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Abstract

Background The past decades have seen a rapid development of the (meta-)omics fields, producing
an unprecedented amount of data. Through the use of well-characterized datasets we can infer the
role of previously functionally unannotated proteins from single organisms and consortia. In this
context, protein function annotation allows the identification of regions of interest (i.e. domains)
in protein sequences and the assignment of biological functions. Despite the existence of numerous
tools, some challenges remain, specifically in terms of speed, flexibility, and reproducibility. In the
era of big data it also becomes increasingly important to cease limiting our findings to a single
reference, coalescing knowledge from different data sources, thus overcoming some limitations in
overly relying on computationally generated data.
Results We implemented a protein annotation tool - Mantis, which uses text mining to integrate
knowledge from multiple reference data sources into a single consensus-driven output. Mantis is
flexible, allowing for total customization of the reference data used, adaptable, and reproducible
across different research goals and user environments. We implemented a depth-first search al-
gorithm for domain-specific annotation, which led to an average 0.038 increase in precision when
compared to sequence-wide annotation. Mantis is fast, annotating an average genome in 25-40 min-
utes, whilst also outputting high-quality annotations (average coverage 81.4%, average precision
0.892).
Conclusions Mantis is a protein function annotation tool that produces high-quality consensus-
driven protein annotations. It is easy to set up, customize, and use, scaling from single genomes
to large metagenomes. Mantis is available under the MIT license available at https://github.

com/PedroMTQ/mantis.

Background

Life, on a cellular scale, is, in essence, the activity and the interaction of a plethora of different
molecules, among which proteins cover the primary role of carrying out the vast majority of pro-
cesses. A major task in understanding how biology works is to be able to properly recognise its
actors (e.g. the proteins) and put them into context. The past decades have seen the develop-
ment of the (meta-)omics fields, unlocking an unprecedented amount of data and deepening our
understanding in several fields of biology [66]. Alongside the evolution of the technologies and
the increase in data volume, the identification of proteins transitioned from purely experimen-
tal techniques (e.g. chemical essays, spectroscopy, etc.) toward the computational-based sequence
analysis thanks to the discovery of the relationship between conservation of proteins’ functions and
sequences [82]. Therefore, the current challenges are to make use of the vast number of protein
sequences and annotations available and to link new protein sequences to the previously established
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knowledge. High-throughput methods, such as next-generation sequencing, are able to produce a
large amount of data which then needs to be analysed and interpreted. One of the ways to make
sense of this data is through protein function annotation (PFA), which is the identification of re-
gions of interest (domains) in a sequence and assignment of biological function(s) to these regions.
This strategy has proven effective in both, the study of single organisms as well as consortia [5, 13,
31, 26, 40, 47]. Function prediction is based on reference data, i.e. transferring the function from
protein X to the unknown protein Y if they are highly similar [82]. Different approaches may be
used, the most common being to compare an unknown protein sequence to a reference database
composed of well-studied and annotated proteins (homology-based methods) [71, 79, 10, 70, 65,
30, 7]; other methods may infer function through the use of machine learning [71, 63], protein
networks [88, 72], protein structure [15], or genomic context-based techniques [44], but these will
not be covered in this paper. For sequence alignment BLAST [2] or Diamond [11] are commonly
used, whereas, for HMM profiles, HMMER [62] is most widely used. In PFA, these tools are often
integrated into larger pipelines to provide enhanced output interpretability, workflow automation,
and parallelization. [65, 30, 7, 32]. Some PFA tools target specific taxa [39], others are designed
with large-scale omics analysis in mind [85, 42, 34]; indeed, each PFA tool is designed to cater to
its niche research topic. While experimental validation remains the gold standard, PFA, despite its
many shortcomings [51], is an increasingly valuable strategy that aims to tackle the progressively
more difficult task of making sense of the large quantities of data continuously generated.

We reviewed the implementation of three widely used PFA tools [65, 32, 30] and observed
that the processing of candidate annotations (i.e. sequences or HMM profiles which are highly
similar to the query sequence) is done by capturing only the most significant candidate between
the references (“best prediction only”, herein after called BPO); to our knowledge, this is the
most common method. This classic PFA approach works well for single-domain proteins, but multi-
domain proteins may have multiple putative predictions [86, 17, 37], whose location in the sequence
may or may not overlap. This selection criterion may potentially lead to missing annotations and
is therefore not suitable in complex PFA scenarios. To tackle this problem, domain-specific PFA
is necessary. A simple approach, previously discussed in Yeats et al.[86], would be to order the
predictions by their significance and iteratively add the most significant one, as long as it does not
overlap with the already added predictions (henceforth referred to as the heuristic algorithm).
Due to the biased selection of the first prediction, this algorithm does not guarantee an optimal
solution (e.g. a protein sequence may have multiple similarly significant predictions). It has been
previously shown that incorporating prediction significance and length may produce better results
[76]. We implemented a Depth-First Search (DFS) algorithm that improves on the previous
approaches.

