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Abstract 

Automatic video tracking has become a standard tool for investigating the social behavior of insects.               

The recent integration of computer vision in tracking technologies will likely lead to fully automated               

behavioral pattern classification within the next few years. However, most current systems rely on offline               

data analysis and use computationally expensive techniques to track pre-recorded videos. To address             

this gap, we developed BACH (Behavior Analysis maCHine), a software that performs video tracking of               

insect groups in real time. BACH uses object recognition via convolutional neural networks and identifies               

individually tagged insects via an existing matrix code recognition algorithm. We compared the tracking              

performances of BACH and a human observer across a series of short videos of ants moving in a 2D                   

arena. We found that, concerning computer vision-based ant detection only, BACH performed only             

slightly worse than the human observer. Contrarily, individual identification only attained           

human-comparable levels when ants moved relatively slow, and fell when ants walked relatively fast.              

This happened because BACH had a relatively low efficiency in detecting matrix codes in blurry images                

of ants walking at high speeds. BACH needs to undergo hardware and software adjustments to               

overcome its present limits. Nevertheless, our study emphasizes the possibility of, and the need for,               

integrating real time data analysis into the study of animal behavior. This will accelerate data generation,                

visualization and sharing, opening possibilities for conducting fully remote collaborative experiments. 
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Introduction 

Scientists apply automated pattern analysis to images of experimental animals to extrapolate            

measures of their behavior1–3. Annotating behaviors using computer algorithms, rather than employing            

human labor, increases experimental reliability because the performance of machines varies less than             

that of humans. In addition, machines easily manage to focus simultaneously on multiple individuals for               

long periods of time, without suffering from tiredness. This allows generating otherwise unachievable             

data amounts in short time windows. 

In the last decade, automatic video tracking systems have emerged as ideal tools to investigate the                

behavior of ants4–10. These live in compact societies that thrive in the laboratory and easily adapt to                 

experimental setups, performing a relatively narrow repertoire of individual actions and engaging in             

simple social interactions. Automatic trackers can therefore easily scrape a significant amount of             

information just by scanning images of their colonies. Researchers usually employ tracking systems to              

analyze groups of ants moving in two-dimensional arenas, tagging each individual with unique identity              

markers (e.g., QR or ArUco matrix codes7,8,11,12 or combinations of painted color dots 4–6,13) and using                

cameras to take images from top and/or bottom14. Many video trackers rely on inferring the position and                 

orientation of insects via the detection of individual tags in images taken at given time intervals7,12. From                 

tag positions, experimenters can then estimate a variety of informative individual attributes, such as the               

distance traveled between data points or the general activity levels of individuals. Combined together,              

tag positions, relative code orientations and distances allow reconstructing social interaction networks            

within groups3,15,16. More recent ‘next generation’ video tracking systems integrate insect identification            

with analyses of their shapes and movements13. This not only allows to automatically identify individual               

animals, but also to classify some of their behaviors13,16,17. 

Although the technology underlying insect video tracking advances rapidly and significantly, most of             

the current systems still rely on offline data processing. This means that researchers perform tracking on                
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previously recorded videos and analyse data only a posteriori. This approach allows correcting errors              

and employing sophisticated and costly computational strategies, or even processing earlier datasets            

using future knowledge. On the other hand, offline data processing does not allow for simultaneous               

insights into already running experiments18. Graphics Processing Units (GPUs), which allow accelerating            

computation, have instead the potential to address this gap via integrating real time data analysis19,20 in                

the traditional way of conducting tracking-based studies on insect behavior. In principle, GPU-based real              

time data analysis systems allow tracking experimental individuals and simultaneously analyze data            

while storing these for further processing, making results immediately available. Combining real-time            

processing with traditional experimental methods, human observers could identify individual behavioral           

attributes, characterize social interactions and even determine group-level emerging properties before           

the end of an experiment. This not only increases the potential discovery rate by accelerating data                

generation and condivision, but also allows for iterative adjustments of experimental parameters based             

on real-time results. 

With the aim of advancing in such direction, we developed BACH (Behavior Analysis maCHine), a               

real time video tracking system based on computer vision. BACH integrates existing open source              

convolutional neural networks21,22, an object identification model 21 and a system detecting matrix codes             

(ArUco 23,24). We conducted a series of experiments to compare the performances of BACH and a human                

observer (HO), aiming to: 1) identify whether and how BACH made mistakes or omissions, and develop                

strategies to limit these; 2) determine details about the subtasks BACH and HO performed, i.e.,               

shape-based detection and code-based identification; 3) generate data of general relevance about the             

performances of humans and machines in following trajectories of individually identified insects. 

