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ABSTRACT 

RAS genes are the most frequently mutated oncogenes in cancer. However, the effects 

of oncogenic RAS signaling on the noncoding transcriptome are unclear. We analyzed 

the transcriptomes of human airway epithelial cells transformed with mutant KRAS to 

define the landscape of KRAS-regulated noncoding RNAs. We found that oncogenic 

KRAS upregulates noncoding transcripts throughout the genome, many of which arise 

from transposable elements. These repetitive noncoding RNAs exhibit differential RNA 

editing in single cells, are released in extracellular vesicles, and are known targets of 

KRAB zinc-finger proteins, which are broadly down-regulated in mutant KRAS cells and 

lung adenocarcinomas. Moreover, mutant KRAS induces IFN-stimulated genes through 

both epigenetic and RNA-based mechanisms. Our results reveal that mutant KRAS 

remodels the noncoding transcriptome through epigenomic reprogramming, expanding 

the scope of genomic elements regulated by this fundamental signaling pathway and 

revealing how mutant KRAS induces an intrinsic IFN-stimulated gene signature often 

seen in ADAR-dependent cancers. 
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INTRODUCTION 

Most of the human genome is noncoding and transcribed into RNA(1). About half of the 

human genome is comprised of transposable elements (TE) (2), whose expression 

patterns are often altered in cancer (3). Additionally, TEs contribute substantially to the 

noncoding transcriptome and are present in the exonic sequences of thousands of long 

noncoding RNAs (lncRNAs) (4, 5). Noncoding RNAs become disrupted in cancer (6) and 

epigenetic reprogramming (7), where activation of RAS signaling leads to repression of 

specific microRNAs (8) and coordinate regulation of lncRNAs in single cells, respectively.  

In lung cancers, RAS mutations are present in a third of lung adenocarcinomas (9) and 

serve as driver mutations that initiate tumorigenesis (10).  Although RAS genes are 

among the most frequently mutated oncogenes in cancer (11), including pancreatic (12) 

and colorectal cancers (13), the extent to which oncogenic RAS signaling regulates the 

noncoding transcriptome remains unknown.   

 To investigate how mutant KRAS regulates the noncoding transcriptome during 

the initial stages of cellular transformation, we characterized the composition of protein-

coding RNA, lncRNA, transposable-element derived repetitive noncoding RNA, and 

extracellular RNA, as well as global chromatin accessibility, using human airway epithelial 

cells (14) that have a constitutively active mutant KRAS(G12D) allele. We show that 

oncogenic KRAS induces cell-intrinsic interferon (IFN)-stimulated gene (ISG) signatures 

through epigenetic and RNA-mediated mechanisms, and that KRAB zinc finger (KZNF) 

genes that repress repetitive noncoding RNA loci are globally down-regulated both in vitro 

and in vivo in lung adenocarcinoma patients with activating mutations in KRAS. Our data 
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reveal that significant upregulation and extracellular release of repetitive noncoding RNAs 

and ISGs are early transcriptomic signatures of mutant KRAS signaling.     

 

RESULTS 

Transcriptomic signatures of mutant KRAS 

To determine the transcriptomic landscape of protein-coding and noncoding RNAs 

regulated by oncogenic RAS signaling, we performed RNA sequencing (RNA-seq) on 

human airway epithelial cells (AALE) that undergo malignant transformation upon 

introduction of mutant KRAS (Supplementary Figure 1a) (14). We compared the 

transcriptomes of AALE cells transduced with control lentiviral vector to AALEs that were 

transduced and transformed by mutant KRAS-containing lentiviral vector and performed 

differential expression analysis. We identified many protein-coding RNAs that were 

significantly differentially expressed (n=4323 upregulated, n=4711 down-regulated), as 

well as hundreds of differentially expressed lncRNAs (n=279 upregulated, n=409 down-

regulated), revealing the broad extent to which mutant KRAS reprograms the 

transcriptome (Supplementary Figure 1b). For differentially expressed genes in mutant 

KRAS versus control AALEs, a large proportion of upregulated lncRNAs (~75%) 

contained TE sequences in their exons, suggesting that repetitive noncoding loci in the 

genome are preferentially misregulated during mutant KRAS-mediated malignant 

transformation.  

 

Mutant KRAS induces an intrinsic IFN-stimulated gene signature 
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To explore the biological pathways that are perturbed by oncogenic RAS signaling, we 

performed gene set enrichment analysis (GSEA) (15) using genes that were differentially 

expressed in our mutant KRAS AALE cells. GSEA revealed that the most significantly 

enriched pathway was the interferon (IFN) alpha response, while the third most enriched 

pathway was the IFN gamma response (Supplementary Figure 1c). We examined all 

known ISGs that were expressed in our mutant KRAS AALEs and found that most of 

these genes were significantly upregulated, comprising a 25-gene mutant KRAS ISG 

signature (Fig. 1a). We then compared our KRAS ISG signature to IFN alpha (INFa) and 

IFN gamma (IFNg) response genes, along with the ADAR-dependent ISG signature 

described in Liu et al. (16). While the majority of KRAS ISG signature genes overlapped 

with the other 3 IFN-related signatures, several genes were unique to mutant KRAS cells 

(Fig. 1b). These results reveal that mutant KRAS signaling activates an intrinsic ISG 

response in transformed AALEs.  

