of  and  share 50% of their matching 

assignments, then  and the Hamann similarity is equal to 0, indicating a lack of a 

relationship between their perturbation-specific partition estimates. This is not true for the 

related phi similarity9, another correlation metric for dichotomous variables, the calculation of 

Xi X j X ⋅Y

Xi X j || Xi |||| X j || p

r() d()

r(Xi ,X j ) = 1−
d 2(Xi ,X j )
2p

= 1−
(Xi − X j )

2

2p
= 1− 4Z

2p
= 1− 2Z

p

Xi X j d
2(Xi ,X j )
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2
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which includes adjustment for the marginal distribution of  and . In this case, the 

marginal distribution of  and  is irrelevant because the elements of  and  are only 

meaningful in relation to their matching assignments. 

 

K2Taxonomer Partition Stability 

 To assess the robustness of partition estimates, indicating the consistency of the 

perturbation-specific partition results, we developed a partition stability metric, which is 

calculated using the eigen-decomposition of the matrix of pairwise cosine similarities, , of 

dimension, , the number of items. The eigen-decomposition of  satisfies 

, 

where  is the matrix of eigenvectors corresponding with , the vector of rank-ordered 

eigenvalues 

. 

Each eigenvalue is proportional to the “variance explained” by each eigenvector, such that the 

cumulative sum of variance explained by the first  eigenvectors, , is given by 

. 

 

In this context, the variance explained by eigenvectors captures the consistency with which 

pairs of items received the same or different assignments across perturbation-specific 

partitions. Therefore, we can summarize this consistency by evaluating the difference between 

Xi X j

Xi X j Xi X j

Q

N Q

QU = diag(Λ)U

U Λ

Λ = (λ1,...,λk ,...,λN |λk > λk+1)

k vk

vk =
λl

l=1

k

∑
N
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the variance explained by the eigenvectors of the estimated cosine matrix and the variance 

explained by these eigenvectors if there was no consistency across perturbation-specific 

partition assignments. We denote this deviation as the partition stability, , calculated as the 

maximum difference between  and , the null value corresponding to all items being 

linearly independent, 

. 

The possible values for the partition stability range from  and 0, with the former 

representing the case in which , where every perturbation-specific partition is identical, 

i.e., all values of the cosine matrix are either -1 or 1. Conversely, a partition stability of 0 

represents the case when the perturbation-specific partition assignments are random, i.e., all 

values of the cosine matrix are close to 0. The maximum value for a given partition is 

dependent on the number of items in the partition, approaching 1 when  is large, and equal 

to 0.5 when . Using the K2Taxonomer package, partition stability can be used to set 

stopping criteria for creating new partitions, thereby serving as a way to control the number of 

terminal subgroups without prior knowledge.  

 Finally, partition stability is used as a heuristic for calculating branch heights in 

dendrogram creation of the K2Taxonomer output. For a series of  partitions resulting in a 

given partition, , the branch height, , is calculated as 

, 

PS

vk
k
N

PS =
k
max(vk −

k
N
)

1− 1
N

λ1 = N

N

N = 2

m

zm hm

hm = log(Nm )+ l
l=1

m

∑ og(PSl )+ c
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where c is a constant added to ensure that the minimum height for a node is equal to 1.  

 

Simulated data generation 

 K2Taxonomer’s performance was assessed in terms of its capability to recapitulate 

induced hierarchical structure in simulated data, and it was further compared to Ward’s 

agglomerative method as a term of reference. Hierarchically structured data was generated by 

assigning a mutually exclusive set of C labels to N observations. To define hierarchical 

relationships between labels, the set of C labels was recursively subdivided into intermediate 

subgroups until the final subgroups contained only a single label. To represent expected 

hierarchical structures in real data, we allowed for more than two subgroups to be created at 

each subdivision. As such, neither K2Taxonomer nor agglomerative methods are expected to 

recapitulate this structure exactly. 

