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Abstract

Recognition memory is the ability to recognize previously encountered events, objects, or people. It is
characterized by its robustness and rapidness. Even this relatively simple ability requires the coordinated
activity of a surprisingly large number of brain regions. These spatially distributed, but functionally linked
regions are interconnected into large-scale networks. Understanding memory requires an examination of
the involvement of these networks and the interactions between different regions while memory processes
unfold. However, little is known about the dynamical organization of large-scale networks during the early
phases of recognition memory. We recorded intracranial EEG, which affords high temporal and spatial
resolution, while epileptic subjects performed a visual recognition memory task. We analyzed dynamic
functional and effective connectivity as well as network properties. Various networks were identified, each
with its specific characteristics regarding information flow (feedforward or feedback), dynamics, topology,
and stability. The first network mainly involved the right visual ventral stream and bilateral frontal regions.
It was characterized by early predominant feedforward activity, modular topology, and high stability. It was
followed by the involvement of a second network, mainly in the left hemisphere, but notably also involving
the right hippocampus, characterized by later feedback activity, integrated topology, and lower stability.
The transition between networks was associated with a change in network topology. Overall, these results
confirm that several large-scale brain networks, each with specific properties and temporal manifestation,
are involved during recognition memory. Ultimately, understanding how the brain dynamically faces rapid
changes in cognitive demand is vital to our comprehension of the neural basis of cognition.
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• Various dynamic large-scale networks support
recognition memory.

• The first is mostly feedforward and involves
the right hemisphere and the bilateral frontal
lobes.

• The second is mostly feedback and includes left
MTL regions and the right hippocampus.

• Changes in network topology accompany the
switch between the networks.

1. Introduction

Visual recognition memory has been studied
since the 1960s (Milner, 1972) with a tremen-
dous number of findings that have helped to reveal
how massively accurate (Brady et al., 2008), fast
(Besson et al., 2012), and long-lasting (Larzabal
et al., 2018) it can be. The remarkable efficiency
and robustness of this system imply that it has a
strong ecological value. These studies have also pin-
pointed the medial temporal lobes as critical for this
type of memory (Brown & Aggleton, 2001; Eichen-
baum et al., 2007). In a broader sense, it has consis-
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tently been shown that visual recognition memory
relies on the “what” system, i.e., the visual ventral
stream, which involves many temporo-basal brain
regions such as the lingual, fusiform, and parahip-
pocampal gyri. The participation of the ventral
stream is asymmetric in the sense that visual recog-
nition memory relies more on the right than on
the left hemisphere (Milner & Taylor, 1972; Patter-
son & Bradshaw, 1975; Elger et al., 1997; Barbeau
et al., 2008). In addition, visual recognition mem-
ory also involves parietal and frontal lobe regions,
probably for processes concerned with confidence
and decision-making (for a review and a model, see
Bastin et al. 2019).

Even a relatively simple task, such as deciding
whether an object has already been seen or not,
thus requires the involvement of a surprisingly large
number of brain regions. The temporal dynamics of
recognition are now better understood as the first
behavioral responses occur in approximately 360 ms
(Besson et al., 2012), the first neural differences be-
tween targets and distractors are identified at ap-
proximately 200 ms (Barbeau et al., 2008; Caharel
et al., 2014; Barragan-Jason et al., 2015) and many
different brain regions are involved up to 600 ms
or more. Even though the activity of participat-
ing brain regions appears to be partly sequential, it
is mostly overlapping (Despouy et al., 2020), and
what specific interactions take place between re-
gions is unknown.

Brain regions do not operate in isolation but
are interconnected in large-scale networks (Varela
et al., 2001; Betzel et al., 2019; Bressler & Menon,
2010; De Luca et al., 2006). The basis of every
network is connectivity, defined as either anatomi-
cal links (structural connectivity), statistical depen-
dencies (functional connectivity), or causal interac-
tions (effective connectivity) (Sporns, 2007). Sub-
stantial evidence supports the hypothesis that the
architecture of brain networks is non-random and is
optimized to support cognitive abilities. Interesting
properties underpin this efficient architecture, such
as high modularity (see Bassett & Sporns 2017).
The modular architecture is characterized by small
subsystems (communities), composed of different
brain regions with a vast number of local connec-
tions and few distant connections. This hierarchi-
cally modular structure supports effective commu-
nication (Lynn et al., 2020) as well as functional
segregation and specialization (Sporns, 2013).

Given the continually evolving environment, and
depending on the system’s demands, there are con-

tinuously changing patterns of interactions between
brain regions (Sporns, 2013; Bassett et al., 2011).
Therefore, both the topology of the networks and
the interactions between them are highly dynamic
(Allen et al., 2014; Shine et al., 2016; Zalesky et al.,
2014; Hutchison et al., 2013). As a result, it
has been suggested that dynamic network recon-
figuration is a fundamental neurophysiological pro-
cess (Braun et al., 2015; Kitzbichler et al., 2011;
Vatansever et al., 2015). Emerging findings sug-
gest that networks are non-stationary (see Hutchi-
son et al. 2013), although robust characterization
of this non-stationarity remains a methodological
challenge (Hlinka & Hadrava, 2015; Kaplan et al.,
2005). It is generally assumed that their reconfigu-
rations are driven by higher-order cognitive control
systems, involving mainly the frontal cortex (Fe-
dorenko & Thompson-Schill, 2014; Braun et al.,
2015). Moreover, dynamic reconfiguration is di-
rectly linked to cognitive performance during mem-
ory (Cohen & D’Esposito, 2016; Stevens et al., 2012;
Meunier et al., 2014; Stanley et al., 2014).

Although it is clear that recognition memory re-
quires the participation of different networks, lit-
tle is known about their dynamical organization.
This is due to the fact that current studies of large-
scale network dynamics are based either on fMRI
or EEG. fMRI-based temporal networks are usually
analyzed using multiple, possibly overlapping, very
long temporal segments, typically 30-60 seconds
long (Allen et al., 2014; Hutchison et al., 2013).
In contrast, surface EEG studies suffer from low
spatial resolution and might not capture the con-
tributions of medial temporal brain structures.

Because visual recognition memory is so fast,
the modifications of large-scale functional networks
that support such ability need to be examined on a
millisecond-by-millisecond timescale and with high
spatial resolution. Therefore, we analyzed intracra-
nial EEG, an approach that meets these needs. We
calculated functional and effective connectivity, as
well as underlying graph properties. Considering
that the contribution to visual recognition mem-
ory of each hemisphere differs significantly, we as-
sumed that it would be reflected in the connec-
tivity patterns. We ran the first set of analyses
based on this hypothesis. We then examined whole-
brain network topology and investigated fluctua-
tions in network properties, i.e., changes in inte-
gration and segregation as memory processes un-
fold (Cohen & D’Esposito, 2016; Vatansever et al.,
2015). Ultimately, understanding how brains dy-
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namically adapt to perform very fast tasks is vital
to our understanding of the neural basis of memory.