We then investigated whether this mutant KRAS ISG signature                                                            

was specific to lung cells or if other cell types responded similarly. We performed RNA-

seq on human embryonic kidney cells (HA1E) that were primed for oncogenic KRAS-

driven transformation (17) and analyzed how mutant KRAS altered their transcriptomes. 

Similar to transformed AALEs, we also observed that thousands of protein-coding RNAs 

(n=2635 up, n=2639 down) and hundreds of lncRNAs were upregulated (n=165) or down-

regulated (n=223) (Supplementary Figure 1d). When we performed GSEA, however, 

there was no enrichment for any IFN pathways in mutant KRAS-transformed HA1E cells, 

even though they were significantly enriched for upregulated KRAS signaling. In contrast 

to the mutant KRAS AALEs, we found that both IFNg and IFNa response pathways were 
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among the most significantly decreased gene sets in mutant KRAS HA1Es 

(Supplementary Figure 1e), highlighting the cell type-specific differences in how the 

transcriptome is reprogrammed by mutant KRAS.   

To assess the heterogeneity of the KRAS ISG signature in mutant KRAS AALEs, 

we performed single-cell RNA-seq (scRNA-seq) (n=1503 cells) (Fig. 1c). While KRAS 

signaling genes were upregulated in each cluster of cells, there was extensive 

heterogeneity in the IFNa response, Liu ISG, and KRAS ISG signatures, with the highest 

levels present in cluster 4 (Fig. 1d). This was also consistent at the gene level for ISGs 

(Fig. 1e), and these results indicate that individual cells respond differently to oncogenic 

KRAS signaling. 

 

Epigenetic reprogramming of ISGs by mutant KRAS 

To elucidate the molecular mechanisms involved in inducing intrinsic ISG signatures in 

mutant KRAS AALE cells, we performed Assay for Transposase-Accessible Chromatin 

using sequencing (ATAC-seq) (18). In mutant KRAS AALEs, open chromatin was strongly 

enriched at gene promoters for upregulated KRAS signaling genes, as well as KRAS ISG 

signature genes (Fig. 2a). Open chromatin peaks were enriched at transcriptional start 

sites (TSS) of the ISGs OAS1, CH25H, GBP1, and IFNL1, all of which were significantly 

and specifically upregulated by mutant KRAS signaling (Fig. 2b). We found that several 

of these KRAS ISGs, including OAS2 and IFIT1, contained interferon-stimulated 

response elements (ISRE) that are recognized by the transcription factor IRF9, which also 

undergoes epigenetic activation in mutant KRAS AALEs (Fig. 2c). Some of the most 

enriched motifs at ATAC-seq peaks in mutant KRAS cells were for IRF9, IRF1, and AP-1 
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(FOS) (Fig. 2d), and genes at these open loci were significantly upregulated, as were the 

transcription factors that bind to these enriched motifs (Fig. 2e). These results reveal that 

oncogenic KRAS signaling induces intrinsic ISG expression through the epigenetic 

activation of ISG promoters.    

 

Mutant KRAS upregulates transposable element-derived noncoding RNAs 

We next investigated the molecular basis for intrinsic ISG signature activation in mutant 

KRAS AALE cells by analyzing the abundance of repetitive noncoding RNAs transcribed 

from TEs, which induce an IFN response in cancer cells when aberrantly expressed (19, 

20). The LINE-1 element L1MC4a, the Alu elements AluSx, AluSg, AluJo, AluY, and 

AluSz6, and the hAT-Charlie element MER20 were all significantly upregulated in mutant 

KRAS AALE cells (Fig. 3a), suggesting that oncogenic KRAS signaling induces an ISG 

signature in transformed lung cells through the activation of TE-derived noncoding RNAs.  

 We examined TE expression heterogeneity in our single-cell RNA-seq data from 

mutant KRAS AALEs and did not observe substantial heterogeneity in ALU, LINE, MER, 

or LTR class TE expression (Fig. 3b), as well as for the specific TEs L1MC4a and AluSx 

(Fig. 3c). When we performed RNA editing analysis on the scRNA-seq data to look for A-

to-I editing (21), however, we found that TE-derived double-stranded RNAs (dsRNAs) 

exhibited significantly lower levels of RNA editing in cluster 4 (Fig. 3d), even though TE 

RNA levels were similar across all of the scRNA-seq data clusters. Mutant KRAS cells 

with lower levels of RNA editing exhibited higher expression of the dsRNA sensors MDA5 

and RIG-I, while all of the clusters showed relatively similar levels of PKR expression, 

with a slightly higher level of PKR expression in the cells with lower RNA editing (Fig. 3e). 
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These results reveal the extent of single cell heterogeneity in both RNA editing and 

dsRNA sensor ISGs in mutant KRAS cells.   