We found that HO executed in weeks only a fraction of the tracking work that BACH did in real time.                    

However, HO always outperformed BACH in both ant detection and identification. Nevertheless, the             

degree to which the performance of HO exceeded that of BACH depended on the subtask (detection vs.                 
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identification) and on the tracking conditions (e.g., combinations of light type and ant-hosting             

environment). While BACH identified ants almost as efficiently as HO, its identification performance did              

not achieve human-like accuracy levels. HO performed better than BACH because of errors resulting              

from BACH’s way to detect and identify ants; in addition, while the physical limitations of our                

experimental prototype (camera resolution, blurred images etc.) seemingly affected the performance of            

BACH, they affected that of HO to a lesser extent. 

Besides developing and testing another tool to conduct research on insect social interactions, this              

study aims to encourage researchers to integrate real time data analysis in their systems for               

investigating animal behavior. This may help achieve faster result generation and conduct fully remote              

cooperative research projects. 
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Material and methods 

Experimental settings 

We built a casing prototype using 5mm-thick black acrylic, aiming to host a single experimental ant                

colony per experiment (Figure 1a). This included a nest area (17x12x17cm) and a foraging area               

(17x12x18cm) connected by a 5mm-diameter tunnel, which we kept closed in this study (Figure 1b). The                

casing stood on a plaster of Paris base (Figure 1c), which we humidified with water prior to experiments.                  

In the nest area, we molded three interconnected circular chambers in the plaster base, covering these                

with a glass lid. We painted the facing-down side of the lid with Sigmacote® (Sigma) to prevent ants                  

from climbing onto the ceiling and walking upside down. In the foraging area, ants walked on the plaster                  

surface, and Fluon Ⓡ (Sigma) on the chamber walls prevented them from escaping. We positioned              

webcams (Logitech Brio) with the infrared filter removed in compartments above each area, and              

connected them using USB cables to a desktop computer (DELL Precision 7820 Tower Workstation              

upgraded with Dual GTX1080 GPUs and 128Gb RAM ). We affixed strips of white adhesive tape to the                 

chamber walls to minimize the proportion of dark pixels in the images, which facilitated automatic               

exposition and focus. Two crossed strips of tape on the plaster floor of the foraging area further                 

facilitated the camera focus. 

Lighting 

In the nest area, two ready-made circular mini panels of 36 LED diodes, oriented at 45 degrees                  

relative to the ceiling of the box, conveyed 850nm near infrared light (Figure 1d). Invisible to ants, near                  

infrared light simulated the darkness of a real ant nest interior, at the same time allowing image                 

recording via IR-sensitive webcams. In the foraging area we employed white, UV and infrared light,               

conveyed via three independent circuits of LED diodes (24, 4 and 13 units for white, UV and IR light,                   

respectively) manually soldered to a stripboard (Figure 1d, video S1). We set up the lighting system to                 
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alternate UV, white and IR light in the foraging area via an Arduino microcontroller, through customizable                

commands.  

Ant collection and preparation 

For experiments, we collected and kept in the laboratory an ant colony fragment (genus              

Camponotus, Figure 1e). We printed, hand-cut and glued 20 2x2mm 4x4-pixel ArUco markers23,24 (from              

0 to 19, obtained via http://chev.me/arucogen/) on the abdomens of ice anesthetized ant workers, using               

Araldite Ⓡ Rapid 5 Minutes epoxy. Then, we immediately placed marked ants in an open container for                

recovery; finally, we either placed them in the nest chambers after a second brief ice anesthesia, or                 

released them from the container into the foraging area through a Fluon-coated funnel placed in the                

webcam window above. We waited for ants to recover normal activity levels before recording videos. 

Image annotation and model training 

For model training and testing, we established two sets of images including ArUco-tagged and              

non-tagged ants, one for the nest area and the other one for the foraging area. We extrapolated images                  

from videos taken in settings identical or similar to those of the experimental tracking. For training and                 

validation, we used respectively 1551 and 53 images in the nest, and 2597 and 108 in the foraging area.                   

We manually annotated ant images using the software Yolo_mark21, selecting rectangular ant-including            

areas. 