2. Material and Methods

2.1. Patients

Intracranial EEG (iEEG) was recorded for eigh-
teen patients with drug-refractory epilepsy (8
women, age: 37.61 ± 11.37 years old). They
were admitted to the Epilepsy Monitoring Unit at
Toulouse University Hospital for the identification
and possible subsequent resection of the epilep-
togenic zone. Eight – thirteen depth electrodes
were stereotaxically implanted in each patient. The
depth electrodes were 0.8 mm in diameter and con-
tained 8 to 18 platinum/iridium contacts, each 2
mm long (Microdeep depth electrode, DIXI med-
ical, France). Each implantation was individually
tailored to the seizure onset zone and the place-
ment of each depth electrode was based exclusively
on clinical criteria independently of this study.

The preoperative MRI and postoperative CT im-
ages were fused and normalized to the Montreal
Neurological Institute (MNI) brain atlas for precise
contact localization (see Despouy et al. 2020).

Intracranial EEG activity was recorded using two
synchronized 64-channel acquisition systems (Sys-
temPlus Evolution, SD LTM 64 EXPRESS, Mi-
cromed, France) with a sampling frequency of 256
Hz for two patients and either 1,024 or 2,048 Hz
for the others (high pass-filter: 0.15 Hz). None of
the patients had a seizure within 6 hours before the
recordings.

This study was approved by the local University
Hospital Ethics Committee (CER No. 47–0913).
Informed consent forms were signed for the implan-
tation and the use of iEEG data for research pur-
poses.

2.2. Visual recognition memory test

Each subject performed a visual recognition
memory task, namely the Speed and Accuracy
Boosting procedure (SAB) while the intracerebral
EEG was being recorded (Besson et al., 2012). Each
block began with an encoding phase during which
30 trial-specific stimuli (targets) were presented in-
dividually for at least 3 s (self-paced) in the center
of a gray screen. The stimuli were taken from an
extensive database of high-quality cropped photos
of everyday objects. Participants were explicitly
instructed to remember all stimuli. A distracting

phase followed during which the subjects watched
a colored cartoon video with sound on for 3 min-
utes. Finally, the subjects underwent the recog-
nition memory phase during which the 30 targets
and 30 distractors were shown. Subjects were re-
quired to respond to the targets only, by raising
their finger as quickly as possible from an infrared
pad. A 600ms response time limit with audio feed-
back forced subjects to answer as quickly and ac-
curately as possible. Responses were based on a
go/no-go design. If a go response was given be-
fore the response time limit, positive audio feed-
back was played if the stimulus was a target (Hit).
Negative feedback was played if it was a distractor
(False alarm). If a no-go response was given, posi-
tive audio feedback was played if the stimulus was
a distractor (Correct rejection). Negative feedback
was played if the stimulus was a target (Miss). We
analyzed only the Hits and Correct rejections (CR)
in this study. The SAB test is demanding and re-
quires one or two training sessions, which were not
included in subsequent analyses. Patients partici-
pated in 7–10 SAB blocks depending on their will-
ingness.

We evaluated each subject’s performance using
two discrimination indices, i.e., d-prime and mini-
mal reaction time (minRT). The minRT is defined
as the minimal processing time required to recog-
nize targets, and it was computed by determining
the latency at which correct go responses (Hits)
started to significantly outnumber incorrect go re-
sponses (false alarms) (Besson et al., 2012). As in
previous studies (Despouy et al., 2020), we used
20ms time bins and a Fisher’s exact test (p < 0.05),
followed by at least two significant consecutive bins
to compute the minRT.

2.3. Recordings

We used a bipolar montage between adjacent
contacts to remove artifact contaminations, iden-
tify local activations, and provide a reference-free
representation of the phenomena under observation
(Lachaux et al., 2003). A single bipolar montage
(i.e., TB 1-2) is referred to as a “channel” through-
out this study. Preliminary visual inspection of the
iEEG recording and manual artifact rejection pro-
cedures excluded an average of 14 % of all trials
(range: 8–22 %) with interictal activity across par-
ticipants. This procedure decreased the risk of in-
cluding trials modified by epileptic activity.
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Figure 1: Recordings and connectivity. a) Overview of all recording locations across subjects. We recorded the brain activity
of 18 epileptic subjects using multiple intracranial depth electrodes that targeted different brain regions. For each subject,
we analyzed 30 bipolar channels, resulting in a total of 540 channels. The different colors corresponded to different subjects.
b) We mapped these channels to the AAL atlas based on their MNI coordinates, covering 68 out of 90 possible regions with
different channel densities. The size of each sphere corresponds to the sampling density of the region. c) Examples of dynamic
correlation (i.e., functional connectivity) for a given channel pair (OT’5-6 and FC’4-5) for both Hits and Correct rejections.
Note that a correlation is an undirected measure. d) Examples of dynamic Granger causality (i.e., effective connectivity) for
a given channel pair (TP1-2 and B6-7) for both Hits and Correct rejections. According to the definition of Granger causality,
the source influences the target.

2.4. Channels and trials selection

Comparing subsequent causality estimates across
subjects requires an equal number of channels and
trials for each patient. We only included channels

that do not share a common contact to avoid spu-
rious increases in connectivity. There was a max-
imum of 30 channels that obeyed this rule for one
patient. Reducing the channel numbers to 30 in
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all other patients required a further selection pro-
cess. We manually selected channels localized in
grey matter (based on MRI images) and visually
recognizable neural responses to the stimuli. Fur-
thermore, we included only the first 64 trials for
each patient (minimal number of successful trials
for the worst-performing subject). Therefore, with
an a priori selection, we analyzed 18 subjects with
30 channels per subject, i.e., a total of 540 channels
(Fig. 1a), 308 of which were in the left hemisphere
and 232 in the right hemisphere.

2.5. iEEG preprocessing

iEEG preprocessing consisted of downsampling
each channel to 256 Hz (original sampling frequency
for two subjects) and subtracting the ensemble
mean across trials to ensure stationarity (Barnett &
Seth, 2014). We analyzed the 200 ms pre-stimulus
baseline and 800 ms after the stimulus onset. To
perform sliding-window connectivity analyses, we
segmented each trial into windows of 64 samples
(250 ms). We used a shift of 4 samples between two
consecutive windows (similar results were obtained
with a window of 32 samples). Each sliding-window
was multiplied by a Hanning window to suppress
spurious connectivity and reduce sensitivity to out-
liers (Preti et al., 2017). All data were processed
with MATLAB (The Mathworks).