 To test whether extracellular RNAs that are released from mutant KRAS cells 

might also exhibit differential RNA editing, we isolated extracellular vesicles from the 

culture media of control and mutant KRAS AALEs (22, 23). Extracellular vesicles isolated 

from mutant KRAS AALE cell culture media were comprised of two different sized classes 

of vesicles that were ~150nm and ~213nm in diameter, while vesicles from control AALE 

media were ~196nm in size (Supplementary Figure 2a). We performed RNA-seq and 

found that extracellular vesicles were enriched in lncRNAs when compared to the 

intracellular RNA composition (Supplementary Figure 2b). We also observed strong 

correlation between differentially expressed genes in intracellular and extracellular RNA-

seq data (Supplementary Figure 2c). Moreover, repetitive noncoding RNAs derived from 

Alu, ERV, and L1 elements were significantly enriched in extracellular vesicles 

(Supplementary Figure 2d) but did not exhibit differential RNA editing (Supplementary 

Figure 2e), suggesting that intrinsic KRAS ISG signatures in mutant KRAS AALEs are not 

significantly affected by TE-derived repetitive noncoding RNAs that are packaged into 

extracellular vesicles.   

 

Broad epigenetic silencing of KRAB zinc-finger genes by mutant KRAS 

Given the known roles of KRAB zinc-finger proteins (KZNFs) in TE silencing (24), we 

examined whether KZNFs were involved in TE regulation in mutant KRAS AALEs. When 

we examined the differential expression of KZNFs in mutant KRAS AALEs, we observed 

a broad and significant down-regulation of repressive KRAB domain-containing zinc-
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finger proteins (Fig. 4a) (Supplementary Figure 3a). Based on our ATAC-seq 

experiments, we determined that significantly down-regulated KZNF genes exhibited loss 

of open chromatin at their TSS and intronic regions (Fig. 4b), revealing that mutant KRAS 

signaling induces epigenetic silencing of many KZNF genes. Several significantly down-

regulated KZNFs, including ZNF90, ZNF736, and ZNF683, were enriched for motifs in 

their TSS regions for ETS and ELK transcription factors (Fig. 4c), which are known 

downstream effectors of the RAS signaling pathway together with AP-1 (FOS) (11) (Fig. 

4d).  

We then analyzed KZNF chromatin immunoprecipitation sequencing (ChIP-seq) 

data (24) using the University of California Santa Cruz (UCSC) Repeat Browser platform 

(25). We found that several of the significantly down-regulated KZNFs in mutant KRAS 

AALEs bind to the consensus TE sequences of MER20 and L1MC4a elements 

(Supplementary Figure 3b), which are specifically and significantly upregulated in mutant 

KRAS AALEs (Fig. 3a). This suggests that suppression of these KZNFs via oncogenic 

RAS signaling leads to de-repression of TE-derived noncoding RNAs during cellular 

transformation. This model is supported by broad and significant down-regulation of these 

same KNZFs in vivo in mutant KRAS-driven lung adenocarcinomas (Supplementary 

Figure 3c).              

 

DISCUSSION 

Collectively, our findings reveal the genomic impact of oncogenic KRAS signaling on 

repetitive noncoding RNAs and ISGs. Our conclusions are based on deeply sequencing 

and analyzing the transcriptomes of mutant KRAS-transformed AALE cells at the 
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population, single-cell, and extracellular levels, as well as the epigenomic level, building 

on our previous work identifying noncoding RNAs that are coordinately regulated with 

RAS signaling genes during epigenomic reprogramming (7). The molecular basis for the 

intrinsic ISG signature we observe in mutant KRAS AALE cells is different from TE-

induced IFN responses in cancer cells treated with DNA methyltransferase inhibitors (19, 

20), as we instead find a prominent role for broad KZNF supression during early stages 

of mutant KRAS-driven cellular transformation. Our studies also suggest that oncogenic 

RAS signaling contributes to the early induction of intrinsic ISG signatures that are 

observed across many cancers and cancer cells lines with ADAR dependencies (16, 26). 

In summary, our studies show that mutant KRAS both directly and indirectly 

activates repetitive noncoding RNAs through activation of RAS pathway transcription 

factors and repression of KZNFs that target these TE-containing loci in the human 

genome. Moreover, mutant KRAS reprograms the epigenome to both directly and 

indirectly activate intrinsic ISG signatures through opening chromatin at ISG promoters 

and activating repetitive noncoding RNAs that are recognized by dsRNA-binding RNA 

sensors such as PKR and MDA5 (Fig. 4e). Notably, the enrichment of both lncRNAs and 

TE-derived repetitive noncoding RNAs in extracellular vesicles released from mutant 

KRAS cells highlights their potential utility as RNA-based liquid biopsy biomarkers for 

diagnosing RAS-driven cancers.    

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 11 

MATERIALS AND METHODS 

Cell Lines. The AALE stable cell lines pBABE-mCherry Puro (control) and pBABE-FLAG-

KRAS(G12D) Zeo (mutant KRAS) were generated using retroviral transduction, followed 

by selection in puromycin of zeocin, respectively, 2 days post-infection. Both lines were 

cultured in SABM Basal Medium (Lonza SABM basal medium) with added supplements 

and growth factors (Lonza SAGM SingleQuot Kit Suppl. & Growth Factors). AALE cell 

lines were maintained using Lonza’s Reagent Pack subculture reagents. The HA1E cell 

lines were generated using lentiviral transduction (pLX317) to generate control and 

mutant HA1E pLX317-KRAS(G12V) stable cell lines using puromycin selection, and cells  

were cultured in MEM-alpha (Invitrogen) with 10% FBS (Sigma) and 1% 

penicillin/streptomycin (Gibco).  All cell lines tested negative for mycoplasma.   