The selection of reference HMMs is also extremely important, as PFA is based on the available
reference data. Whilst sing unspecific HMMs to annotate a taxonomically classified sample may
result in a fair amount of true-positives (correct annotations), depending on how strict the confi-
dence threshold is, it may also increase the false-positives (over-annotation, due to low confidence
threshold) or false-negatives (under-annotation, due to high confidence threshold) [64]. Using
taxa-specific HMMs (TSHMM) rather than unspecific HMMs should, in principle, provide better
annotations on a taxonomically classified sample, a feature that is already integrated into some
PFA tools such as eggNOG-mapper [30] and RAST [7]. In essence, TSHMMs-based annotation
limits the available search space, which may have both positive and negative consequences. Since
the search space is more specific, the annotations produced should be of higher quality; however,
this high specificity of the TSHMM could also lead to under-annotation (incomplete reference
TSHMMs) or mis-annotations (low-quality reference TSHMM) [19]. This underlines the necessity
to use specific (e.g. TSHMMs) and unspecific HMMs in a complementary manner. In this regard,
the use of multiple reference datasets remains a challenging aspect of PFA, and, with multiple
high-quality reference datasets available, it is increasingly important to be able to coalesce knowl-
edge from different sources. Whilst some PFA tools do allow for the use of multiple reference data
sources, either as a separate [32] or a unified [30, 4] database, it is still challenging to dynamically
integrate multiple data sources.

When using multiple high-quality reference datasets, the most common, and simplest, approach
is to consider the output from each reference data source independently (e.g. [32]). However, by
doing so we overlook that many sources can overlap and/or complement each other. Commonly
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this is compensated via manual curation, which is feasible only for a limited number of annota-
tions. An automated approach would be to assume only the most significant annotation source
for any given sequence, disregarding other sources, which may result in vast losses of potentially
valid and complementary information. As this is not desirable, the challenge is both in deciding
which source(s) provide the best annotation as well as identifying complementary annotations. A
straightforward approach to solve this issue would be to assume that the sequence annotations are
complementary when they share a database identifier, for example:

1. Function: ”Responsible for glucose degradation”; Identifiers: K00844,EC:2.7.1.1,PF03727

2. Function: ”Responsible for glucose degradation”; Identifiers: P52789,PF03727,IPR022673

3. Function: ”Protein is an enzyme and it is responsible for the degradation of glucose”; Iden-
tifiers: HXK2 HUMAN

We can observe that the annotations (i) and (ii) share the database identifier PF03727, and thus
it can be concluded that these are complementary annotations. If we were only to select the first
annotation, we would ignore potentially useful information (identifiers P52789 and IPR022673).
However, it may be the case that no identifiers are shared between the different annotations, for
example:

1. Function: ”Responsible for glucose degradation”; Identifiers: K00844,EC:2.7.1.1

2. Function: ”Responsible for glucose degradation”; Identifiers: P52789,IPR022673

3. Function: ”Protein is an enzyme and it is responsible for the degradation of glucose”; Iden-
tifiers: HXK2 HUMAN

We can observe that even though the annotations (i) and (ii no longer share an identifier, they
still have the same function “Responsible for glucose degradation”. Humans can quickly
surmise that these annotations are the same as they share the same function description. Should
the descriptions be identical or very similar, a machine could achieve the same conclusion with
relative ease. However, in our experience, these free-text descriptions are often moderately or
heavily dissimilar [35, 69], with only a few keywords allowing us to ascertain they are indeed the
same. This then makes it more difficult to use multiple reference sources. For example:

1. Function: ”Responsible for glucose degradation”; Identifiers: K00844,EC:2.7.1.1

2. Function: ”Protein is an enzyme and it is responsible for the breakdown of glucose”;
Identifiers: HXK2 HUMAN

In such a scenario, someone trained in a biology-related field can quickly identify the most im-
portant words (”degradation”/”breakdown” and ”glucose”) in both sentences and conclude both
annotations point to the same biological function. The challenge is now to enable a machine,
deprived of any intellect and intuition, to eliminate confounders (very common words, e.g. ”the”),
identify keywords and their potential synonyms, and reach the same conclusion. A possible strategy
is to use text mining, this is the process of exploring and analysing large amounts of unstructured
text data aided by software, identifying potential concepts, patterns, topics, keywords, and other
attributes in the data [20]. Text mining has been previously used with biological data [80, 49,
87, 68, 27], and even more specifically with regards to gene ontologies [9, 48, 38, 14, 16, 36] and
PFA [87]. However, to our knowledge, there is no tool for the dynamic generation of a consensus
from multiple protein annotations. This paper solves the problem of scaling the integration of
different annotation sources, integrating a compact and flexible text mining strategy. We imple-
mented a two-fold approach to build a consensus annotation, first by checking for any intersecting
annotation identifiers and second by evaluating how similar the free-text annotation descriptions
are. This approach addresses three very relevant issues with PFA [64, 19, 52, 18]: over-annotation
(through the use of overlapping but independent sources, thus obtaining a more reliable final anno-
tation); under-annotation (through the use of multiple reference sources, which implicitly leads to
a wider search space); and elimination of redundancy (through the creation of a consensus-driven
annotation).
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Another challenge in PFA is the lack of flexibility of some tools, as these are often intrinsically
connected to their in-house generated reference data, and therefore very hard to customize. In
contrast, we developed a tool that while offering high-quality unspecific and specific HMMs, it is
independent of its reference data, thus being customizable and allowing dynamic integration of
new data sources.

We hereby present Mantis, a Python-based PFA tool that overcomes the previously presented
issues, producing high-quality annotations with the integration of multiple domains and multiple
reference datasets. Mantis automatically downloads and compiles several high-quality reference
sources, and is able to make the most efficient use of the available hardware through paral-
lelized execution. Mantis is independent of any of the default reference datasets, being flexible
and customizable, resulting in a versatile and reproducible tool that overcomes the challenge of
high-throughput protein annotation coming from the many genome and metagenome sequencing
projects.

