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Abstract 

To study the dynamics of neural processing across timescales, we require the ability to follow the                               

spiking of thousands of individually separable neurons over weeks and months, during unrestrained                         

behavior. To address this need, we introduce the Neuropixels 2.0 probe together with novel analysis                             

algorithms. The new probe has over 5,000 sites and is miniaturized such that two probes plus a                                 

headstage, recording 768 sites at once, weigh just over 1 g, suitable for implanting chronically in small                                 

mammals. Recordings with high quality signals persisting for at least two months were reliably                           

obtained in two species and six different labs. Improved site density and arrangement combined with                             

new data processing methods enable automatic post-hoc stabilization of data despite brain movements                         

during behavior and across days, allowing recording from the same neurons in the mouse visual                             

cortex for over 2 months. Additionally, an optional configuration allows for recording from multiple                           

sites per available channel, with a penalty to signal-to-noise ratio. These probes and algorithms enable                             

stable recordings from >10,000 sites during free behavior in small animals such as mice.  

Introduction 

A major technical challenge for neuroscience is developing tools to record neuronal activity at large                             

scale and across all relevant timescales (Chen et al., 2017; Seymour et al., 2017; Steinmetz et al., 2018;                                   

Hong and Lieber, 2019). Recent advances such as the Neuropixels probe leveraged CMOS fabrication                           

methods to significantly expand the number and density of recording sites (Jun et al., 2017; Raducanu                               

et al., 2017), allowing unprecedented recordings of large populations of neurons distributed across the                           

brain at single spike resolution (Allen et al., 2019; Siegle et al., 2019; Steinmetz et al., 2019; Stringer et                                     

al., 2019b). The Neuropixels probe has seen rapid adoption and wide application in diverse species                             

including mice (Evans et al., 2018; Vélez-Fort et al., 2018; Bennett et al., 2019; Kostadinov et al., 2019;                                   

Musall et al., 2019; Park et al., 2019; Schröder et al., 2019; Stringer et al., 2019a; Liu et al., 2020;                                       

Sauerbrei et al., 2020), rats (Krupic et al., 2018; Gardner et al., 2019; Böhm and Lee, 2020; Luo et al.,                                       

2020), ferrets (Gaucher et al., 2020), and non-human primates (Trautmann et al., 2019). Nevertheless,                           

key barriers still prevent the recording of individual neurons stably over long timescales of weeks to                               

months, of large-scale activity in small animals that are freely behaving, and of neurons packed                             

densely in brain structures with diverse geometries. 

The ultimate aim of chronic recordings is to record from the same neurons over days and weeks, but                                   

this goal has been difficult to achieve for large populations of neurons. Recording individual neurons                             

stably over weeks or months is critical for studying the neural basis of processes that evolve over time,                                   

such as learning and memory, the dynamics of population coding, and neural plasticity. To provide                             

prolonged high quality recordings, considerable effort has been devoted to the development of                         

recording devices that are flexible (Fu et al., 2017; Chung et al., 2019; Musk, 2019) and/or <10 µm in size                                       
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(Guitchounts et al., 2013; Luan et al., 2017; Egert et al., 2020; Welle et al., 2020) to minimize damage to                                       

tissue, but these approaches make insertion difficult and do not scale to large numbers of recording                               

sites per inserted shank. Moreover, high quality signals can be recorded for more than eight weeks                               

even with relatively rigid and larger devices such as wire tetrodes (Recce and O’Keefe, 1989; Dhawale                               

et al., 2017), Utah arrays (Maynard et al., 1997; Chestek et al., 2011), and silicon probes (Okun et al.,                                     

2016; Jun et al., 2017; Muthmann et al., 2020; Schoonover et al., 2020). However, neither flexible nor                                 

rigid devices have been able to consistently record large numbers of identified individual neurons                           

over weeks or months (Dhawale et al., 2017; Fu et al., 2017).  

Rodents, especially mice, have become the dominant mammalian model for studying the neural basis                           

of behavior, but their small size has made it challenging to record large populations of neurons during                                 

unrestricted movement. Implants that can be carried without impeding the behavior of a mouse must                             

weigh less than ~3 g and span no more than 2 cm in height, and must connect with thin, flexible cables                                         

(or wirelessly). These limitations have precluded the use of many large-channel-count electrode arrays                         

(Shobe et al., 2015; Rios et al., 2016; Scholvin et al., 2016). Even with the relatively small Neuropixels                                   

probe, which permits chronic recording in freely-moving mice, some impediments to movement have                         

been observed (Juavinett et al., 2019), indicating the need for still smaller devices.  