 

siRNA Knockdowns. AALEs were seeded at 1x106 cells per well of a 6-well plate in 

complete growth medium, then reverse transfected with 30pmol siRNA using RNAiMAX 

lipofectamine according to manufacturer’s protocol. Cells were grown for 3 days in 

transfection medium under standard culture conditions and then harvested for RNA 

isolation and qPCR as previously described.  

 

Cell Viability Assay. 2x104 cells were subtracted from each siRNA transfection well at 

the time of transfection and seeded into individual wells of an ultra-low adhesion 96-well 

plate. The cells were grown in standard culture conditions for 4 days. They were then 

harvested, and ATP production was measured using the Cell TiterGLO Luminescent Cell 
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Viability Assay (Promega) following the manufacturer’s protocol. Luminescence was 

measured on a Perkin Elmer VICTOR light 1420 Luminescence Counter.   

 

RNA Isolation & Purification. For AALE cell lines, bulk RNA was isolated from cells 

using Quick-RNA MiniPrep kit (Zymogen). All RNA was quantified via NanoDrop-8000 

Spectrophotometer. For HA1E cell lines, bulk RNA was isolated using RNeasy Mini Kit 

(Qiagen) and quantified via Qubit RNA BR assay kit (Thermo). 

 

qPCR. cDNA was transcribed from 1ug RNA using iScript cDNA Synthesis Kit (Bio-Rad) 

according to manufacturer protocol. cDNA was diluted 1:6 and run with iTaq Universal 

SYBR Green Supermix (Bio-Rad) on ViiA 7 Real-Time PCR System according to 

manufacturer protocol. Cycle Threshold (CT) values were converted using Standard 

analysis. Values obtained for target genes were normalized to HPRT.  

 

RNA-seq. For AALE cell lines, 1ug of total RNA was used as input for the TruSeq 

Stranded mRNA Sample Prep Kit (Illumina) according to manufacturer protocol. Library 

quality was determined through the High Sensitivity DNA Kit on a Bioanalyzer 2100 

(Agilent Technologies). Multiplexed libraries were sequenced as HiSeq400 100PE runs. 

For HA1E cell lines, 1ug of total RNA was used for mRNA enrichment with Dynabeads 

mRNA DIRECT kit (Thermo). First strand cDNA was generated with AffinityScript Multiple 

Temperature reverse transcriptase with oligo dT primers. Second strand cDNA was 

generated with mRNA Second Strand Sythesis Module (New England Biolab). DNA was 

cleaned up with Agencourt AMPure XP beads twice. Qubit dsDNA High Sensitivity Assay 
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was used for concentration measurement. 1ng of dsDNA was further subjected to library 

preparation with Nextera XT DNA sample prep kit (Illumina) per manufacturer 

instructions. Library size distribution was confirmed with Bioanalyzer (Agilent). 

Multiplexed libraries were sequenced as NextSeq500 75PE runs.   

 

Single-cell RNA-seq. For single cell RNAseq, 1x106 cells were harvested and re-

suspended in 1mL 1X PBS/0.04% BSA (1000 cells/ul) according to the cell preparation 

guidelines in the 10X Genomics Chromium Single Cell 3’ Reagent Kit User Guide. GEMs 

were generated from an input of 3,500 cells. We used the 10X Genomics Chromium 

Single Cell 3’ Reagent Kits version 2 for both the GEM generation and subsequent library 

preparation and followed the manufacturer’s reagent kit protocol. Quantification of all 

RNAseq libraries was performed by QB3 at UC Berkeley. RNAseq libraries were 

sequenced as HiSeq4000 100PE runs. 

 

ATAC-seq. 100,000 cells were collected and centrifuged at 500xg for 5 minutes at 4C. 

Pellets were washed with ice-cold PBS and centrifuged. Pellets were resuspended in ice-

cold lysis buffer. Tagmentation reaction and purification were conducted according to 

manufacturer’s protocol (Active Motif). Libraries were sequenced on a NextSeq500 as 

2x75 paired end reads. 

 

Extracellular RNA. The exoRNeasy serum/plasma maxi kit (Qiagen) was used to isolate 

extracellular vesicles, which were quantified using Nanoparticle Tracking Analysis 

(Malvern, UK). 30 ml of cell culture supernatant was filtered to remove particles larger 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 14 

than 0.8 um. The filtrate was precipitated with kit buffer and filtered through a column to 

collect extracellular vesicles. These vesicles were then lysed with QIAzol® lysis reagent. 

Total RNA was isolated using the indicated phase separation method and used to make 

libraries for RNA-seq, which were sequenced on a NextSeq500.  