Tracking  

Using the two models resulting from the training, BACH (https://github.com/isazi/bach ) tracked ants            

in two consecutive steps (Figure 1f). First, it tried to detect each ant using the YOLO deep neural                  

network model 21,22, processing each frame of the input video independently but in the same order as                

frames appeared in the video. Then, it added to a list all the detected entities for which the probability of                    

looking like an ant exceeded a user-defined threshold; for each detected entity, the information stored in                

the list included the coordinates of the top-left and bottom-right vertices of a rectangular bounding box                
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drawn around each ant. In the second step, BACH processed the same frame using OpenCV25 to detect                 

ArUco markers. Finally, it stored each detected marker in a list containing marker ID’s and the xy                 

coordinates of their central point (the intersection of the diagonals of the bounding box). 

BACH then processed the list containing the detected entities and the one containing the detected               

ArUco markers. First, it compared the newly detected entities to the list of those detected in the previous                  

frames, to measure potential overlaps between their bounding boxes. If the bounding-box of a newly               

detected entity did not overlap with any already known box, BACH added it to the system as a new ant                    

with id "-1". If the bounding-box overlapped with one or more boxes with an already known identity,                 

BACH did not add it to the system as a newly detected entity, updating instead the position of the ant                    

with the largest overlap with the new detection. In addition, it also marked the known ant as "seen" for                   

the current frame. After BACH processed all entities, it engaged in a similar process for the detected                 

ArUco markers, assigning to an entity each detected marker whose central point fell inside its               

bounding-box. In case the central point of a marker fell in the intersection of two or more                 

bounding-boxes, BACH assigned it to the entity whose central point lied the closest to the marker's                

central point. Each entity kept track, using an ordered list, of the count of all ArUco markers assigned to                   

it, and used the ArUco marker with the highest count as its own ID. This ensured that the omission or                    

incorrect detection of a marker did not affect the status of a previously detected and identified ant,                 

allowing BACH to attribute identities to ants even when it could not see their matrix codes. 

BACH deleted entities still present in the system if it could not detect them for a user-defined                 

number of frames. In other words, in the event that a given ant detected in a frame became undetected                   

in subsequent frames, BACH would retain its latest detection throughout a certain number of frames. We                

defined this as ‘ghost threshold’ because, in tracked videos, the bounding box of an ant becoming                

undetected remained empty in the location of its last detection. If BACH detected the ant again before                 

reaching the ghost threshold, it kept tracking it, whereas it deleted the retained detection if it did not                  
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succeed in detecting the ant again. We set the ghost threshold to one frame (0.1 sec) for the tracking in                    

the foraging area, and five frames (0.5 sec) for that in the nest area. We used such values because ants                    

in the foraging area tended to move faster than in the nest, resulting in more missed detections. Finally,                  

BACH appended all entities still present in the system to the output file of the tracker, which recorded the                   

position of each identified entity for each frame. 

Video recording 

We randomly selected four sets of around twenty workers of various sizes (one set for each of four                  

recording days). This allowed us to account for random variation stemming from individual behavior and               

from the manual positioning of the matrix markers on ant bodies. We recorded videos at 10                

frames/second for 25 seconds, in three different conditions: 1) foraging area exposed to infrared light; 2)                

foraging area exposed to visible plus UV light; 3) nest area exposed to infrared light. For each of the                   

three conditions, we recorded ten different videos for each of four days (120 videos in total), with                 

10-minute pauses in between. 

Measuring system efficiency 

Frame Extraction and ant identification by the Human Observer (HO) 

We randomly selected four videos per condition taken across at least three different days. Each               

video consisted of 250 frames labelled 0 to 249. As manual ant identification required a significant                

amount of repetitive work, we extracted and analysed only one in ten frames (19 frames from 60 to 240).                   

We took frame 60 as a starting point because, after activation, the camera focus stabilized by frame 60                  

across all videos. HO identified ants by reading their ArUco codes and using ImageJ26 to compare their                 

coordinates with those attributed by BACH (and not knowing the identities BACH gave to ants). This                

allowed HO to align ants with the coordinates provided by BACH and to manually annotate coordinates                

of ants that BACH did not detect. HO also classified each ant in terms of visibility of its ArUco marker                    

(horizontal, tilted, invisible, Figure S1a, b, c) and blurriness (sharp, blurry, very blurry, Figure S1 d, e, f) .                   
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HO also considered codes as invisible under other circumstances, including: instances in which one or               

more ants partially covered the body of another ant, altering its shape and/or obstructing its ArUco code                 

(Figure S1 g); instances in which ants partially or totally climbed the foraging area walls (Figure S1 h),                  

and as they did not contrast against the black acrylic walls of the tracking setup. In such cases, BACH                   

could not detect them, and therefore could not locate and identify their matrix code; instances in which                 

ants bended their abdomen forward in order to groom themselves (Figure S1 i), which altered their                

shape and made their ArUco codes invisible to the cameras; instances in which ants climbed on the nest                  

glass lid ceiling and walked upside down, which hid matrix codes under their bodies (Figure S1 j).  