Mantis

Mantis is available at https://github.com/PedroMTQ/mantis [60] and its workflow (see Figure 1)
consists of 6 main steps: i) sample pre-processing; ii) HMM profile-based homology search against
each reference dataset; iii) intra-HMM reference hits processing; iv) metadata integration; v) inter-
HMM reference hits processing; and vi) consensus generation. During sample pre-processing, the
sample(s) is/are split into chunks so that the homology search can be parallelized. During homology
search, query sequences are searched against all available reference datasets using HMMER. During
intra-HMM hits processing the DFS algorithm is used to generate and select the best combination
of hits per HMM source. During metadata integration, metadata (annotation description and
identifiers) is added to the respective hits. During inter-HMM hits processing the DFS algorithm
is again used to generate all the combinations of hits for all HMM sources. During consensus
generation all the combinations of hits are expanded and intersected (if possible), the best consensus
combination of hits is then selected for each query sequence (see Methods for a detailed description
of all these steps). Alongside Mantis, We developed a standalone tool [53] that allows the use of
multiple reference datasets through the generation of a consensus annotation. As we have shown in
the supplement ”Defining a similarity threshold”, this tool has high specificity, thus, in the context
of Mantis, it allows for the correct identification of similar free-text annotation descriptions.

Analysis

To analyse and validate the performance of Mantis, we performed several in-silico experiments: As
an initial quality control analysis, we started by annotating a reference dataset from Swiss-Prot such
that we are aware of the optimal execution parameters. In this context, we evaluated the impact of
the e-value threshold, the hit processing algorithm, and the contribution of each reference dataset
to the final output. After this initial quality control analysis, we annotated several sequenced
organisms, with and without using TSHMMs, thus evaluating the impact of using taxa-resolved
reference datasets. Finally, we compared Mantis against eggNOG-mapper [30], a similar PFA tool
known for producing taxa-resolved annotations. The sample description is available in ” Sample
selection”.

Initial quality control

Function assignment e-value threshold

It is known that the e-value threshold directly affects annotation quality, however, no gold-standard
threshold exists [76]. Depending on the size, quality, and specificity of the reference data source,
we may use more or less stringent thresholds. It is therefore essential to test annotation quality
with different thresholds. As such we tested different static e-value thresholds as well a dynamic
threshold, which has been described in ”Establishing a test environment. Testing different
e-value thresholds”. As seen in supplemental Table 1, being more permissive (by using a higher
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Figure 1: Overview of the Mantis workflow. KOfam [3], Pfam [21], eggNOG [29], and TIGR-
fams [22] are the reference HMMs currently used in Mantis. CustomDB can be any HMM library
provided by the user.
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e-value threshold e.g. 1e−3) resulted in a higher annotation coverage and a higher precision. This
is due to Mantis’ internal quality control in the form of the DFS hit-processing algorithm. Being
too strict with the e-value threshold constricts the available solution space, resulting in a lower
precision. Based on these results the default e-value threshold was set to 1e−3.

Impact of sample selection and hit processing methods on precision

Testing exclusively against well-annotated organisms is a recurring issue with protein annotation
benchmarking, resulting in the re-annotation of sequences already present in the reference datasets
used, leading to a biased annotation quality evaluation. To avoid this bias, we downloaded all
Swiss-Prot protein entries (as of 2020/04/14) and selected entries by their creation date such that
we have four samples that contain protein entries created in different date ranges (2010-2020, 2015-
2020, 2018-2020, and 2020). Since the default reference datasets were compiled before 2020, we
ensure that the sample with protein entries from 2020 is not in the reference datasets used, thus
guaranteeing that potential annotations are due to true sequence homology. We annotated these
samples using three different hit processing algorithms (DFS, heuristic, and BPO), determining
the impact of each on precision.

Figure 2: Annotation precision per hit-processing algorithm and Swiss-Prot sample.
The DFS algorithm outperforms the other algorithms.

As seen in Figure 2, precision decreased as the sample was restricted to data from more recent
years. When comparing the hit processing algorithms we found that the DFS algorithm consistently
outperformed the other algorithms, with an average precision 0.038 and 0.013 higher than the BPO
and heuristic algorithms respectively. In addition, the precision difference between the multiple
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predictions algorithms (DFS and heuristic) and the single predictions algorithm (BPO) increased
as the entries in a sample were restricted to more recent years. Further details can be found in the
supplemental Table 2.

Contribution of the different reference datasets

We also analysed the contribution of each reference dataset to the output annotation for the biggest
Swiss-Prot sample (2010-2020). Pfam was present in 17.6% of the annotations, KOfam in 32.5%,
eggNOG in 37.9%, and TIGRfam in 10.1%.

Quality control against sequenced organisms

As a secondary quality control, we annotated several sequenced organisms (for more details see the
supplemental Table 3) with and without TSHMMs, to assess the impact on precision when using
taxa-resolved references. We also evaluated the impact of the different hit processing algorithms
on this dataset.

Figure 3: Annotation precision per hit-processing algorithm and organism, with and
without using taxonomy information. Precision was higher for well-studied organisms,
TSHMMs also performed better with these organisms.

As seen in Figure 3 , well-studied organisms, such as Escherichia coli and Saccharomyces cere-
visiae, had better annotations, especially when applying TSHMMs, unlike poorly described organ-
isms. The average precision gain with TSHMMs was 0.029. With TSHMMs, the DFS algorithm
had, on average, 0.0001 and 0.0116 higher precision than the BPO and heuristic algorithms re-
spectively. Without TSHMMs, the DFS algorithm had, on average, 0.0126 and 0.0189 higher
precision than the BPO and heuristic algorithms respectively. The respective results by organism
and algorithm can be seen in detail in the supplemental Table 4.