 

Exosomal RNA. Exosomes were isolated using the Exosome Total Isolation Chip 

(ExoTIC) as previously described (23). The ExoTIC device was first flushed with 2 mL of 

1X PBS buffer. Then, the EVs from culture media were isolated as follows: a five milliliter-

volume of culture medium was drawn up in the same syringe and connected with the 

ExoTIC device. This syringe along with the ExoTIC device, was fixed onto a syringe 

pump. A pump flow rate of 5 mL/h was applied to filter the culture media, concentrating 

EVs in front of the nanoporous membrane. Free proteins, nucleic acids, etc., which are 

smaller than the membrane pore size (∼50 nm) pass through the filter pores. The EV-

containing retentate was then washed by running 5 mL of 1X PBS through the device 

using the same syringe. The ExoTIC device was then disconnected from the syringe, and 

the purified EV solution was collected via the device inlet using a 200μL pipet. RNA 

extracted from the purified EV sample using the miRNeasy Mini Kit (Qiagen) was used to 

make libraries for RNA-seq, which were sequenced on a NextSeq500. 

 

Statistical Analysis. All quantitative data for functional assays has been reported as 

means ± standard deviation. Statistical significance for these was calculated using a t-

test and p-values <0.05 were considered significant.  
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Data and Code Availability. All code for figures, file parsing, and data processing is 

available via https://github.com/rreggiar/aale.kras. Sequencing data is accessible via 

GEO accession GSE120566. Additionally, UCSC Genome Browser tracks used in figures 

is accessible at https://genome.ucsc.edu/s/rreggiar/kras.and.ctrl.atac.  

 

RNA-seq Analysis. All fastq files were trimmed with Trimmomatic 2 (0.38) (27) using the 

Illumina NextSeq PE adapters. The resulting trimmed files were assessed with FastQC 

(28) and then passed through the following analytical pipeline: 

Salmon (1.0): pseudoalignment of RNA-seq reads performed with Salmon (29) using the 

following arguments: 

--validateMappings –gcBias --seqBias --numBootstraps 20 

using an index created from the GENCODE version 32 transcriptome fasta file using 

standard arguments.  

STAR (2.7.3a): trimmed reads were aligned to the Human genome with default arguments 

using a 2-pass approach described previously (30). 

The resulting .sam files were converted to bam, sorted, and indexed using Samtools with 

default arguments for all procedures (31). 

Sleuth (0.30.0): transcript differential expression was performed using Sleuth (32) and 

Wasabi (1.0.1) to convert the Salmon output into the proper format. Upon completion, the 

transcripts with q-values below 0.05 in the likelihood-ratio test were used to filter salmon 

output from which log2fc was manually calculated and paired to the sleuth output. Sleuth 

was primarily used for quantifying DE of Transposable Element loci in which case the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 16 

provided reference was the repeat masked loci sequences from the UCSC Genome 

Browser. 

DESeq2 (1.24.0): Salmon output was imported into a DESeq object using tximport (33) 

and differential expression analysis was performed with standard arguments (34). All 

results were filtered to have padj <= 0.01. In the case where R could only generate 0.00 

for the padj values, they were reset to the lowest non-zero padj value in the data set. 

Where count data was used, it was normalized across samples using DESeq. 

 

Transposable Element Content Analysis. Exon and 5’/3’ UTR Overlap: a whole 

genome .gtf file was downloaded from the UCSC genome browser table browser utility. 

This file was parsed and merged with the GENCODE v.29 reference transcriptome. This 

modified .gtf (now a .bed file) was passed to bedtools (35) where the overlap function was 

used with the following arguments: 

-a modified.gtf.bed -b all.ucsc.rmsk.genes.bed -wao -s > retained.overlap.bed 

alongside a whole genome .gtf retrieved as described above except generated from the 

repeat-masked browser track. The resulting overlapped bed file was processed and 

visualized using custom R scripts.  

Differential Expression: Differential transcript abundance was determined using the 

Salmon and Sleuth procedures described above provided with a custom index comprising 

both the GENCODE version 29 transcripts and all transcripts extracted from the Hammel 

lab GTF file as described in the single cell procedures. Sleuth output was filtered and 

visualized using R and Tidyverse.  
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Zinc Finger Protein Analysis. ChIP-exo data and supplementary information were 

extracted from supplementary data provided by Imbeault et al (24). ZNF genes were cross 

referenced with DESeq2 and RepeatMasker (36) outputs to extract relevant differential 

expression data of ZNF proteins and Transposable Element transcripts using R. 

RepeatMasker output from promoter analyses was cross referenced with ChIP-exo target 

data to identify potential regulatory targets of differentially expressed KZNFs. Only KZNF 

targets with ‘score’ [see Imbeault et al] >= 75 were kept for analysis. Analysis of all data 

was performed and visualized in R using custom scripts. 

 

Gene Set Enrichment Analysis. Genes determined to be significantly differentially 

expressed in DESeq2 output were first ‘pre-ranked’ in R by the following metric: 

Score metric = sin(log2FoldChange) * -log10(p-value) 

The resulting ranked files objects were processed using the R package fgsea alongside 

gene set files downloaded from msigdb using the R package msigdbr. Additional code 

was written for select vizualizations.  