Verification of HO identification and manual tracking 

To evaluate and compare the performances HO and BACH, we needed a completely accurate ant               

identification that we could use as a reference. Therefore, we further manually tracked all ants across all                 

frames of the 12 analyzed videos. This procedure differed from the aforementioned tracking of HO,               

which only analyzed one frame per time without referring to other frames within the same video, and did                  

not know the identities attributed by BACH. Contrarily, in this procedure we verified and corrected all                

detections, and for instances in which HO or BACH did not identify codes, we replayed videos and                 

followed individuals until their code appeared identifiable in a preceding or following frame. In addition,               

we manually tracked all ‘unknown’ individuals that HO or BACH could never identify in any of the frames.                  

Besides spotting misidentification errors, this further tracking allowed us to fill gaps between frames, for               

example when HO or BACH identified an individual at frame 60, did not identify it at frames 70, 80, 90,                    

and identified it again at frame 100. Importantly, it also allowed retrieving the coordinates of all                

individuals across all frames, which in turn enabled us to classify attributes of the instances in which                 

BACH and HO detected/identified them, or failed to do so. 

Finally, during this manual verification, we discovered two peculiar cases of detection by BACH: in               

the first, which we defined as ‘double’ (Figure S1 k), BACH detected two ants as a single one; in the                    
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second, that we defined as ‘double plus one’, it first detected two ants as a single one, and then                   

detected correctly one of the ants while still detecting both ants as a single one (Figure S1 l). In our                    

manual tracking, we treated double detections as equivalent to detecting only one of the ants, and                

"double plus one detection" as equivalent to detecting both ants. 

Ant walking speed calculations 

To have an idea of the walking speed of each experimental individual, we used as a proxy the                  

distance between the xy coordinates of the same ant in two consecutive frames. This corresponded to                

the average walking speed of the individual during the second preceding each analyzed frame. As a                

consequence of this, we could not calculate the ant speed at the first analyzed frame of each video                  

(frame 60). Therefore, we removed frame 60 in all analyses taking into account the ant walking speed. 

BACH and HO retrieved the xy coordinates of ants by annotating their central point of its shape                 

within the picture. HO did this by eye with the support of ImageJ for reading individuals’ coordinates; for                  

BACH, an individual coordinates corresponded to the center of a bounding box including each ant shape                

in a given frame. Therefore, if individual positions varied slightly across two consecutive frames (e.g., an                

ant moved a leg without changing location), BACH’s bounding boxes changed in order to fit the new                 

shape. This ultimately resulted in a shift of the coordinates of the bounding box’s center, which created a                  

small, artifactual displacement the ant did not actually make. To avoid including this artifactual variation,               

we visually analyzed a subsample of ant displacements with the corresponding speed measures, and              

decided to round to zero all speed values lower than 0.75 mm/sec. 

Statistical analyses 

For statistics on the number of ant detections, we used R27 to conduct Pearson’s chi square tests.                 

We proceeded this way, which implied considering each video frame as independent from the previous               

one, because BACH detected ants within each frame independently from their position in the previous               

frame. 

10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.03.366195doi: bioRxiv preprint 

https://paperpile.com/c/UUNdx5/ihpl
https://doi.org/10.1101/2020.11.03.366195
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

For analyzing identification data, we needed to consider interactive factors and/or used random             

intercepts that allowed fitting repeated measure designs on binomial or count data. Therefore, we used               

the R package lme4 28 to implement Generalized Linear Mixed Models (GLMMs). For most models, we               

included individual identity nested in frame number nested in video as a random factor (in the R package                  

lme4: 1|video/frame/id). We used this structure because BACH identified individuals also based on their              

position and identity in the previous frames, while videos involved different sets of individuals. 