Comparison between Mantis and eggNOG-mapper

The sequenced organisms enumerated in the supplemental Table 3 were annotated with Mantis
and eggNOG-mapper. To evaluate the added value of using multiple reference datasets against
exclusively using eggNOG we also assessed Mantis’ precision using different reference datasets: (i)
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Mantis with default data sources and with taxonomy information; (ii) Mantis with default data
sources except for eggNOG’s data (iii) Mantis exclusively with eggNOG’s data and with taxonomy
information; and (iv) Mantis exclusively with eggNOG’s data and without taxonomy information.

Figure 4: Annotation precision of Mantis and eggNOG-mapper using different reference
datasets. Each slice represents to an organism and contains the attained annotation precision
between the different conditions

On average, Mantis’ default setting (including eggNOG as a reference dataset) and eggNOG-
mapper had a precision of 0.89 and 0.78, respectively, and , as seen in Figure 4 , Mantis’ default
setting outperformed eggNOG-mapper for all the benchmarked organisms. Comparatively, Mantis’
default setting had, on average, 8.26 % more true-positives (TP) than eggNOG-mapper, 8.77%
fewer false-positives (FP), 0.76% less coverage, and 0.24% fewer potentially new annotations. To
surmise, despite minimal losses in coverage, the default Mantis execution had a precision 0.11
higher than eggNOG-mapper.
Mantis’ setting without eggNOG had an average precision 0.06 higher than eggNOG-mapper and
an average precision 0.05 lower than Mantis’ default setting. When only eggNOG’s data (with and
without TSHMMs) is used by Mantis, eggNOG-mapper outperforms it. When TSHMMs were not
used, eggNOG-mapper had a 0.055 higher precision than Mantis. When eggNOG’s TSHMMs were
used, eggNOG-mapper had a precision 0.045 higher than Mantis. Further details are available in
the supplemental Table 5. On average, Mantis’ default setting took 37 minutes, Mantis without
eggNOG 18 minutes, and eggNOG-mapper 3 hours and 22 minutes. Average seconds taken to
annotate a sequence were also compared: on average we found that Mantis was 6.6 times faster
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than eggNOG-mapper; Mantis without eggNOG ran 14.7 times faster than eggNOG-mapper and
2.2 times faster than the default Mantis execution. Further runtime benchmarking can be found
in supplements ”Benchmarking annotation efficiency”.

Discussion

We herein presented Mantis, a PFA tool that produces high-quality annotation and is easily in-
stalled and integrated into other bioinformatic workflows. As shown in the Accessibility and
Scaling, a conda environment and an automated reference datasets download are provided. In
addition, Mantis accepts several formats as input (i.e. protein fasta file, tsv file with paths, directo-
ries, or compressed archives), outputting easy to parse tsv files. Mantis also addresses some major
challenges in PFA, such as flexibility, speed, the integration of multiple reference datasets, and
use of domain-specific annotations. Mantis uses a well-established homology-based method and
produces high-quality consensus-driven annotations by relying on the synergy between multiple
reference datasets and improved hit processing algorithms. Mantis’ default execution resulted in
an average coverage of 81.3% and average precision of 0.89 when annotating a widely used, well
characterized microbial community standard, as seen in Figure 4.
Well-curated and commonly used resources were chosen as the default reference datasets for Mantis,
containing both unspecific and specific reference datasets (e.g. taxa-specific). As we have shown
no single reference dataset accounted for the majority of the annotations, each offering both unique
and overlapping insight into protein function, thus confirming their synergy and redundancy.
Multiple reference datasets are integrated through a consensus-driven approach, which Mantis
uses as an additional quality control step, as well as a means to automatically incorporate a
broader variety of identifiers. Our text mining technique eliminates confounders and identifies
the most important keywords in the annotation descriptions, thus making similarity comparisons
between descriptions possible. Our method is flexible and adaptable towards other lexicons and
pipelines and is available as a standalone tool [53]. Our method would benefit from a biological
synonym lexicon, indeed, while non-biological words are easy to deal with (e.g. using Wordnet’s
lexicon [84]), the same cannot be said for biological terms. Biological lexicons exist [75], but are
often behind pay-walls, which reduces the potential use for open source projects trying to follow
FAIR principles [83]. This limitation may be worked on in further versions of Mantis by applying
vocabulary expansion methods such as the method described by Slater et al. [68]. Our text mining
technique may also benefit from the implementation of a tagger specific to biomedical text, such
as Hunflair [81], which we will test and implement in a future version of Mantis.
We have additionally implemented two algorithms for domain-specific homologs search (DFS and
heuristic as back-up). Figure 5 shows how dependent homolog selection is on the hit-processing
algorithm used. We have not only shown that these algorithms are more precise when annotating
previously described protein sequences but that their impact on precision significantly increased
when annotating uncharacterized protein sequences (e.g. average precision gain with DFS and
BPO algorithms in the Swiss-Prot samples 2010-2020 and 2020 were 0.028 and 0.040, respectively)
. We hypothesize that for the latter, homology search is not capable of finding whole-sequence
homologs, finding however multiple domains that partially constitute the protein sequence. As
such, we hypothesize that by increasing the resolution (sequence homology to domain homology)
of homology-based reference datasets domain-specific algorithms may become increasingly useful.
We think this would be especially important when annotating protein sequences without well-
described homologs, but that contain previously characterized conserved protein domains.
In Figure 6.A we can observe that the current query sequence is already used to generate the
HMM profiles) in the reference datasets, thus matching with the HMM profile that contains it,
and finally being annotated as a ”coagulation factor”. Such a scenario is common when annotating
well-described organisms (e.g. Escherichia coli). It may however be that the query sequence (in the
scenario Figure 6.B is not in the reference dataset (which is common in non-model organisms or
niche metagenomic samples), thus partially matching with several HMMs, which may correspond
to multiple domains (depending on the resolution of the reference datasets). Unlike the BPO
algorithm, the heuristic and DFS algorithms are able to incorporate multiple homologs, and while
these may not be enough to determine the biological function of a protein, they still provide a better
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Figure 5: Homologs selection per hit processing algorithm. PFA is entirely dependent on
the algorithm used to select the hits. For instance, BPO only selects the most significant hit (2)
even though hit 4 is wider and has almost the same significance. The heuristic method instead
initially selects the most significant hit (2) which then restricts the hits available for selection (5,
6). The DFS algorithm generates all possible combinations of hits and then selects the one that is
both very significant and with large sequence coverage.