 

Gene Ontology Analysis. Upregulated gene names were extracted from DESeq2 output 

using bash command line tools. Name lists were pasted into the Gene Ontology 

Consortium’s Enrichment Analysis tool powered by PANTHER. Output data was exported 

as .txt files and parsed using bash command line tools. Parsed data was visualized using 

custom R scripts. 
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Single Cell Analysis. Cell Ranger: Single cell output data was processed using 10x 

pipeline CellRanger. The mkfastq functionality was used to generate fastq files for further 

downstream analysis.  

Salmon – Alevin: fastq files generated above were passed to Salmon alevin with the 

default arguments for CHROMIUM V2 data. alevin was used to psuedoalign the libraries 

to both the GENCODE v32 combined with the repeat masked loci sequences extracted 

from Hg38 via the UCSC Genome Browser. A salmon index was built from this reference 

with standard arguments. These alevin output matrices were imported into R using 

tximport.  

STAR-solo: This feature within the STAR software was used to generate single cell SAM 

files for downstream processing. Run with the recommended arguments. 

Seurat (3.0): Normalization and UMAP clustering were performed with Seurat following 

their described approach optimized to our data set (see code notebook). Additional code 

was written to extract count data from Seurat single cell objects using the 

SingleCellExperiment R package (37).  

 

TCGA ZNF Analysis. TCGA-LUAD and GTEX lung phenotype and normalized count 

data were downloaded from the UCSC Xena browser TOIL data repository 

(https://xenabrowser.net/datapages/?cohort=TCGA%20TARGET%20GTEx&addHub=ht

tps%3A%2F%2Fxena.treehouse.gi.ucsc.edu&removeHub=https%3A%2F%2Fxena.tree

house.gi.ucsc.edu%3A443). The files were combined and patients were grouped by their 

KRAS mutation status and identity. These data were compared to and visualized 
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alongside of data generated from our analysis using custom R code. Significance was 

determined with a one-way t test implemented in the R t.test() function. 

 

RNA Editing. RNAEditingIndexer: Single cell SAM files were subsampled into 3 equal 

subsets per cluster based on barcode. Each SAM file was then converted into a BAM as 

described above and used as input for the RNAEditingIndexer script with bed files 

generated by extracting the locations of detected Transposable Element loci from Sleuth 

output (21).  

 

ATAC-seq Analysis. ENCODE: The ENCODE ATAC-seq pipeline was used for 

alignment, quality control, MACS analysis with default arguments to produce output for 

downstream analysis. 

HOMER: Narrow peaks files produced above were processed using a variety of HOMER 

tools with default arguments where not explicitly stated: 

findMotifsGenome was used to find enriched motifs in each ATAC library and their 

subsets.  

annotatePeaks was used to generate detailed annotations of the motifs found above and 

their context. It was also used to create gene set differential accessibility histograms by 

using the -hist argument set to 1.  

mergePeaks allowed us to identify unique and overlapping peaks across the two libraries. 

makeTagDirectory was used to generate peak height estimates to be applied on all 

histogram comparisons (38). 
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Quantification and statistical analysis. All statistical analyses were performed with R 

(version 3.6.1) running from the Rocker ‘Tidyverse’ Docker container 

(rocker/tidyverse:3.6.1). Unpaired, bi-directional t test was performed with the t.test() 

function on samples with 3 biological or technical replicates. Linear regression was 

carried out with the lm() function.  

 

Additional Code. All analysis was performed in the R programming language with 

supplemental scripts written in Bash. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 21 

REFERENCES 

1. S. Djebali et al., Landscape of transcription in human cells. Nature 489, 101-108 
(2012). 

2. E. S. Lander et al., Initial sequencing and analysis of the human genome. Nature 
409, 860-921 (2001). 

3. K. H. Burns, Transposable elements in cancer. Nat Rev Cancer 17, 415-424 
(2017). 

4. J. L. Rinn, H. Y. Chang, Long Noncoding RNAs: Molecular Modalities to 
Organismal Functions. Annu Rev Biochem 89, 283-308 (2020). 

5. D. Kelley, J. Rinn, Transposable elements reveal a stem cell-specific class of 
long noncoding RNAs. Genome Biol 13, R107 (2012). 

6. F. J. Slack, A. M. Chinnaiyan, The Role of Non-coding RNAs in Oncology. Cell 
179, 1033-1055 (2019). 

7. D. H. Kim et al., Single-cell transcriptome analysis reveals dynamic changes in 
lncRNA expression during reprogramming. Cell Stem Cell 16, 88-101 (2015). 

8. O. A. Kent et al., Repression of the miR-143/145 cluster by oncogenic Ras 
initiates a tumor-promoting feed-forward pathway. Genes Dev 24, 2754-2759 
(2010). 

9. N. Cancer Genome Atlas Research, Comprehensive molecular profiling of lung 
adenocarcinoma. Nature 511, 543-550 (2014). 

10. E. L. Jackson et al., Analysis of lung tumor initiation and progression using 
conditional expression of oncogenic K-ras. Genes Dev 15, 3243-3248 (2001). 

11. D. K. Simanshu, D. V. Nissley, F. McCormick, RAS Proteins and Their 
Regulators in Human Disease. Cell 170, 17-33 (2017). 