To test the significance of interactive effects in GLMMs, we compared models including both the               

interaction and the single factors with corresponding models only including single factors; similarly, to              

test the significance of single factors in models without interactions, we compared the model including               

the factor with the corresponding model only including the intercept. For such comparisons, we used the                

R function ‘anova’ with ‘Chisq’ test specification. To test specific post hoc contrasts, we used the R                 

package emmeans29 (with Tukey HSD test and automatically adjusted p values) when the factors of               

interest had more than two levels. When factors had only two levels, we instead referred to the contrasts                  

appearing in the output of the R function ‘summary’ applied to each model. If the residual deviance                 

considerably exceeded the residual degrees of freedom, we corrected GLMs and GLMMs for             

overdispersion by including each observation as an additional random factor. If models failed to              

converge or resulted in singular fits, we used optimizers (from the optimx R package 30,31). We provide                

scripts for statistical tests in the supplementary material. 
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Results 

Ant detection 

HO detected ants significantly better than BACH, overall (Pearson's chi-squared test, χ2=725.68,            

df=1, p<0.001) and in each of the three tracking conditions (Pearson's chi-squared tests, nest:              

χ2=212.17, df=1, p<0.001; foraging area under visible light: χ2=227.28, df=1, p<0.001; foraging area             

under infrared light: χ2=288.64, df=1, p<0.001, Figure 2a). Considering all conditions together, HO             

detected ant shapes in all instances, while BACH did so 83.8% of times. As HO never failed to detect                   

ants, its accuracy did not vary across conditions. On the other hand, BACH detected 86.6% of ant                 

shapes within the nest, 84.7% in the foraging area with visible light and 79.3% in the foraging area with                   

infrared light, with a significant condition-specific variation in detection efficiency (Pearson's chi-squared            

test, χ2=27.945, df=2, p<0.001, Figure 2a). 

The walking speed of ants varied significantly across conditions (GLMM, χ2=12.699, df=2, p<0.01,             

Figure 2b). Ants walked the fastest in the foraging area under visible light (6.71±9.4 mm/sec),               

significantly faster than the average 2.44±4.9 mm/sec of ants in the foraging area under infrared light                

(estimate=2.225, z=3.484, p<0.01) and than the average 1.19±2.2 mm/sec of ants inside the nest              

(estimate=2.888, z=4.521, p<0.001). In infrared light conditions, ant speed did not vary between nest              

and foraging area (GLMM, estimate=0.663, z=1.032, p=0.55). BACH-detected ants walked faster than            

undetected ants, in general (GLMM, estimate=0.07378, z-value=6.653, p<0.001) and in each tracking            

condition (GLMMs; nest: estimate=0.17, z-value=3.492, p<0.001; foraging area under infrared light:           

estimate=0.11, z-value=4.288, p<0.001; foraging area under visible light: estimate=0.05, z-value=4.665,          

p<0.001, Figure 3a). HO detected ants in all instances, therefore ant walking speed did not affect its                 

performance. 

Sometimes BACH detected two ants as a single one, at a rate that varied significantly across                

conditions (Pearson's chi-squared test, χ2=11.31, df=2, p<0.01). BACH produced 72 of such “double             
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detections” inside the nest (4.8% of total nest detections), 48 in the foraging area with visible light                 

(3.4%), and 79 in the foraging area with infrared light (6.2%). “Double plus one” detections occurred                

instead only once in the nest (0.13%), 6 times in the foraging area under visible light (0.36%), and 9                   

times in the foraging area under infrared light (0.72%), also varying significantly across conditions              

(Pearson's chi-squared test, χ2=7.4785, df=2, p=0.023). In two of the videos taken in the nest area, we                 

did not apply Sigmacote® on the facing down side of the glass covering the nest chambers, which                 

resulted in ants walking on the nest glass ceiling. Of 238 instances of ants walking on the glass ceiling                   

(31.3% of total detections in the two videos), BACH failed to detect ants 44 times (18.4%). Finally,                 

sometimes ants partially or totally climbed the foraging area walls. In some of such cases, BACH could                 

not detect them. This occurred 98 times in the foraging area in visible light and 78 times in the foraging                    

area in infrared light (respectively, 7% and 6.1% of total detections in each condition). 

 

Ant identification 

HO identified ants better than BACH across all conditions (GLMM, nest: estimate=0.88, z=8.61,             

p<0.001; foraging area in infrared light: estimate=1.89, z=17.16, p<0.001; foraging area in visible light:              

estimate=1.95, z=20.38, p<0.001, Figure 2a). Ant walking speed, ant image blurriness and code visibility              

interactively affected both BACH’s and HO’s ant identification (anovas on GLMMs, respectively:            

χ2=122.81, df= 12, p<0.001; χ2=954.18, df= 12, p<0.001). However, non-identified ants generally walked             

faster than identified ants (BACH: χ2=139.25, df=1, p<0.001, Figure 3b; HO: χ2=237.83, df=1, p<0.001,              