Figure 6: The impact of the reference datasets’ completeness on protein function an-
notation. While in the first scenario we can correctly predict the function of the protein sequence
since it had been previously identified and included in the reference HMMs, the same is not possible
in the second scenario as this protein sequence has not been previously described.
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biological context than a single annotation. Further improvements in annotation quality may also
require the use of motif-based and/or genomic context-based (e.g. operon context information,
co-expression, and subsystems) methods such as those described by Sigrist et al.[67], Mooney
et al. [43], Mavromatis et al.[41], Overbeek et al.[44], and Hannigan et al.[24]. Nevertheless,
the significantly higher precision seen when comparing the DFS and BPO algorithms (as seen in
supplemental Table 2) highlights the need to adopt better hit processing methods, especially for
non-model organisms. With samples ranging from thousands to hundreds of thousands (or more)
of protein sequences, sub-optimal hit processing algorithms may cascade into unnoticeable pitfalls
in downstream data analysis (e.g. accumulation of incomplete or low quality genome annotation
which may in turn lead to false biological interpretations).
The use of eggNOG’s TSHMMs resulted in a 0.029 higher precision, however, this improvement,
as seen in Figure 3, was not consistent across all the organisms. This may be due to a poorer
quality of the TSHMMs for some organisms, which is both a consequence of the issues with the
current taxonomy classification system [46, 45] and lack of knowledge regarding highly resolved
taxa [12]. Model organisms such as Escherichia coli and Saccharomyces cerevisiae benefited the
most from TSHMMs, both due to the fact that the reference datasets already contain data specific
to these organisms and that functions of proteins within model organisms are better experimentally
described. Conversely, non-model organisms are often only computationally annotated by associ-
ation, contributing to a weaker reference annotation (which can be observed by the higher rate
of potentially new annotations in these organisms in Figure 3). Nonetheless, while experimental
evidence remains the gold standard, it is unfeasible to ignore the need for computational methods
to infer function. While steps in this direction have been taken [29, 7], taxa-resolved PFA remains
a challenge.
We benchmarked Mantis against another state-of-the-art PFA tool - eggNOG-mapper, and have
shown that Mantis is both more precise (0.11 higher precision) and faster (6.6 times faster). Al-
though Mantis’ default execution heavily relies on the eggNOG reference datasets, the use of
additional reference datasets led to marked precision improvements over eggNOG-mapper. When
Mantis ran without the eggNOG dataset, except for Escherichia coli and Saccharomyces cere-
visiae, it achieved higher precision than eggNOG-mapper, proving that despite using much less
data, Mantis did not suffer from substantial losses in precision. This attests to the quality of the
various reference datasets used, showcasing as well the possibility of running Mantis on a personal
computer (something that would be impossible with eggNOG’s prohibitive size). When running
both tools with the same data, eggNOG-mapper had a higher precision (0.045), we hypothesize
that even though both tools use the same data, the homology search methods used (Mantis uses
HMMER and eggNOG-mapper uses Diamond) may lead to slightly different outputs. Nevertheless,
Mantis’ flexibility in introducing multiple reference datasets and speed gives it unique advantages
over similar tools. As we discussed, there is still room for improvement in the hit processing al-
gorithm DFS, our text mining approach, and the addition of genomic context-based annotation
methods. However, despite the existence of these challenges, we have clearly shown the unique
advantages of using Mantis.