2.6. Connectivity analyses

We investigated functional (FC) and effective
(EC) connectivity in sliding windows. We esti-
mated dynamic FC and EC for each of the 18
subjects. To compare global levels of connectiv-
ity, we calculated the mean connectivity for each
subject. Conversely, we pooled all connectivity es-
timates across subjects to analyze lateralization or
directionality because the implantation varied sig-
nificantly.

2.6.1. Functional connectivity

We estimated FC between two channels as the
mean Pearson’s correlation coefficient across all tri-
als (Fig. 1c).

2.6.2. Effective connectivity

We used dynamic multivariate Granger causal-
ity (MVGC) to estimate the EC between chan-
nels. It implements a statistical, predictive notion
of causality whereby causes precede and help to pre-
dict their effects. Classical Granger causality from

Y to X (the degree to which the past of Y helps
predict X, over and above the degree to which X
is predicted by its past) can be formally written as
the log-likelihood ratio:

FY→X = ln
Σ1

Σ2

Σ1 = var(ε1t),Σ2 = var(ε2t)

X1
t =

M∑
j=1

= a1jXt−j + ε1t

X2
t =

M∑
j=1

= a2jXt−j + b2jYt−j + ε2t

where X and Y represent recorded time series
from two channels, a and b are parameters of the
autoregressive process, ε represents residuals, and
M is the model order (we used a constant order of
10, but similar results were observed using orders
of 5 or 15).

We used the freely available toolbox from Barnett
& Seth (2014) to calculate MVGC in overlapping
sliding windows between all channels, separately for
each patient. With the multivariate extension it
is possible to control for common causal influences
(Seth et al., 2015). Because our testing paradigm
was time-constrained, and we used very short time
windows, estimating the multivariate autoregres-
sive (MVAR) model parameters might have been
difficult. Nevertheless, we overcame this difficulty
through the “vertical regression” implemented in
the toolbox to address short time windows when
multiple trials were available. This method is based
on the assumption that each trial is an independent
realization of the same underlying stochastic gener-
ative process. Therefore, we ended up with only
one estimated MVAR model for all trials (Fig. 1d).

We used the definition given by Gaillard et al.
(2009), of feedforward direction as the causal influ-
ence of posterior channels onto the more anterior
channel. If their y coordinates were identical, feed-
forward was defined as the causal influence of the
lower onto the higher channel based on the z coor-
dinates (this occurred in 3 % of the cases).

2.6.3. Statistical testing

It is important to stress that in this study, we
were limited by several factors such as the low
number of subjects, short time windows, and tai-
lored implantations, all of which are inherent to
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iEEG recordings. Moreover, the connectivity es-
timates followed a non-normal distribution. There-
fore, for statistical testing, we used bootstrapping
as a resampling technique, whereby random sam-
pling with replacement from the distribution of in-
terest is used to estimate the sampling distribution
of almost any statistic (Efron & Tibshirani, 1994).
Bias-corrected bootstrap was used in different ways
according to the situation. This included calculat-
ing confidence intervals, testing differences between
subjects, or testing increases compared to a base-
line. Details of the procedures for statistical infer-
ence for each of these approaches are described in
Appendix A.

2.7. Graph analyses

Two key concepts in graph theory are nodes and
edges. In our analyses, nodes represent brain re-
gions. We used the AAL atlas (Tzourio-Mazoyer
et al., 2002) that parcellates the brain into 90 re-
gions (including subcortical regions) to obtain iden-
tical parcellation for each subject. Each recording
channel was assigned an area in the atlas based
on its MNI coordinates using the SPM12 software
package (Wellcome Department of Cognitive Neu-
rology, London, UK) and the Anatomy toolbox
(Eickhoff et al., 2005). Channels that did not be-
long to any region were not used in the mapping.
Regions with no recorded signal were discarded,
which resulted in the coverage of 68 out of the 90
AAL atlas regions (Fig. 1b). Note that in the
AAL atlas, the perirhinal, parahippocampal, and
entorhinal cortices are collectively referred to as the
parahippocampal region.

The second constituent component of a graph is
edges. We defined an edge between two regions
as the mean MVGC of all corresponding channels.
Since every graph can be represented as an adja-
cency matrix, and since we used a sliding window
technique, our dynamic brain networks formed a
set of adjacency matrices. Each adjacency matrix
was based on data from all patients and represented
an incomplete weighted directed graph. Tradition-
ally, these matrices are thresholded and binarized
to reduce measurement noise (Muldoon & Bassett,
2016), but arbitrary thresholding often leads to
a loss of information (Rubinov & Sporns, 2011),
and network measures are unstable across different
thresholds (Garrison et al., 2015). Consequently,
we opted to work with weighted directed graphs.

Two important concepts of network organization
that might explain human cognitive abilities are

segregation and integration. They provide essen-
tial insight into information processing and trans-
mission. Segregation is the extent to which com-
munication occurs primarily within tight-knit com-
munities of regions. On the other hand, integra-
tion is the extent of communication between dis-
tinct regions. It is the ability of the network to in-
tegrate distributed information (Deco et al., 2015;
Sporns, 2013). Both segregation and integration
can be modeled with various measures (Bullmore
& Sporns, 2009). We analyzed our dynamic mem-
ory networks in terms of efficiency and modularity
(van den Heuvel & Sporns, 2013). All analyses were
performed using The Brain Connectivity Toolbox
designed for MATLAB (Rubinov & Sporns, 2010).

2.7.1. Modularity

Modularity quantifies the degree to which the
network may be subdivided into densely intercon-
nected communities that maximize the number of
within-group edges and minimize the number of
between-group edges (Newman, 2006). We applied
the iterative Louvain algorithm to the adjacency
matrix with a resolution parameter of γ = 1 and
random initial conditions for each time window of
dynamic connectivity. A maximum of the modu-
larity function across 10,000 runs was the resulting
modularity with its accompanying network parti-
tion (Sporns & Betzel, 2016).

2.7.2. Efficiency

Global efficiency is defined as the average inverse
shortest path between any two nodes (Latora &
Marchiori, 2001). Considering that it is linearly
dependent on connectivity strength between nodes,
we normalized it by dividing it by the mean con-
nectivity across all non-zero edges.