Figure 3c), tending to appear blurry in many video frames. Accordingly, ant walking speed varied               

significantly for different code blurriness classes (namely: ‘sharp’, ‘blurry’, ‘very blurry’; anova on             

GLMMs, ‘Chisq’ test, χ2=303.61, df=2, p<0.001). In particular, sharp ants walked at lower speeds              

compared to blurry and very blurry ants (post hoc contrasts, respectively: estimate: -1.23, z-ratio=-7.814,              

p<0.001; estimate: -2.72, z-ratio=-17.494, p<0.001), and blurry ants walked at lower speeds compared             
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to very blurry ants (estimate:-1.49, z-ratio=-8.264 ; p<0.001). This corresponded to different walking             

speeds in the foraging area (under visible light: sharp: 3.6±6.99 mm/sec, slightly blurry: 6.18±8.99              

mm/sec, very blurry: 6.57±9.09 mm/sec; under infrared light: sharp: 2.09±4.28 mm/sec, slightly blurry:             

3.08±5.68 mm/sec, very blurry: 5.66±8.86 mm/sec). We only found sharp ant images in videos taken               

inside the nest, where ants generally walked at a lower speed (1.19±2.2 mm/sec) compared to the other                 

conditions. We concluded that BACH may have had difficulties in identifying fast-walking ants because              

of their blurry codes. We therefore dropped speed in favor of image blurriness in further analyses. 

We found an interactive effect of image blurriness and code visibility on identification accuracy for               

both BACH and HO, overall (anovas on GLMMs, respectively: χ2=111.19, df= 4, p<0.001; χ2=1102.3, df=               

4, p<0.001) and in the foraging area, both under infrared light (BACH: χ2=71.816, df= 4, p<0.001; HO:                 

χ2=133.98, df= 4, p<0.001) and visible light (BACH: χ2=23.338, df= 4, p<0.001; HO: χ2=401.59, df= 4,                

p<0.001, significant contrasts for each condition in Table S1). As in the nest area we only encountered                 

sharp ant images, we only tested the effect of code visibility, which we found significant for both BACH                  

(anova on GLMMs, χ2=460.87, df= 2, p<0.001) and HO (anova on GLMMs, χ2=1333, df= 2, p<0.001). In                 

general, and as expected, BACH and HO tended to best identify ants in sharp images and when they                  

could see their codes. 

Both HO and BACH occasionally attributed wrong identities to ants (Figure 2a). For all conditions               

pooled, HO identified ants in 57.46% of all instances, accurately doing so 57.15% of times. BACH                

identified ants in 38.53% of instances, with 35.47% of correct identifications. In the nest area, HO                

identifications reached 65.18% of the total, with 64.9% of correct identifications; in the foraging area               

under visible light, HO identified ants in 57.6% of instances, never making mistakes; finally, in the                

foraging area under infrared light, it identified codes 48.25% of times, with 47.46% accuracy. In the nest                 

area, BACH identified codes 58.23% of times, with 54.92% correct identifications; in the foraging area               

under visible light, it identified codes the 30.84% of times, with 26.43% accuracy; in the foraging area                 
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under infrared light, identifications dropped at 23.79% of the total, and correct identifications at 22.52%.               

The ratio of correct to total identifications of HO significantly exceeded that of BACH across conditions                

(nest: Pearson χ2 test, χ2=47.536, df= 1, p<0.001; foraging area in visible light: Pearson χ2 test,                

χ2=119.97, df= 1, p<0.001; foraging area under infrared light: Pearson χ2 test, χ2=9.8263, df= 1, p<0.01).                

This indicated that, when identifying codes, BACH made more mistakes than HO. BACH attributed              

incorrect identities in 165 of 1628 identification instances (10.13%). These mistakes resulted from 27              

identity exchange events between ants located in close proximity (7.46±3.52mm). In such occasions,             

BACH did not disentangle the shapes of different individuals, for example detecting one ant shape and                

part of the other ant shape as a single entity. Even if such mistaken detections lasted only for one or few                     

frames, they ultimately resulted in identities to shift from an individual to another. BACH kept attributing                

the shifted identity through a varying number of frames (6±5.15), typically until it managed to read again                 

the ArUco code of the identity-shifted individual. Identification errors of HO consisted instead in wrong               

readings of the ArUco codes. 
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Discussion 

In this study, we developed and tested BACH, a real time video tracking system for insects based                 

on computer vision and matrix code recognition. We then compared the performances of BACH and a                

human observer (HO), evaluating their efficiency in 1) detecting ant shapes and 2) identifying individuals               

via integrating the detected shapes with matrix codes. We found that, although HO employed weeks to                

track a fraction of the images BACH tracked in real time, it always qualitatively outperformed BACH,                

making significantly less mistakes and omissions. However, this varied depending on the subtask and              

the tracking conditions. 