12. a. a. d. h. e. Cancer Genome Atlas Research Network. Electronic address, N. 
Cancer Genome Atlas Research, Integrated Genomic Characterization of 
Pancreatic Ductal Adenocarcinoma. Cancer Cell 32, 185-203 e113 (2017). 

13. Y. Liu et al., Comparative Molecular Analysis of Gastrointestinal 
Adenocarcinomas. Cancer Cell 33, 721-735 e728 (2018). 

14. A. S. Lundberg et al., Immortalization and transformation of primary human 
airway epithelial cells by gene transfer. Oncogene 21, 4577-4586 (2002). 

15. R. K. Powers, A. Goodspeed, H. Pielke-Lombardo, A. C. Tan, J. C. Costello, 
GSEA-InContext: identifying novel and common patterns in expression 
experiments. Bioinformatics 34, i555-i564 (2018). 

16. H. Liu et al., Tumor-derived IFN triggers chronic pathway agonism and sensitivity 
to ADAR loss. Nat Med 25, 95-102 (2019). 

17. E. Kim et al., Systematic Functional Interrogation of Rare Cancer Variants 
Identifies Oncogenic Alleles. Cancer Discov 6, 714-726 (2016). 

18. J. D. Buenrostro, B. Wu, H. Y. Chang, W. J. Greenleaf, ATAC-seq: A Method for 
Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 109, 21 29 
21-29 (2015). 

19. K. B. Chiappinelli et al., Inhibiting DNA Methylation Causes an Interferon 
Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell 162, 
974-986 (2015). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 22 

20. D. Roulois et al., DNA-Demethylating Agents Target Colorectal Cancer Cells by 
Inducing Viral Mimicry by Endogenous Transcripts. Cell 162, 961-973 (2015). 

21. S. H. Roth, E. Y. Levanon, E. Eisenberg, Genome-wide quantification of ADAR 
adenosine-to-inosine RNA editing activity. Nat Methods 16, 1131-1138 (2019). 

22. D. Enderle et al., Characterization of RNA from Exosomes and Other 
Extracellular Vesicles Isolated by a Novel Spin Column-Based Method. PLoS 
One 10, e0136133 (2015). 

23. F. Liu et al., The Exosome Total Isolation Chip. ACS Nano 11, 10712-10723 
(2017). 

24. M. Imbeault, P. Y. Helleboid, D. Trono, KRAB zinc-finger proteins contribute to 
the evolution of gene regulatory networks. Nature 543, 550-554 (2017). 

25. J. D. Fernandes et al., The UCSC repeat browser allows discovery and 
visualization of evolutionary conflict across repeat families. Mob DNA 11, 13 
(2020). 

26. H. S. Gannon et al., Identification of ADAR1 adenosine deaminase dependency 
in a subset of cancer cells. Nat Commun 9, 5450 (2018). 

27. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30, 2114-2120 (2014). 

28. J. Brown, M. Pirrung, L. A. McCue, FQC Dashboard: integrates FastQC results 
into a web-based, interactive, and extensible FASTQ quality control tool. 
Bioinformatics,  (2017). 

29. R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, C. Kingsford, Salmon provides fast 
and bias-aware quantification of transcript expression. Nat Methods 14, 417-419 
(2017). 

30. A. Dobin et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-
21 (2013). 

31. H. Li et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics 
25, 2078-2079 (2009). 

32. H. Pimentel, N. L. Bray, S. Puente, P. Melsted, L. Pachter, Differential analysis of 
RNA-seq incorporating quantification uncertainty. Nat Methods 14, 687-690 
(2017). 

33. C. Soneson, M. I. Love, M. D. Robinson, Differential analyses for RNA-seq: 
transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 
(2015). 

34. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). 

35. C. Guo et al., Tau Activates Transposable Elements in Alzheimer's Disease. Cell 
Rep 23, 2874-2880 (2018). 

36. S. Tempel, Using and understanding RepeatMasker. Methods Mol Biol 859, 29-
51 (2012). 

37. T. Stuart et al., Comprehensive Integration of Single-Cell Data. Cell 177, 1888-
1902 e1821 (2019). 

38. S. Heinz et al., Simple combinations of lineage-determining transcription factors 
prime cis-regulatory elements required for macrophage and B cell identities. Mol 
Cell 38, 576-589 (2010). 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 23 

ACKNOWLEDGEMENTS 

We thank members of the Kim Lab, Brooks Lab, Haussler Lab, and Carpenter Lab for 

helpful discussions. This work was supported by funds from the Baskin School of 

Engineering and the Ken and Glory Levy Fund for RNA Biology (to D.H.K.), the NHGRI-

funded UCSC Genomic Sciences Graduate Training Program (NIH T32 HG008345) (to 

R.E.R and H.H.), the NIGMS-funded UCSC IMSD Program (NIH R25 GM058903) (to 

D.C.), and the NCI (NIH R01 CA227807, NIH R01 CA239604, NIH R01 CA230263) (to 

E.C.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 24 

AUTHOR CONTRIBUTIONS 

D.H.K. conceived and designed the study and wrote the manuscript, R.E.R. performed 

computational analysis and generated figures, S.V.M., H.H., M.O., D.C., E.L., L.W., E.K., 

and S.M. performed experiments, J.F., E.C., and U.D. provided resources, and G.M. 