Conclusion

By making use of the synergistic nature of differently sourced high-quality reference datasets,
Mantis produces reliable homology-based annotations. By allowing for total customization of these
reference datasets, Mantis is also extremely flexible, being easily integrated and adapted towards
various research goals. In conclusion we have herein shown that Mantis addresses a number of the
current PFA challenges, resulting in a PFA tool that is a fast, precise, flexible, and competitive
tool.
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Methods

Accessibility and Scaling

Mantis automatically sets up its reference data by downloading several reference datasets, and,
when necessary, reformatting the data to a standardized format and downloading any relevant
metadata. These reference datasets can be customized via a config file [54]. It also dynamically
configures its execution depending on the resources available. A conda environment is provided
for an easier setup, as well as extensive documentation [59].
Mantis splits most of the workflow into sub-tasks and subsequently parallelizes them by continu-
ously releasing tasks to workers from a global queue (via Python’s multiprocessing module). During
each main task of the annotation workflow workers are recruited (the number of workers depends
on the available hardware), which will then execute and consume all the tasks within the queue.
When a worker has finished its job, it will execute another task from the queue, until there are
no more tasks to execute. If the queue is well balanced, minimal idle time (time spent waiting for
workers to get a new task) can be achieved.
Parallelization is achieved both by splitting the sample and reference data into chunks. During
setup, large reference datasets (more than 5000 HMM profiles) are split into smaller chunks, this
enables parallelization and ensures each annotation sub-task takes approximately the same time.
Large samples are pre-processed by splitting these into chunks (sample chunk size is dynamically
calculated). If the sample has 200,000 or fewer sequences, sequences are distributed by their length
among the different chunks, so that each chunk has approximately the same number of residues.
If the sample has more than 200,000 sequences, then sequences are distributed to each chunk
independently of their length (this alternative method is an efficiency safeguard). This two-fold
splitting achieves quasi-optimal queue balancing. Posterior workflow steps are also parallelized
where possible. Mantis is also scalable to metagenomes. For more details on performance see
Annotating metagenomes in supplements.

Reference data and customization

Mantis, by default, uses multiple high-quality HMM sources – eggNOG v5 [29], Pfam [21], Kofam
[3], and TIGRfam [22] (these default HMMs can be partially or entirely removed). To find more
meaningful homologs through taxa-specific annotation, Mantis uses TSHMMs, which were origi-
nally compiled by eggNOG. TSHMMs metadata was extracted from the eggNOG SQL database
such that it is readily available during execution. Custom HMM sources can also be added by the
user, metadata integration of these is also possible (an example is available in Mantis’ repository
[55]). Since some sources are more specific than others, the user may also customize the weight
given to each source during consensus generation [56].
HMM profiles often only possess an identifier respective to the database they were downloaded from,
which may not directly provide any discernible information. Mantis, when necessary, ensures that
the predictions from these HMMs are linked to their respective metadata. For future reference,
while an HMM is an individual profile, Mantis compiles all related HMM profiles into a single file
making it indexable by HMMER. Thus when a certain HMM source is mentioned it refers to the
collection of related HMM profiles.

Taxa-specific annotation

Taxa-specific annotation (TSA) uses the TSHMMs and unspecific HMM made available by eggNOG,
TSA however works differently with respect to the annotation method of the other reference
datasets. When given taxonomy information (either a taxa name or NCBI ID) the taxonomic
lineage of the organism is computed (e.g. for Escherichia coli the lineage would be 2 - 1224 -

1236 - 91347 - 543 - 561 - 562). TSA starts by searching for homologs in the most resolved
HMM (in this case for taxa 562, if it exists). All valid homologs (respecting the e-value threshold)
are extracted for each query sequence, and unannotated sequences are compiled into an interme-
diate fasta file. A new round of homolog search then starts for the sequences in the intermediate
fasta but now on the HMM one level above the previous HMM (in this case the HMM 561) such
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that valid homologs are again extracted. This cycle repeats until all query sequences have valid ho-
mologs or until there are no more HMMs to search for. If there are still sequences to annotate, then
these homologs are searched for in the unspecific eggNOG dataset. If no taxonomy information is
given then the homology search starts with the unspecific eggNOG HMM.

Input and output

MANTIS accepts protein fasta files as input. For example, if running MANTIS for an Escherichia
coli sample, the user would execute python mantis run mantis -t sample.faa -od Escherichia coli. If
annotating a taxonomically unclassified sample the user would omit -od. Mantis can also annotate
several samples at once, running python mantis run mantis -t samples.tsv, where the TSV file is a
tab-separated file that contains the sample’s identifier, their path, and taxonomy information (an
example file is available in Mantis’ repository [57]). Compressed fasta files and directory paths
(with fasta files) are also accepted as input.
Mantis outputs, for each sample, three tab-separated files [58]: i) a raw output output annotation.tsv
with all the predictions, their e-value, and coordinates; ii) integrated annotation.tsv, with all the
predictions, coordinates, e-values, and their respective metadata and identifiers (e.g. KOs, EC
numbers, free-text description, etc); and iii) the main output file consensus annotation.tsv, with
each query protein identifier and their respective consensus annotation from the different reference
sources (e.g. Pfam). These files provide contextualized output in a format that is both human and
machine-readable.

Multiple predictions per protein

HMMER outputs a domtblout file [62], where each line corresponds to a hit/match between the
reference dataset and the unknown protein sequence. The e-value within the HMMER command
limits the available solution space to be analyzed in the posterior processing steps. Each hit, among
other information, contains the coordinates where the query sequences matched with the reference
HMM profiles and the respective confidence score (e-value). The annotation of a protein sequence
with multiple hits is a nontrivial problem, requiring thus the implementation of a method for the
intra-HMM processing of hits.
We designed a method that generates and evaluates all possible combinations of hits by applying
the DFS algorithm [33]. This algorithm allows the traversal of a tree-structured search space
(i.e. each node is a protein prediction), whilst pruning solutions that do not respect predefined
constraints (i.e. overlapping protein predictions), backtracking from leaf to root until the possible
solution space is exhausted. Our method generates all the possible combination hits with the
following method: i. Get one hit from the collection of hits and define it as the combination root
hit; ii. Check which other hits overlap up to 10% (default value) [86] with previous hits and select
one to add to our current combination of hits; iii. Repeat step ii until no more hits can be added;
iv. Repeat steps i-iii so that we loop over all the other hits and all possible combinations are
generated. We used Cython [8] to speed up the DFS implementation. Cython is an optimising
static compiler for the Python programming language, allowing the compiler to generate very
efficient C code from Cython code, in this case, functioning as a wrapper for the DFS algorithm.
The total amount of possible combinations is 2N −X − 1 where N is the number of hits the protein
sequence has, X the number of impossible combinations (combinations with overlapping hits), and
1 the empty combination. This number scales exponentially, as a result, this method is not always
computationally feasible (e.g. the query sequence is very large and has many small-sized hits).
In such a scenario, should the DFS algorithm running time exceed 60 seconds, Mantis employs
the previously described “heuristic” algorithm [86], which scales linearly and outputs an unique
combination of hits. After generating all the possible combinations, each combination is evaluated
according to several scores:

• combination coverage – combinations of hits that cover a large percentage of the protein

sequence are more significant. This metric corresponds to

∑
hitlength

querylength
.

• combination e-value – the combination of hits that have a lower sum of e-values are more
significant. The e-value of each hit is scaled twice, once to reduce the range between dif-
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ferent e-values (log10) and the second to understand how each hit e-value compares to the
best/lowest hit e-value found for a certain sequence. The scaled e-values are then summed.
This metric corresponds to

∑
MinMaxScale(log10(hite−value)).

• amount of hits per combination - combinations with few but large-sized hits are more signif-
icant, and vice-versa. This metric corresponds to combolength.

This combined score is defined by the following equation:∑
MinMaxScale(log10(hite−value))

combolength
×

∑
hitlength

querylength
(1)

The combination with the highest combined score is then selected. Our implementation thus
applies a two-fold quality control, initially by limiting the domtblout solution space and secondly
by hierarchically ordering and selecting the most significant combination of hits.

Using multiple reference datasets

An unannotated protein sequence may match with zero, one, or multiple reference HMM profiles,
from one or more reference datasets. When a protein sequence has multiple predictions from
different data sources it is necessary to identify complementary annotations, so that no information
is lost. By linking the metadata respective to the HMM profiles to the now annotated protein
sequence, we can identify similar annotations and integrate multiple reference datasets into one
final consensus annotation. For the integration of multiple reference datasets, a two-fold text
mining approach was used: 1. Consensus between identifiers; and 2. Consensus between the
free-text annotation description.
Each reference data source includes metadata relevant to the HMM profiles herein; metadata may
include multiple intra and/or inter database identifiers as well as free-text descriptions. Identifiers
are extracted either through source-specific metadata parsing or by using regular expressions.
Free-text descriptions are extracted by source-specific metadata parsing. When using custom
data, metadata must have a standardized format [55].
The consensus between identifiers is calculated by identifying intersections between the different
sources. Identifiers within the free-text annotation descriptions are extracted and used here. If
no consensus between identifiers is found, then we proceed with a consensus calculation between
annotation descriptions. The consensus between free-text annotation descriptions is done by com-
paring the free-text descriptions from two sources and evaluating whether these are similar. This
step starts with parsing and pre-processing of the text within the annotation descriptions. It is
followed by the lexical classification of the different processed words, so that irrelevant words are
not considered in the next steps. This classification is done via a tagger [50] independent of con-
text. This tagger uses the Wordnet lexicon [84] to identify the most common lexical category of
any given word. Wordnet is used as it provides one of the most comprehensive lexical databases
in the English language. To adjust this lexicon to biological data, gene ontologies [6, 74] are
parsed, processed, and added as nouns to the tagger. If there are still untagged words, these are
contextually classified with a pre-trained Perceptron tagger [61, 1]. Finally, the words tagged as
determiners, pronouns, particles, or conjunctions are removed. Each word is then given a weight
so that less specific words (e.g. “protein”) have a lower weight, and vice versa. We chose the
metric Term Frequency-Inverse Document Frequency (TF-IDF ) as it is a good metric for scoring
how important a word is in a document (in the current context, documents are the annotations’
descriptions) relative to the entire corpus (reference collection of annotation descriptions), and has
been successfully used in the past [9, 25, 73, 28]. We pre-calculated a frequency table of all the
words from a collection of 561.911 reviewed proteins from Swiss-Prot [77] (as of 2020/04/14). With
this frequency table, the IDF metric (corpus-wide/global weight of each word) can be calculated,
such that words that appear in too many annotation descriptions in the corpus are less important.
TF is a local metric specific to the annotation description being analysed, weighing words such
that more frequent words in an annotation description are given a higher weight. Finally, TF-IDF
is calculated with the following equation:

NW

TW
× TC

NC
(2)
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where NW is the amount of times a word appears in an annotation description, TW the total
amount of words in an annotation description, TC the total amount of annotation descriptions
in the corpus (561.911), and NC the total amount of times a certain word appears in the corpus.
The TF-IDF score is then locally scaled so that we can better understand which words are more
relevant within the current annotation description. After these steps we obtain a TF-IDF scaled
vector for each annotation description. Finally, for similarity analysis, we calculate the cosine
distance [23] between all the annotation description TF-IDF scaled vectors (which would come
from different data sources), effectively measuring how similar these two vectors are. Should
the words they contain and their importance within the annotation description be similar, the
annotations are given a high similarity score. For a detailed description of how the similarity
threshold was set see ”Defining a similarity threshold” in the supplements. The calculation of
the similarity of annotation descriptions is available as a standalone package [53]. In the context of
the Mantis’ workflow, inter-HMM combinations of hits are generated and then expanded using
the text mining method just described. Since several groups of consensus annotations may be
generated, we evaluate their quality and select the best one, considering the following: percentage
of the sequence covered by the hits in the consensus, the significance of the hits (e-value) in
the consensus, significance of the reference datasets (customizable), and the number of different
reference datasets in the consensus.