For ant detection only, BACH generally performed only slightly (although significantly) worse than             

HO across all conditions. Interestingly, BACH-detected ants walked generally faster compared to their             

undetected counterparts. This suggests that, with the detection models it employed, BACH achieved a              

better efficiency for moving rather than non-moving entities. This probably resulted from the higher              

shape variation of walking compared to non-moving ants, which increased the probabilities for BACH to               

encounter familiar shapes it already knew from the training phase. BACH also had a fairly high efficiency                 

when detecting ants walking relatively fast, even though these appeared blurry in the frames. This               

means that BACH detected unfocused ant shapes nearly as efficiently as focused shapes, probably              

because the training image set also included blurry images of ants.  

BACH had a low detection efficiency in a few cases, for example when ants partially climbed on the                  

black walls of the setup casing, which made them indistinguishable from the background. In future               

studies, we could solve this problem by using fair rather than black acrylic, and/or by including more                 

images of ants attempting to climb the setup’s walls in our training sets. BACH’s detection performance                

also fell when multiple ants engaged in clusters (‘double’ and ‘double plus one’ detections), because               

telling apart overlapping ant shapes became difficult. Although we still need to implement a solution for                

this in BACH, a recently developed tracking system (AnTrax13,26) has elegantly worked around this issue.               
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This system, optimized for cluster-formic Clonal Rider Ants, retains the identities of individuals when              

they join a cluster and become indistinguishable from other ants. When such individuals leave the               

cluster, AnTrax retrieves their identity. This process allows maintaining a coherent flow of information              

even without knowing individual positions within the cluster at all times. In future versions of BACH, we                 

aim to integrate a similar process that will use individual histories to retain their identities while they                 

engage in clusters. In principle, as BACH runs modules in parallel, this will not compromise its real-time                              

performance.  

Contrary to ant detection, BACH’s identification efficiency based on matrix codes varied            

dramatically across tracking conditions. While BACH identified ants only slightly less effectively than HO              

in the nest area, its performance fell to about half of that of HO in the foraging area. This probably                    

resulted from ants walking faster in the foraging area compared to the nest, which most likely occurred                 

because the UV and visible light, as well as the absence of shelter, disturbed the predominantly                

nocturnal Camponotus ants. Our manual tracking and verification revealed that higher walking speed             

produced more instances of blurry images and therefore blurred matrix codes, which BACH often failed               

to identify. Accordingly, and contrary to what we found for ant detection, BACH-identified ants walked               

slower than non-identified ants, confirming that BACH made most identification mistakes for ants walking              

relatively fast. To solve this issue, we should invest future efforts in facilitating matrix code identification.                

From a hardware perspective, we will employ cameras with higher resolution and frame rate, which               

would reduce the occurrence of blurry images and thus maximize code readability. In addition, in our                

videos, the foraging area surface took around half of the frame, and the nest area only one tenth of it,                    

leaving a large portion unused. In the future, we could easily cut off such extra space by reducing the                   

distance between the camera and the tracking surface, which would result in a better resolution and                

therefore higher chances for BACH to correctly read matrix codes. On the software side, we will increase                       

ant identification efficiency by improving the way BACH matches new detections to the current state of                               
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the system. For example, we could match new unknown ant detections with previously detected entities                

that have become unidentified, merging their status based on numbers and identities of ants tracked in                

previous frames. This would likely limit not only the instances in which BACH fails to detect ants, but                  

also those in which it mistakenly identifies matrix codes.  

Similar to BACH, other recent tracking systems for insects integrate convolutional networks and             

individual tags. However, these differ from BACH in their functioning and scopes. For example, AnTrax13               

extracts ant-containing image portions within pre-recorded videos linking them across frames and            

reconstructing trajectories for identifying individuals. Contrarily, BACH processes video frames in              

real-time, detecting individual shapes and their IDs, only keeping track of their position. While AnTrax                           

bases its accuracy on more complex and computationally heavier techniques currently less suitable for              

real-time processing, BACH works in real time but extrapolates less information and makes more              

mistakes. In addition, AnTrax can work in concert with JAABA16 to automatically classify ant behaviors,               

whereas BACH does not include similar features at its current state. In the future, however, we aim to                  

combine the Python interfaces of DeepLabCut3 or DeepPoseKit15 with Yolo, integrating BACH with pose              