Finally, while single-shank silicon probes like Neuropixels achieve dense coverage along a line, some                           

brain structures are more effectively recorded with other geometries. Several techniques including the                         

Utah array, tetrode arrays, and microwire arrays offer the ability to sample across a plane                             

approximately parallel to the brain surface (Recce and O’Keefe, 1989; Maynard et al., 1997; Saleh et al.,                                 

2019; Obaid et al., 2020; Sahasrabuddhe et al., 2020). However, to record in layered or deep structures                                 

such as isocortex, striatum, hippocampus, or superior colliculus, it can be ideal to densely sample a                               

plane perpendicular to the brain surface (Shobe et al., 2015; Rios et al., 2016; Scholvin et al., 2016).  

To address these challenges, we have developed the Neuropixels (NP) 2.0 probe. To record individual                             

neurons stably across weeks and months, the probe has a denser, linearized geometry which allows                             

for post-hoc computational stabilization of brain motion using a novel algorithm similar to image                           

registration. To record in small, freely-moving animals, the probe and headstage were miniaturized to                           

about one-third size, so that two probes and the one headstage needed to record them weigh ~1.1 g.                                   

This miniaturization was achieved without loss of channel count (384 channels / probe, where                           

‘channel’ refers to a signal processing and data transmission path). A 4-shank version of the probe can                                 

densely sample activity from a ~1 x 10 mm plane perpendicular to the brain surface. In total, 5,120                                   

sites can be accessed across the four shanks, for 10,240 sites (768 of which are recordable                               

simultaneously) using one headstage (where ‘site’ refers to a physical electrode location along a probe                             

shank). New implantation hardware allows recovery and re-use of these implanted probes. Finally, we                           

demonstrate a novel recording scheme in which two or more recording sites can be read out                               
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concurrently on a single channel, multiplying the number of sites simultaneously recorded. This                         

strategy incurs a signal-to-noise ratio penalty but is suitable for recording spikes with high                           

signal-to-noise ratio. This new device and our accompanying open source hardware and algorithms                         

enable unprecedented stable, long-term, high temporal-resolution measurements of neuronal activity.  

Results 

The NP 2.0 device design is miniaturized and optimized for long-term stable recordings in small                             

mammals (Fig 1a) . Like NP 1.0 probes, the NP 2.0 probe has a rigid base and 4 cm-long flexible cable                                       

that attaches to a headstage. The rigid area is shorter and narrower near the tip to facilitate close                                   

positioning of multiple probes. The headstage is also miniaturized, and serves two probes at once.                             

Together, two probes plus a headstage weigh ~1.1 g, suitable for chronic implantation and                           

freely-moving recordings in a mouse. The recording sites are denser with center-to-center spacing of                           

15 µm along the vertical dimension, compared to 20 µm for NP 1.0. Thus the number of sites per shank                                       

is 1,280 rather than 960, and there are both single- and 4-shank versions, with 5,120 recording sites in                                   

the latter. The recording sites are vertically aligned in two columns rather than staggered along the                               

shank (Fig 1a), which is critical for the stabilization algorithm described below.  

Despite being miniaturized, NP 2.0 probes each have 384 simultaneously recordable channels, with                         

improved ADC resolution. The probes output a single wide-band 14-bit data stream (Fig 1b). The light                               

sensitivity of NP 2.0 is similar to NP 1.0 (Supp Fig 1), and noise levels are slightly increased (from 5.4 to                                         

7.2 µV root mean square voltage for the ‘alpha’ probes reported here, measured for the recording                               

channel without electrode site noise, with further improvement expected in ‘beta’ version probes).                         

Similar to recordings with NP 1.0, well-isolated individual neurons can be distinguished on                         

overlapping channels (Fig 1c-d).  