 After simulating the hierarchical relationships between labels, data was generated as 

follows. First, a set of 10,000 features was generated, each from a normal distribution, with 

mean, 0, and standard deviation, BN, denoting the background noise in the data. Second, for 

each subgroup of labels, we assigned a random set of features for which to add a signal. For 

each feature assigned to a specific subgroup of labels, the value of the added signal was 

sampled from a normal distribution with mean, 0, and standard deviation, 2. To ensure that the 

value of the added signal was the same across all subgroup-specific observations, a feature was 

only allowed to be assigned to an individual label once. Considering that in real data we expect 

only a subset of features in a data set contains information of its subgroup structure, prior to 
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assigning random sets of features to each subgroup, the full set of features was subsetted by a 

given percentage, DS, of the total. 

 

Simulated data performance assessment 

 Following the generation of each simulated data set, K2Taxonomer and Ward’s method 

were run. The performance of each method was assessed by the relative similarity of the 

learned structure to the known hierarchy from which the data was generated using Baker’s 

gamma correlation10. Baker’s gamma correlation is a measure of Spearman correlation 

between two similarity matrices, where each similarity matrix is calculated from the number of 

shared partitions between each pair observations in a given hierarchy. Baker’s gamma 

correlation ranges between -1 and 1, with 1 representing the case when two dendrograms 

induce identical hierarchies. This metric was chosen over cophenetic distance because 

cophenetic pairwise similarities are calculated using branch heights and branch height is not 

applicable to the known hierarchy. 

 

Observation-level analysis of simulated data 

 For observation-level analysis, each simulated data set included N=300 observations. 

We evaluated the following data generation parameters 

 

• Number of labels (C):   5, 10, 20, 30 

• Background Noise (BN):   0.5, 1, 2, 3 
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• Percent features with signal (DS): 2.5, 5, 10, 25, 50. 

Especially when the value of DS is small, Ward’s method is not expected to perform well when 

run on the full set of data. Therefore, Ward’s method was evaluated on simulated data with the 

following variability-based prefiltering percentage levels, PF, of the data: 

• Pre-filtering percentage level (PF): 5, 10, 25, 5, 1.  

On the other hand, K2Taxonomer was always run on the square root of the total 

number of features. It should be emphasized that this design does not allow for an unbiased 

comparison of K2T and Ward, and it favors the latter since in real settings we would not know 

the optimal PF to be used. 

Standard deviation was used for variability-based feature selection, including partition-

specific feature selection by K2Taxonomer. For each combination of these parameters, we 

generated 25 simulated data sets and ran K2Taxonomer and Ward’s method. For each 

combination of parameters, the statistical significance of the difference between the two 

methods’ distributions of Baker’s gamma correlation estimates was tested using Wilcox’s Rank 

Sum tests. The resulting p-values from 400 combinations of parameters were corrected for 

multiple hypotheses testing using the FDR procedure11. 

 As noted, for each of these comparisons, we ran K2Taxonomer using the square root of 

the total number of features as the parameter for partition-specific feature filtering. To assess 

the validity of using this as the default, we performed additional simulations and compared 

K2Taxonomer performance at different partition-specific feature filtering levels, based on the 

set of percentages of the total number of features: 1%, 2%, 10%, and 20%. These were 
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performed using the same combinations of parameters as the previous analysis and included 25 

repetitions. 

 

Group-level analysis of simulated data 

 For group-level analysis, each simulated data set included N=1000 observations. For 

data generation, we tested the following sets of data generation parameters 

• Number of labels (C):   10, 25, 20, 30 

• Background Noise (BN):   0.5, 1, 2, 3 

• Percent features with signal (DS): 2.5, 5, 10, 25, 50. 

As with observation-level analysis, we performed analyses on simulated data with the following 

variability-based prefiltering percentage levels, PF, of the data: 

• Pre-filtering percentage level (PF): 5, 10, 25, 5, 1. 

Linear model-based F-statistics were used for all variability-based feature selection scoring, 

including partition-specific feature selection by K2Taxonomer.  

For running each method, the groups were defined by the labels to which each of the 

observations were assigned. Unlike K2Taxonomer, agglomerative methods are not devised to 

utilize group-level labels for unsupervised learning tasks. Therefore, Ward’s method was 

applied using the Z-score mean value of each group, generated by the same linear model used 

for feature selection. Comparisons between these methods were performed in the same 

manner as observation-level analysis.  
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