2.7.3. Null model

The use and choice of a null model are cru-
cial in graph analyses (Hlinka & Hadrava, 2015;
Hindriks et al., 2016). To create a stationary
system with an identical covariance structure, we
used an amplitude-adjusted multivariate extension
of Fourier surrogates (MVFS) that matched the am-
plitude spectrum and amplitude distributions (see
Schreiber & Schmitz 2000). We compared the mag-
nitudes to the null models, i.e., we divided the ob-
tained metric by a mean metric obtained in 1,000
surrogate networks (Westphal et al., 2017) and an-
alyzed their dynamics. It is of note that Fourier
surrogates could not be used to test the significance
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of global causality (Supp. Fig. 1). Moreover, we
could not use the Erdos-Renyi null model due to
incomplete brain coverage and the non-existence of
certain links.

3. Results

Firstly, we compared global FC, approximated
by Pearson’s correlation, for Hits and Correct re-
jections across all subjects and the entire brain.
We observed a higher level of correlation for Hits
across time (Fig. 2a, bootstrap p < 10−16). Un-
wrapping this analysis in terms of time showed that
although the patterns were quite similar (Pearson’s
r = 0.98, p < 10−16), there were significant differ-
ences between the two conditions starting at ap-
proximately 290 ms (bootstrap p < 0.05, FDR-
corrected) (Fig. 2b). Because visual recognition
memory relies more on the right than on the left
hemisphere, we performed the same FC analyses fo-
cusing on each hemisphere. The patterns of left and
right hemisphere FC were almost identical (Pear-
son’s r = 0.98, p < 10−16). The significant increase
(bootstrap p < 0.05, FDR-corrected) in FC oc-
curred slightly earlier in the right hemisphere (150
ms) than in the left (170 ms) (Fig. 2c).

Since directionality cannot be tested by corre-
lations, we further analyzed effective connectivity
by Granger causality. We calculated MVGC using
vertical regression in short sliding windows, thereby
providing a dynamic estimate of causality strength.
Averaged in time, MVGC for Hits and Correct re-
jections across subjects and the entire brain were
not significantly different (bootstrap p = 0.28) (Fig.
2d). Although, the conditions showed different dy-
namics (Pearson’s r = 0.22, p = 0.13) no significant
difference was noted in terms of time (bootstrap
p > 0.05, FDR-corrected) (Fig. 2e).

Following these preliminary analyses, we ana-
lyzed dynamic causality in more detail by focusing
on feedforward and feedback directionality within
each hemisphere. We calculated partial Pearson’s
correlations (controlling for global causality) be-
tween the time courses of these conditions. We
found significant similarities between feedforward
and right hemisphere causality time courses (r =
0.61, p < 10−5) (Fig. 3a). On the other hand,
the feedback causality time course was closely con-
nected with the left hemisphere (r = 0.70, p <
10−7) and across both hemispheres time course
(r = 0.48, p < 10−3). It is importance to note
that such significant correlations were not found for

Correct rejection (Supp. Fig. 2), neither were they
randomly obtainable. This was confirmed by shuf-
fling the labels of the links (Supp. Fig. 3).

Further analyses of Hits showed that the causal-
ity of feedforward connections was higher than that
of feedback connections in the right hemisphere
(bootstrap p = 0.005), while the reverse was true in
the left hemisphere (bootstrap p = 0.001) (Fig. 3b).
Furthermore, the significant increase in the right
hemispheric feedforward causality occurred much
earlier (170 ms, bootstrap p < 0.05) than the left
hemisphere feedback causality (270 ms, bootstrap
p < 0.05) (Fig. 3c).

To further improve our understanding of the net-
works supporting visual recognition memory, we
switched to data-driven analyses (i.e., whole-brain
rather than by hemisphere). Therefore, we fo-
cused on two metrics that describe network topol-
ogy: modularity (a measure of segregation) and ef-
ficiency (a measure of integration). Network topol-
ogy changed over time (Fig. 4a). We observed
a highly segregated (modular) topology from 110
ms after stimulus onset. It then transitioned into
a more integrated (efficient) topology at approxi-
mately 220 ms. Moreover, the significant increase
in modularity (MVFS p < 0.05, FDR-corrected) oc-
curred just before the increase in right hemisphere
feedforward causality (Fig. 4b). Similarly, the
increase in efficiency occurred just before the in-
crease in left hemisphere feedback causality (Fig.
4c). These results suggest that changes in network
topology could precede (and maybe drive) changes
in information flow. We observed similar modu-
larity and efficiency patterns even with a different
brain parcellation, namely the Harvard-Oxford at-
las (Pearson’s r between dynamic modularity from
AAL and Harvard-Oxford atlas r = 0.51, p < 10−3,
resp. efficiency r = 0.47, p < 10−3).

In addition, we used the Louvain algorithm to
detect community structures in networks. We con-
sistently identified three main communities at each
time window, i.e., three highly interconnected sub-
graphs (Fig. 5a). Based on the most frequent
allegiance of each node, the first community com-
prised regions of the right temporal lobe as well as
many frontal regions bilaterally. The second com-
munity comprised regions in the left hemisphere,
mostly from the temporal lobe and other parietal
and frontal lobes. Interestingly, both the left and
the right hippocampi were more linked to this sec-
ond community. The third community comprised
the left parahippocampal and inferior frontal gyri
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Figure 2: Connectivity analyses. a) We observed a higher level of global correlation for Hits than Correct rejections (p < 10−16).
b) Resolved in time, there is a significant difference in correlation between the two conditions starting from 290 ms. The 90%
bootstrap confidence interval is plotted in shaded colors. The black horizontal lines indicate significant time intervals. c) If
we focus on the FC within each hemisphere, very similar temporal patterns can be observed (Pearson’s r = 0.98, p < 10−16).
Compared to the baseline, we see a significant increase in both right hemisphere (starting from 150 ms) and left hemisphere
correlations (starting from 170 ms). The red dotted lines represent the threshold for a significant change from the baseline. d)
Unlike for correlation, the mean global causality for Hits was not statistically higher than for Correct rejection (p = 0.28). e)
Moreover, the time courses of mean causalities were not significantly correlated (Pearson’s r = 0.22, p = 0.13), and there were
no statistical differences in time (p > 0.05, FDR-corrected).
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Hits
a) b)

c)

**

**

Figure 3: Effective connectivity analyses for Hits. a) We investigated the temporal evolution of causality based on directionality
and lateralization. We found striking similarities for some of the patterns: right hemisphere and feedforward causality were
highly correlated, as well as left hemisphere (or across-hemisphere) and feedback causality. These two modes were highly anti-
correlated. Non-significant correlations (FDR-corrected) were set at 0. b) When time is averaged, we observe more feedforward
causality in the right hemisphere (p = 0.005) and more feedback causality in the left hemisphere (p = 0.001). c) The right
feedforward causality significantly increased as of approximately 170 ms and then decreased at 300 ms. This decrease was
associated with a significant increase in left feedback causality. The 90% bootstrap confidence interval is plotted in shaded
colors. Horizontal lines indicate periods of significant increase.

as well as the left amygdala.