performed initial computational analysis. The authors declare no competing interests.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.367771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367771
http://creativecommons.org/licenses/by/4.0/


 25 

 

 

Figure 1 
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Fig. 1. Mutant KRAS induces an intrinsic IFN-stimulated gene signature.  

a. Volcano plot depicting the differential expression of IFN-stimulated genes in mutant 

KRAS AALEs. b. Venn diagram highlighting the unique and shared genes across GSEA-

enriched IFN gene sets. c. Seurat UMAP with k-means clusters representation of single 

cell RNA sequencing results. d. Violin plots depicting the distribution of averaged gene 

set expression in cells belonging to each k-means cluster. e. Distributions of normalized 

counts for DE ISGs across Seurat-identified clusters of single cells. 
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Figure 2 
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Fig. 2. Epigenetic reprogramming of ISGs by mutant KRAS. 

a. Relative ATAC-seq peak density (KRAS/CTRL) calculated proximal to the TSS of 

genes within each respective gene set. b. Annotations of ISG ATAC-seq peaks unique to 

KRAS AALEs. * indicates 2 unique peaks. c. UCSC genome browser tracks of 

ATAC-seq and RNA-seq alignments in both KRAS and CTRL AALEs for IRF9, OAS2, 

and IFIT1. d. Selected enriched motifs from the unique KRAS ATAC-seq peaks assigned 

to ISGs by Homer. e. Volcano plot of all differentially expressed transcription factors with 

motifs in unique KRAS ATAC peaks assigned to ISGs by Homer. 
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Fig. 3. Mutant KRAS regulates repetitive noncoding RNA expression and editing. 

a. Volcano plot of all differentially expressed TE species aggregated from individual loci. 

b. Violin plots of the distribution of TE family expression across each single cell cluster. 

c. Violin plots depicting distribution of L1MC4a and AluSx expression across single cells 

clusters. d. Boxplots of Alu RNA editing from equal subsamples of cells from each single 

cell cluster. e. Distribution of normalized counts for PKR, MDA5, and RIG-I across Seurat-

identified clusters. 
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Fig. 4. Broad epigenetic silencing of KRAB zinc-finger genes by mutant KRAS. 

a. Volcano plot of all differentially expressed zinc-finger genes with known annotations. 

b. Relative ATAC-seq peak density (KRAS/CTRL) calculated proximal to the TSS of 

KZNF genes and annotations of ATAC-seq peaks assigned to KZNFs and unique to 

CTRL AALEs. * indicates 2 unique peaks. c. UCSC genome browser tracks of ATAC-seq 

and RNA-seq alignments in both KRAS and CTRL AALEs of down-regulated ZNF90, 

ZNF736, and ZNF682. d. Selected enriched motifs from the unique KRAS ATAC-seq 

peaks assigned to KZNFs by Homer. e. Model of epigenomic reprogramming of KZNFs, 

repetitive noncoding RNAs, and IFN-stimulated genes by mutant KRAS (created with 

BioRender.com). 
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SUPPLEMENTARY FIGURES 
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Supplementary Figure 1. Mutant KRAS reprograms the transcriptome. 

a. Schematic of experimental workflow (created with BioRender.com). b. Volcano plot 

depicting the differential expression of GENCODE genes in mutant KRAS AALEs. c. 

GSEA normalized enrichment score for differentially expressed genes in mutant KRAS 

AALEs. d. Volcano plot depicting the differential expression of GENCODE genes in 

mutant KRAS HA1Es. e. GSEA normalized enrichment score for differentially expressed 

genes in mutant KRAS HA1Es.    
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Supplementary Figure 2. Extracellular RNAs released from mutant KRAS AALEs. 

a. Ribbon plot of extracellular vesicle size abundance from nanoparticle tracking analysis. 

Solid line is mean of three measurements and the surrounding filled-in area reflects their 

standard deviation. Solid points are local maxima with corresponding value labelled 

adjacently. b. Volcano plots depicting the differential enrichment of lncRNA and protein-

coding genes in mutant KRAS AALE extracellular RNAs. c. Correlation between 

intracellular and extracellular RNAs that are differentially expressed/enriched from mutant 

KRAS AALEs. d. Boxplot comparing distributions of average counts across conditions in 

TE clades, significance determined by one-way t-test. e. Boxplot of detected Alu editing 

in three replicates of RNA-seq performed on extracellular vesicles isolated from media 

from each condition. 
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Supplementary Figure 3. Mutant KRAS represses KZNFs in vitro and in vivo. 

a. UCSC genome browser tracks of ATAC-seq and RNA-seq alignments in both KRAS 

and CTRL AALEs of down-regulated ZNF826P, ZNF382, and ZSCAN18. b. UCSC repeat 

browser tracks of ChIP-seq peaks for differentially expressed KZNFs over indicated TE 

consensus sequences. c. Distribution of differentially expressed ZNFs (in mutant KRAS 

AALEs) in RNA-seq data from GTEx lung tissues and TCGA lung adenocarcinomas by 

KRAS mutation status.  
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