Establishing a test environment

For annotation quality benchmarking we evaluate each annotation produced by Mantis and check
whether it matches (True-positives) or not (False-positives) with the respective reference anno-
tation. True-Positives (TP) are evaluated via two main methods: i) identifiers match and
ii) description match; the latter is detected via the same text mining approach used to gener-
ate the consensus annotations. Annotations which do not match with the reference annotation
are classified as False-Positives (FP). Low quality annotations were removed (descriptions con-
taining “unknown function”, “uncharacterized protein”, ”hypothetical protein” or having Pfam’s
”domain-unknown-function”/DUF identifiers) both from Mantis’ annotation as well as the refer-
ence annotations. Whenever Mantis outputs a valid annotation but the reference is either of poor
quality or non-existent, then this annotation is considered a potentially new annotation.
Annotation coverage is defined here as the number of Mantis’ annotations divided by the total
amount of protein sequences in a sample. The % TPs and % FPs are, respectively, defined as the
number of TPs and FPs divided by the number of sequences in the sample. Precision as TP

TP+FP
(ranging from 0 to 1), precision was chosen to represent annotation quality.
Finally, we benchmarked Mantis against another PFA tool - eggNOG-mapper. This tool was
chosen as it shares many key properties with Mantis: it directly takes as input a protein sequence
fasta, it uses a large and comprehensive reference database for homology search, and is capable
of outputting taxa-resolved annotations. Unlike Mantis, eggNOG-mapper exclusively uses the
eggNOG database, thus not allowing for customization or addition of new reference datasets;
additionally, for homology search, Mantis uses HMMER [62] and eggNOG-mapper uses Diamond
[11].
All tests ran on an HPC with Dell C6320, 2 * Intel Xeon E5-2680 v4 @ 2.4 GHz [78], each core
had 4GB of RAM. Unless specified, all tests ran with 25 cores and 100GB RAM (actual minimum
hardware requirements are much lower), in addition, the same methodology and nomenclature
apply to any other benchmarked tools described in this paper. Mantis used HMMER v3.2.1. The
local version of eggNOG-mapper is v1.0.32.0.1-14-gbf04860 with database v2.0.
Mantis uses HMMER, which runs via the following command:
hmmsearch --domtblout output.domtblout -E e value --notextw dataset.hmm sample.faa

Mantis ran with the following command:
python mantis run mantis -t sample.faa -od ”NCBI ID”
eggNOG-mapper was executed with the following command:
python emapper.py -i sample.faa -o output folder -m diamond
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Sample selection

As an initial testing dataset we started by downloading all the reviewed Swiss-Prot [77] protein
entries created after 2010 (until 2020/04/14), along with their respective sequences, annotations,
and annotations scores. We then split these entries by date, 2010-2020, 2015-2020,2018-2020, and
2020 only. For genomic sample benchmarking we selected organisms widely used in microbial
community standards. The respective genomes, proteomes, and reference annotations were then
downloaded from Uniprot on 2020/05/26 (supplemental Table 3). These genomic samples were
also used for comparing Mantis to eggNOG-mapper.

Testing different e-value thresholds

Different e-value thresholds were tested: 1e−3, 1e−6,1e−9,1e−12,1e−15,1e−18,1e−21,1e−24,1e−27,1e−30,
and a dynamic threshold. The dynamic threshold was set according to the query sequence length,
which has been previously shown to provide better results with BLAST [76]. For the dynamic
threshold, for sequences with less than 150 amino acids, the e-value threshold was set to 1e−10,
if above 150 and below 250, 1e−

sequencelength

10 , and if above 250, 1e−25. The Swiss-Prot dataset
was then annotated with all the different e-value thresholds and each output was compared to the
reference annotations.

Availability of source code and requirements

• Project name: Mantis

• Project home page: https://github.com/PedroMTQ/mantis

• Operating system(s): Linux

• Programming language: Python

• Other requirements: Python 3+, HMMER 3+, and several Python packages (requests,
numpy, nltk, sqlite, psutil, cython)

• License: MIT license at https://github.com/PedroMTQ/mantis/blob/master/LICENSE

Availability of supporting data and materials

The code relative to the NLP analysis is available at https://github.com/PedroMTQ/nlp_annotations.
The data and code supporting the results of this article are available https://github.com/

PedroMTQ/mantis/wiki/Resources/mantis_data.7z. The supplemental pdf ”supplements.pdf”
contains information on how the similarity threshold was defined, the performance of metagenome
annotation, efficiency benchmark, benchmark against other PFA tools and all the tables that were
referenced in this paper. The non-averaged results supporting this paper are also available in the
supplemental file ”supplements.xlsx”.

Declarations

List of abbreviations

DFS - Depth First Search

FP – False Positives

FN – False Negatives

HMM - Hidden Markov Models

PFA – Protein Function Annotation
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TF-IDF - Term Frequency-Inverse Document Frequency

TN – True Negatives

TP – True Positives

TSA – Taxa Specific Annotation

TSHMM - Taxa-Specific HMM
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