Some nodes changed their allegiance throughout
the time course, but the core of each community
remained stable (Supp. Fig. 4). The communi-
ties differed in their stability (one-way ANOVA,
p < 10−3), with the first community being the
most stable, i.e., having the lowest instability index
defined as the relative number of node allegiance
changes over the course of time (Fig. 5b). There-
fore, if a node changed allegiance, it was mostly

between the second and third community.

The first community showed the earliest increase
in causality compared to baseline, at a similar tim-
ing as the increase of feedforward causality in the
right hemisphere (Fig. 5c). Furthermore, the first
community feedforward causality correlated signif-
icantly with that of the right hemisphere identified
in the first set of analyses (r = 0.76, p < 10−9).
Likewise, the causality increase in the second com-
munity occurred later, in approximately 230 ms
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c)

a)

b)

Figure 4: Changes in the network topology across time.
a) At approximately 110 ms, the network shows a more
modular topology. This segregated state is followed by a
more integrated structure characterized by higher efficiency
at 220 ms. Horizontal lines represent periods of significant
increase/decrease. b) After the first peak of modularity at
110 ms, a significant increase in right hemisphere feedfor-
ward causality at approximately 150 ms can be observed. c)
In addition, the first peak of efficiency at 220 ms precedes a
significant increase in left hemisphere feedback causality at
250 ms. Solid lines indicate significant values. The rectan-
gles highlight the time intervals of interest.

(Fig. 5c). The feedback causality correlated sig-
nificantly with the feedback causality in the left
hemisphere (r = 0.41, p = 0.004). The causal-
ity of the third community remained comparable

to the baseline. Moreover, in the analysis of the
directionality of influence, defined as the ratio be-
tween feedforward and feedback causality, the com-
munities differed significantly (one-way ANOVA,
p < 10−16). The first community exhibited a signif-
icant prevalence of feedforward interactions (boot-
strap p < 0.05, FDR-corrected), while the second
showed a prevalence of feedback interactions (Fig.
5d).

All in all, the two functional systems identified
on the basis of a hypothesis regarding the hemi-
spheric lateralization of visual recognition memory
are also identifiable with a data-driven community
analysis. However, the community analysis offered
a more detailed delineation of participating struc-
tures than a simple dichotomy between the right
and left hemispheres.

Finally, we associated the observed connectivity
patterns with the subjects’ performances. We as-
sumed that a higher performance level was asso-
ciated with neural activity that resembles typical
activity. Moreover, we expected the feedforward
causality to drive fast response, unlike the feedback.
Therefore, we calculated a one-sided Pearson cor-
relation between the typicality of neural response
(correlation between subjects’ causality time course
and the template of right feedforward and left feed-
back causality - from Fig. 2c for FC and from Fig.
3c for EC) and the minimal reaction time and d-
prime (Tab. 1). Although mostly non-significant,
the descriptive analysis showed that the right hemi-
sphere feedforward causality were negatively corre-
lated with minimal reaction times (the more typical
the neural response, the faster the minimal reac-
tion times; rFC = −0.34, p = 0.10; rEC = −0.32,
p = 0.13) while the left hemisphere feedback causal-
ity showed a positive correlation (rFC = 0.26,
p = 0.16; rEC = 0.59, p = 0.006) (Supp. Fig. 5). In
terms of d-prime, we tested for positive correlation
and did not find consistent results across measures.
We obtained identical p-values using permutation
testing with 10,000 repetitions.

4. Discussion

A typical characteristic of visual recognition
memory is its rapidness. Subjects in this study were
able to respond correctly in less than 600 ms, with
the fastest correct responses being approximately
370 ms, which is consistent with previous results
(Besson et al., 2012). Although the perirhinal cor-
tex and hippocampus have been identified as the
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Figure 5: Network communities. a) The Louvain algorithm for community detection consistently identified three main commu-
nities. The first community comprises regions of the right visual stream and medial temporal lobe structures as well as frontal
regions in both hemispheres. The second community comprises regions in the left MTL and the right hippocampus. The third
community comprises the left parahippocampal gyrus, left amygdala, and left inferior frontal gyrus. The size of the spheres
in the brain graph corresponds to the nodal strength. For representation purposes, the circular form (Krzywinski et al., 2009)
shows only the 3 % consisting of the strongest links. b) Even though the core of each community remained stable across the
time course, some nodes changed allegiance. The first network shows the highest stability, i.e., the lowest instability index
defined as a relative number of allegiance changes per node. c) The first community showed the earliest increase in causality
(110 ms). The second community followed at approximately 220 ms. d) Temporal average ± standard deviation of the direction
of influence is significantly different between communities. Moreover, the first community exhibits a significant prevalence of
feedforward causality. Conversely, the second community displays a significant prevalence of feedback causality (* p < 0.05, **
p < 0.001, FDR-corrected).
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Minimal Reaction Time d-prime

Functional Effective Functional Effective

Pearson’s r (p-value) Pearson’s r (p-value) Pearson’s r (p-value) Pearson’s r (p-value)

FF-Right typicality -0.34 (0.10) -0.32 (0.13) 0.04 (0.44) 0.15 (0.16)

FB-Left typicality 0.26 (0.16) 0.59 (0.006) -0.52 (0.98) 0.06 (0.43)

Table 1: The relation between connectivity and performance. We correlated the typicality of the subjects’ right feedforward
and left feedback connectivity with their performance on recognition memory tasks as assessed by minimal reaction time (an
index of the speed to perform the task) and d-prime (an index of the ability of the subjects to discriminate Hits from Correct
rejection). Results are comparable for both functional and effective connectivity analyses. We obtained identical p-values using
permutation testing with 10,000 repetitions.

core brain regions that support recognition mem-
ory, studies have consistently reported many other
brain regions, mainly in the temporal lobe, but also
in the frontal and parietal lobes (Gonzalez et al.,
2015; Hoppstädter et al., 2015; Rutishauser et al.,
2018; Despouy et al., 2020). Nevertheless, little is
known about the relationships between all these
brain regions and how these relationships evolve
over time. The amount of functional networks that
are activated during recognition memory is also un-
known. Therefore, there is a need to understand the
dynamical organization of the large-scale functional
brain networks that underlie recognition memory
on a millisecond-by-millisecond scale (Kopell et al.,
2014; Sporns, 2014).