and behavior estimation. Finally, AnTrax identifies ants via color combinations, which provides            

advantages but also disadvantages compared to the matrix code system supported by BACH. Only ants               

with sufficiently large bodies can bear readable matrix codes, and yet these restrict their movements,               

probably affecting their behavior; sometimes matrix codes detach from the ant bodies, disrupting the              

information flow within experiments13. On the other hand, color-based identification relies on experiments             

conducted in visible light, which does not affect virtually blind Clonal Raider Ants but does not suit                 

experimental work on non-blind, lucifugous or nocturnal species living in dark nests. As shown in our                

experiments on Camponotus, tracking colonies of such ants in visible light may alter their natural               

behavior. 
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Other automatic trackers used to study insect societies integrate computer vision and/or matrix             

code identification to different extents, working mainly offline. For example, a recent system for tracking               

honeybee colonies17,32 not only uses matrix codes for individual identification, but also allows             

automatically and simultaneously detecting multiple mouth to mouth food exchanges (trophallaxis). The            

system identifies these episodes based on the relative position and orientation of matrix codes,              

confirming such identifications via custom computer vision algorithms. Contrarily, AntVis33 employs           

computer vision to visualize fluxes of ants moving in the same direction, without implementing individual               

ant identification over extended periods of time. Conceived for observation in natural conditions, AntVis              

identifies individual ants by accurately tracking their trajectories within the video frame, without relying on               

individual matrix code tags34. This means that it identifies individuals as long as they continuously               

appear within the video frame, considering them as new whenever they exit and re-enter the frame. 

Compared to other tracking systems, BACH has two main advantages. First, it remembers the              

identities of individuals even when their identity codes become invisible, and can successfully do so as                

long as it continuously detects their shape. Secondly, and most importantly, BACH generates data in               

real time through relatively light computational processes, which constitutes its main novelty and             

strength. Although BACH needs to undergo upgrading from several perspectives, we developed it with              

the goal of emphasizing the possibility for real time data to ameliorate animal behavior research that                

relies on video tracking. Real time data shortens the delay between observation and data generation to                

virtually non-existent, enabling researchers to alter experimental conditions based on current results. In             

addition, results become immediately available for sharing, which favors collaborative projects and            

accelerates the discovery rate. In a conceivable design that we aim to achieve in the near future, the                  

current BACH main module will produce positional and behavioral data in real-time from video sources,               

while other modules will concurrently process the generated data and produce structured information. As              
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an example, we will manage to observe, in real-time, the development of a colony’s social graph from                 

within BACH. 

Real time data analysis increasingly benefits cooperative research in multiple fields, including radio             

astronomy20,35 and physics36,37. Accordingly, we conceived BACH with the goal of attracting attention on              

how this could facilitate animal behavior research. For example, real time tracking systems like BACH               

may help animal scientists establish and maintain collaborations during periods of mobility restrictions.             

Or, in the foreseeable future, could allow conducting animal behavior experiments entirely online, with a               

research group broadcasting videos of animals and other groups remotely tracking and analyzing them,              

cooperatively and in real time.  
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Figure 1. a. The video tracking prototype. b. The tracking setup interior. c. the plaster base with                 

the nest area on top and the foraging area on the bottom. d. The illumination system:                

ready-made IR LED diod panel on top, veroboard with white, IR and UV led circuits on the                 

bottom. e. The carpenter ants used in the experiments. f. A flux diagram illustrating the               

functioning of BACH.  

 

 

 

Figure 2. a. Number of detections, identifications and correct identifications for BACH and HO              

across conditions. b. Walking speed of ants across conditions (mean + sd). 
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FIgure 3. a. Speed of BACH-detected and undetected ants in different conditions.. b. Speed of               

BACH-identified and non-identified ants. c. Speed of HO-identified and non-identified ants. 
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Figure 4. Proportion of identifications by BACH and HO across different classes of blurriness              

and code visibility. Numbers correspond to the different classes (sharp, blurry, very blurry for              

image blurriness, horizontal, tilted, invisible for code visibility).  
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Figure S1. a.- c. Classes of code visibility (horizontal, tilted, invisible). d.-f. Classes of image               

blurriness (sharp, blurry, very blurry). g.-j. Examples of instances in which codes became             

invisible: g. an ant covering another ant’s code; h. an ant trying to climb the tracking setup wall ;                  

i. an ant grooming her gaster; j. an ant walking on the lower side of the glass lid covering the                    

nest chambers.  k. ‘Double detection’. l. ‘Double plus one detection’.  
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