Because this endeavor requires a high spatial and
temporal resolution, we analyzed functional and ef-
fective connectivity of intracerebral EEG in short
sliding time windows to track connectivity changes
and information flow during a visual recognition
memory task. We identified large-scale brain net-
works involved in successful recognition. The first
network mainly involved the right visual ventral
stream and the bilateral frontal regions. It was
characterized by predominant feedforward activ-
ity, starting rapidly in approximately 110 ms post-
stimulus and peaking at 190 ms, modular topology,
and high stability. It was followed by the involve-
ment of a second network, predominantly in the left
hemisphere, but notably also involving the right
hippocampus, characterized by predominant feed-
back activity which peaked at 270 ms, integrated
topology, and lower stability. It is important to
note that the patterns of right hemisphere / feed-
forward and left hemisphere / feedback connectivity
were found only for Hits, but not for Correct rejec-
tions. Interestingly, the peaks in modularity and
efficiency (the transitions from less segregated to
more segregated and from less integrated to more

integrated topology) preceded the peaks in right /
feedforward and left / feedback connectivity, which
suggest a causal link between changes in network
topology and modes of information processing. A
third, lower-scale network, was identified and was
related to the second. Overall, these results confirm
that several large-scale brain networks, each with
specific properties and dynamics, rapidly unfold
(i.e., in less than 300 milliseconds) during recogni-
tion memory. These networks involve many brain
regions bilaterally, even for such a basic cognitive
capacity.

4.1. Different networks unfold rapidly in time

We performed two types of analyses to iden-
tify the networks that support recognition mem-
ory. The first one was driven by the hypothesis that
there would be a high level of asymmetry between
both hemispheres. The second was data-driven (it
involved all recorded brain regions with no a priori
selection of brain regions or hemispheres) and was
based on the identification of brain region commu-
nities (by maximizing the number of within-group
edges and minimizing the number of between-group
edges (Newman, 2006)). Both analyses were car-
ried out dynamically over the entire time period.
It is important to note that both were convergent,
demonstrating robust findings, although the data-
driven analysis provided complementary informa-
tion.

The hemispheric analyses revealed a robust func-
tional difference between the right and left hemi-
sphere. The right was mainly characterized by a
feedforward information flow, while the left mainly
by the feedback information flow. The difference
between the amount of feedforward and feedback
connections was significant within each hemisphere
(Fig. 3b). Interestingly, the dynamics of the two
hemispheres were different since the peak of the
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feedforward information flow in the right hemi-
sphere occurred in approximately 170 ms. In con-
trast, the peak of the feedback information flow in
the left hemisphere occurred later, in approximately
270 ms, at a moment when the feedforward informa-
tion flow in the right hemisphere sharply decreased
(Fig. 3c).

The data-driven analysis identified three net-
works. The first encompassed many brain regions
in the right temporal lobe and the bilateral frontal
lobes. Interestingly, this network showed a very
rapid increase (between 100 and 200 ms) in effec-
tive connectivity. It was characterized by effec-
tive predominant feedforward connectivity, which
is consistent with the facts already known about
the rapidity and flow of information from the vi-
sual ventral stream (VanRullen & Thorpe, 2001;
DiCarlo et al., 2012). The second encompassed
brain regions in the left temporal lobes, as well
as the parietal and frontal lobes. It is highly im-
portant to note that it encompassed both the left
and the right hippocampi. The effective connec-
tivity of this second network peaked later than the
first, albeit rapidly after stimulus onset between 200
and 300 ms. It was characterized by effective pre-
dominant feedback connectivity. A third network
comprised regions in the posterior frontal and an-
terior temporal lobes. Unlike the two previous net-
works, it did not have a clear information flow direc-
tion. The first network was characterized by high
community stability (few nodes changed allegiance
over the periods). The second and third communi-
ties were less stable, with nodes interchanging alle-
giance throughout the period. Follow-up analyses
showed that the first connectivity network pattern
was very similar to the feedforward connectivity
pattern observed in the right hemisphere. Likewise,
the second network connectivity pattern was very
similar to the feedback connectivity pattern ob-
served in the left hemisphere. Overall, these analy-
ses provide the picture of three functional networks
that underlie visual recognition memory, each with
specific topography, temporal dynamics, preferred
direction of information flow, and stability. In other
words, within 300 ms, the brain undergoes a mas-
sive dynamic functional reorganization phase that
involves several networks.

4.2. A large-scale network account of recognition
memory

The first functional network was partly expected
since previous intracerebral EEG studies had al-

ready demonstrated a high early involvement of
the right visual ventral pathway in visual recogni-
tion memory (Barbeau et al., 2008; Despouy et al.,
2020). Furthermore, it has already been established
that frontal lobe regions are involved in recogni-
tion memory (Swick & Knight, 1999; Bastin et al.,
2006; Despouy et al., 2020), as early as 110 ms af-
ter stimulus presentation (Bar et al., 2006; Barbeau
et al., 2008). The identification of a second network
was more unexpected, particularly a network that
tended to be more left-sided and prominently char-
acterized by feedback connectivity.

Although further studies will be required to clar-
ify each network’s role, they highly correspond with
current knowledge of the neurocognitive architec-
ture that underlies recognition memory. Familiar-
ity and recollection are the two processes that un-
derlie successful recognition memory (Brown & Ag-
gleton, 2001). Familiarity is a fast process that
relies mainly on the perirhinal cortex as the core
brain region, along with the ventral visual pathway.
It does not include the hippocampus (Eichenbaum
et al., 2007). Therefore, the first network could be
mainly involved in familiarity. In contrast, recol-
lection is assumed to be a slower process that re-
lies on the hippocampus as the core brain region
and the extended hippocampal system in general,
which involves relays in the mammillary bodies, an-
terior thalamus, cingulate cortex, and parietal lobes
(Yonelinas et al., 2005). Therefore, the second net-
work could be more involved in recollection, as sug-
gested by the fact that it was delayed compared to
the first network, but also by the fact that both
right and hippocampi belonged to this network.

While familiarity depends mainly on processing
the world surrounding the subject (i.e., bottom-
up processes), recollection on the other hand, re-
quires interactions with the internal world (i.e.,
memory) to retrieve the spatio-temporal context of
occurrence of the stimuli that needs to be recog-
nized. The notion that the first network is char-
acterized mainly by feedforward connectivity while
the second is characterized by feedback connec-
tivity is consistent with these hypotheses. Re-
cently, Kar et al. (2019) showed the advantage of
recurrent computations for object recognition. In-
creased feedback connectivity could represent top-
down modulation (Ishai et al., 2006), the build-up
of an internal representation of the stimulus (Rijs-
bergen & Schyns, 2009), or access to a distributed
semantic system (Burke et al., 2014). This is sup-
ported by the notion that the second slower net-
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work could be related to language or the need for
internal speech, which would explain why it is more
left-lateralized.

Recently, Bastin et al. (2019) proposed a large-
scale functional architecture that supports famil-
iarity and recollection. This Integrative Memory
Model emphasizes the large number of brain re-
gions involved in familiarity and recollection pro-
cesses. Moreover, it proposed that an “attribution
and attention” system, mainly dependent on frontal
lobe regions, was involved in recognition memory.
This system involves top-down attention, activity
maintenance, metacognitive knowledge, and moni-
toring and decision-making, leading to the subjec-
tive feelings and explicit judgments that occur dur-
ing recognition memory. The fact that the first and
third networks encompassed many frontal lobe re-
gions is consistent with this proposal. It may also
explain why the second and third networks are less
stable than the first and exchange node allegiances
over time if monitoring and decision-making are un-
derway.

A switch from a goal-oriented network (familiar-
ity) to an introspective one (recollection) requires
significant reorganization of the brain, which also
involves the hippocampus (Barbeau et al., 2017).
Previous studies have independently identified net-
work changes occurring after 240 ms during recog-
nition memory tasks (Barbeau et al., 2008; Maillard
et al., 2011), which lends support to the idea that
this switch between networks occurs. Studies that
focus on functional connectivity using fMRI have
consistently revealed brain network reorganizations
during cognitive tasks (Bola & Borchardt, 2016; Ek-
man et al., 2012; Shine et al., 2016). Note that the
switch (between external and internal worlds) also
involves the frontal lobes (Brincat & Miller, 2016).
Westphal et al. (2017) suggested that a cross-talk
between two large-scale networks during episodic
memory may push the brain into a globally more
integrated state, enabling higher information trans-
fer fluidity. This increase in global integration is
driven by an increase in cognitive load, whereby the
brain can adopt a more global workspace configura-
tion (Kitzbichler et al., 2011; Ekman et al., 2012).
Moreover, higher task demands were already noted
to decrease modularity (Vatansever et al., 2015).
Overall, network topology is tightly linked to in-
formation transmission (Lynn et al., 2020). These
notions are consistent with our findings of a criti-
cal switch between different networks that precede
a change in information flow, and underscore the

brain’s ability to reconfigure dynamic networks in
response to changing cognitive demands (Cohen &
D’Esposito, 2016).

It is highly noteworthy that these findings indi-
cate that large-scale functional networks can have
several modes of relationships, for instance, criti-
cal moments of transition between networks (such
as between the first and second network) or strong
interactions (such as between the second and third
network where node allegiance fluctuates between
the two networks over time). Overall, this study
provides a richer and more integrated picture of the
brain networks that underlie recognition memory.

4.3. Recognizing stimuli: Hits vs. Correct rejection

It is of note that the pattern of predominantly
feedforward and feedback information flow observed
in the right and left hemispheres was identified only
for Hits but not for Correct rejections. The vi-
sual recognition memory task used in this study
was based on a go/no-go paradigm. The response
(raising fingers from a response pad) was provided
only for Hits, while CR did not require a response.
This paradigm was chosen because it forces subjects
to use their fastest strategy (Barragan-Jason et al.,
2013). Consequently, Hits required the involvement
of more brain regions than CR.

Watrous et al. (2013) suggested that functional
connectivity related to correct versus incorrect con-
text retrieval was rather global than regionally spe-
cific. We consistently found significant differences
between Hits and CR in global FC from approxi-
mately 290 ms. These increased functional inter-
actions are believed to be a signature of successful
recollection (Schedlbauer et al., 2014; King et al.,
2015).

If findings are not related to behavioral perfor-
mance, there is a risk that they may reflect non-
psychological factors. Therefore, we tried to verify
whether the right feedforward connectivity pattern,
possibly underlying familiarity, drove fast behav-
ioral responses. The left feedback pattern, possibly
related to recollection, was associated with slower
responses (Serre et al., 2007; Yoo et al., 2019). We
found consistent results supporting this idea. To
be specific, both functional and effective feedfor-
ward connectivity were negatively correlated to re-
action times, while positive correlations were found
for feedback connectivity. However, these correla-
tions did not have a high statistical power. The
number of subjects or the variability of the implan-
tations (impacting the typicality of the neural re-
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sponses) may have decreased the statistical power.
Even though Shine et al. (2016) suggested a direct
link between cognitive performance and dynamical
brain network reorganization, we found no signif-
icant correlation between modularity or efficiency
and performance, probably due to the factors just
mentioned.

4.4. Challenges of whole-brain, dynamic, connec-
tivity analyses using iEEG

Intracerebral EEG has the tremendous advantage
of providing an excellent spatial and temporal reso-
lution not provided by other methods. However, it
also has drawbacks that may have impeded the con-
nectivity analyses. Very few studies focus on whole-
brain, dynamic, effective connectivity using intrac-
erebral EEG data because of the specific challenges
posed by this approach. Most of the previous stud-
ies predefined regions of interest a priori (Staresina
et al., 2012) and did not focus on large-scale net-
works or their temporal dynamics (see exceptions
such as Gaillard et al. 2009). In fact, iEEG analy-
ses pose specific challenges such as the relatively low
number of subjects, short and non-stationary time-
series, and tailored electrode implantations, which
may under-sample some brain regions. Moreover,
the large number of sampled brain regions requires
synthesizing information across edges and nodes.
Some patients also participated in more trials than
others; however, we had to restrict our analyses to
the same number of trials per patient because the
number of trials directly influences the magnitude
of connectivity estimates.

To overcome these issues, we pooled results from
all 18 patients and mapped channel locations to
the AAL atlas. We were thereby able to recon-
struct signals from 68 out of 90 brain regions. Us-
ing vertical regression in all trials (limited to 64 per
patient), we could estimate causality in short (250
ms) and stationary time windows. Dedicated sta-
tistical analyses had to be designed at each stage
of the analyses to assess the value of the find-
ings. In addition, we followed the definition by
Gaillard et al. (2009), of feedforward and feed-
back processes, but this was only a rough simpli-
fication. In contrast, a hierarchical anatomically
based model might be better to represent brain pro-
cesses (Markov et al., 2014). Furthermore, func-
tional rather than anatomical parcellation could be
better to associate network topology and behav-
ioral responses (Salehi et al., 2020). Future studies
could also benefit from frequency-resolved measures

to detect networks that operate on specific frequen-
cies (Mao et al., 2016). Overcoming these obstacles
could open new paths for future studies on connec-
tivity dynamics using iEEG.

It is worth mentioning that iEEG involved
recordings from epileptic patients. Therefore,
epilepsy could impact the generalization of the re-
sults. However, as in all similar studies, we removed
the interictal activity periods recorded simultane-
ously with the task. Previous studies have also
shown that similar ERPs, characterized by latency,
morphology, and amplitudes, are found across inde-
pendent studies and epilepsy centers (e.g., Trautner
et al. 2004 vs. Barbeau et al. 2008). Interestingly,
a recent study combining iEEG and fMRI demon-
strated only small functional neuroanatomical dif-
ferences during an episodic memory task between a
group of epileptic patients and a group of matched
healthy subjects (Hill et al., 2020). Overall, despite
the limitations, iEEG studies appear to provide use-
ful and reliable information.

5. Conclusion

In conclusion, this study reveals novel findings
regarding the dynamics of the large-scale func-
tional networks that underlie recognition memory.
It could generate hypotheses that could be specif-
ically tested in future work. For example, dur-
ing a recognition memory task, neuronal activity
should mainly reflect feedforward and early activ-
ity in the first right hemisphere network (Sugase
et al., 1999). Such activity should also differ from
the neuronal activity recorded in the second net-
work. It would also be interesting to examine the
physiological mechanisms that enable the transition
between different networks. In general, this study
shows that whole-brain dynamic connectivity anal-
yses using intracerebral EEG offer a promising av-
enue to study different classes of cognitive abilities.
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J., & Liégeois-Chauvel, C. (2017). Hippocampus du-
ality: Memory and novelty detection are subserved
by distinct mechanisms. Hippocampus, 27 , 405–416.
doi:10.1002/hipo.22699.

Barbeau, E. J., Taylor, M. J., Regis, J., Marquis, P., Chau-
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Appendix A. Bootstrap statistics

This is a description of the different methods that
we adapted and designed to test the statistical sig-
nificance of differences between conditions and in-
creases in connectivity, or to calculate confidence
intervals. We used a resampling method called
bootstrapping. It uses random sampling with re-
placement from the distribution of interest to esti-
mate the sampling distribution of almost any statis-
tic (Efron & Tibshirani, 1994). To be more specific,
we used the bias-corrected implantation that cor-
rects for bias and skewness in the distribution of
bootstrap estimates. For a detailed description, see
Penn (2020).

We calculated confidence intervals of dynamic
connectivity (Fig. 2b) by creating a bias-corrected
bootstrap distribution of mean connectivity values
at each time-point. We used the hybrid method
where a 90% confidence interval from 10,000 repe-
titions is plotted around a mean value of the original
distribution.

We tested whether there was a difference in mean
value between two conditions across subjects, i.e.,
whether the mean connectivity of Hits was signifi-
cantly different from the mean connectivity of Cor-
rect rejections (as in Fig 2a,b,d,e), using a two-
tailed paired sample bootstrap test with 10,000 rep-
etitions. The null hypothesis for the test was that
the mean connectivity calculated for the difference
between Hits and Correct rejections was equal to
zero. In Fig. 2b,e, the resulting p-values were cor-
rected for multiple comparisons in the time domain
with the FDR algorithm to take into account the 48
tests performed across time. In Fig. 5c, we used the
same approach to test whether the mean direction
of influence was zero in each community

The original bootstrap method is designed for in-
dependent identically distributed data. A standard
bootstrap is not appropriate when data samples are
dependent (such as time series). Therefore, we used
a stationary bootstrap - a block technique that at-
tempts to preserve the underlying autocorrelation
(Lahiri, 2003). TThis technique is based on a cir-
cular wrap of data (end-to-start wrap around the
data around a circle) and a random window length
that removes the edge effect of uneven weighting at
the beginning and the end (Politis & White, 2004).
To test whether there was a significant difference
in mean feedforward connectivity between the left
and right hemispheres (Fig. 3b), we compared the
two corresponding stationary bootstrap distribu-

tions and calculated a p-value, as mentioned above.
Finally, to test whether there was a significant

increase in a time course (as in Fig. 2c or Fig.
3c), we created a bias-corrected bootstrap distribu-
tion of mean connectivity in each time window by
randomly sampling subjects with repetitions 10,000
times. Furthermore, we compared each bootstrap
distribution to the baseline bootstrap distribution
(from a time window centered at -75 ms) to obtain
the resulting p-values.
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Supplementary Figure 1: The significance of the causality time series could be assessed by comparison to corresponding
surrogates. Nevertheless, in our analysis, all time series (except across hemispheric causality) have values above the 90 %
confidence interval of amplitude-adjusted multivariate extension of Fourier surrogates. This is why we do not focus on the
examination of across hemisphere causality. While the surrogates correspond well to individual pairs, they cannot be used to
assess the significance of mean connectivity across all pairs. It might be due to the non-stationarity of the underlying process
and the stationarity of surrogates. It would appear that in every time point, there are highly significant causality values that
drive the mean value to be significant as well.

Supplementary Figure 2: In Hits, we found significant sim-
ilarities between causality time series. Therefore, we calcu-
lated the partial Pearson’s correlation (controlling for the
effect of global causality) between different causality time
courses for Correct rejections. We did not observe a signifi-
cant positive correlation for directionality and lateralization,
as was the case in the main analysis.

Supplementary Figure 3: We tested whether the correla-
tions obtained in 2a were randomly obtainable. We ran-
domly shuffled indices regardless of whether a link was feed-
back/feedforward, cross-hemispheric, or within the left/right
hemisphere. The number of links in each category remained
the same as in the original analysis. Moreover, one link can-
not feedforward and feedback simultaneously (same for other
classes). We repeated this procedure 10,000 times. We plot-
ted the probability of obtaining a higher correlation coeffi-
cient than in the main analysis (higher for positive correla-
tions, reps. lower for negative correlations). The probability
of obtaining higher magnitudes of right feedforward and left
feedback correlations is less than 5%.
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Supplementary Figure 4: In each time window, we assigned a
community index to each node. We regularly identified three
communities, but in 17% of the time windows, we identified
four communities. In 2% of the time windows, we identified
only two communities with communities 2 and 3 merging.
Even though node allegiance might change throughout the
time course, the core of each community remained stable.
The community centered at the right MTL and frontal re-
gions in particular, shows very high stability.
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Effective connectivity

Supplementary Figure 5: Each subject is described by the typicality of feedforward causality dynamics in the right hemisphere
and feedback causality dynamics in the left hemisphere. We correlated the typicality with two measures of performance, namely
the minimal reaction time and d-prime. Descriptively we observed that the feedforward connectivity was associated with fast
responses and conversely for the feedback connectivity.
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