Hardware switches, programmable in software, allow rapid remapping of the recording channels to                         

the recording sites, yielding recordings from thousands of sites per experiment (Fig 1e,f). The switches                             

can be set again from software in less than one second without any physical manipulation of the probe                                   

or recording subject. In this way, thousands of sites can be recorded, 768 at a time, from a pair of                                       

probes with a single headstage in a freely-moving mouse (Fig 1e). By configuring the switches to record                                 

from a selection of sites across shanks, the 384 recorded channels of a single 4-shank probe can sample                                   

from sites densely covering a plane spanning 750 x 720 µm, an arrangement especially suited to                               

structures of interest oriented in perpendicular to the brain surface (Fig 1f). This mode enables reliable                               

observation of activity dynamics such as sequences in dense local populations.   
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Figure 1. Neuropixels 2.0 devices are miniaturized and provide high-quality recordings across thousands of sites in                               

vivo. ( A) Comparison of the Neuropixels 1.0 (top) and 2.0 (bottom) devices. Neuropixels 2.0 have four shanks (or a single shank,                                         

not shown), miniaturized rigid base and headstage, and increased recording site density (right). They also allow for two probes                                     

to be attached to a single headstage ( inset) . (B) Example raw data traces show LFP and spiking signals recorded from 9 nearby                                           

channels within the olfactory bulb in an awake, head-fixed mouse. (C) Example spike waveforms from six selected neurons                                   

recorded on overlapping channels. The mean waveform (color) is overlaid on 50 randomly selected individual waveforms (grey).                                 

(D) Auto- and cross-correlograms (colored and black plots, respectively) of the example neurons from panel C, shown over a -50                                       
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to +50 ms window. (E) Example spiking rasters from two Neuropixels 2.0 probes chronically implanted in a single mouse,                                     

showing spikes recorded on 6,144 sites, out of the 10,240 sites available in total across the two probes. Each colored block                                         

represents spike times recorded from a ‘bank’ of 384 channels and plotted at the depth along the probe at which they occurred.                                           

Each probe could record one bank at a time, so that two banks (768 sites), were recorded simultaneously. The 6,144 sites were                                           

accessed by altering switches in software, and recording over 8 sequential recording epochs of 768 sites. (F) Dense local                                     

recordings from dorsal striatum in head-fixed mice performing a joystick-pulling task reveal reliable sequences of spiking                               

activity on individual trials. Left, the 384 simultaneously recorded sites (orange) cover a plane 720 x 750 µm in extent, covering a                                           

significant proportion of dorsal striatum (purple). Recording location is illustrative, and does not represent a reconstruction                               

from histology. Right, spiking raster from ten trials reveals characteristic spiking sequences across neurons, sorted for latency of                                   

peak response. 

NP 2.0 probes are optimized for high-yield chronic implants in small mammals. To confirm the quality                               

of NP 2.0 recording characteristics over at least 8 weeks, as done for NP 1.0 probes (Jun et al., 2017;                                       

Juavinett et al., 2019; Luo et al., 2020), we implanted NP 2.0 probes in rats and mice in 6 labs. Out of 21                                             

subjects implanted across the 6 labs, 20 implants were successful and recorded neurons until the                             

experiment was ended at the discretion of the experimenter (see Table 1 for details). Data from an                                 

example recording shows maintenance of large-amplitude spiking activity over 8 weeks (Fig 2a) and                           

consistent firing patterns across the depth of the probe for >44 weeks in one example recording (Fig                                 

2b). Recording quality in most chronically implanted probes was maintained for at least 8 weeks                             

across laboratories, as measured by the stability of total recorded firing rates (Fig 2c; for n=18/24                               

recordings the null hypothesis that firing rates were not declining with time could not be rejected;                               

p<0.05, t-test for correlation coefficient over days, Fig 2d) and of spike sorted neuron count (Fig 2e; for                                   

n=19/24 recordings the null hypothesis that neuron count was not declining with time could not be                               

rejected; p<0.05, t-test for correlation coefficient over days, Fig 2f). Seven of the 21 implants were                               

performed with custom 3D printed fixtures (Supp Fig 2), which protected the electronics – i.e. the                               

probe and headstage – throughout recordings and enabled probe recovery after the experiment. After                           

recovery and cleaning, these probes were re-implanted in new subjects. In total, 7 out of 8 probes                                 

implanted with hardware suitable for recovery were recovered in working condition (Table 1). Finally,                           

in one lab, recordings were made for more than 150 days in all implants (n=3), with a maximum time                                     

from implant to recording of 309 days, while retaining high firing rates, high neuron counts, and high                                 

quality individual neurons even at this late time point (Supp Fig 3). These results indicate that large                                 

populations of neurons can be reliably recorded with recoverable probes in both rats and mice, with                               

little indication of an upper limit to the duration of these recordings.   
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Figure 2. Chronic recordings with Neuropixels 2.0 probes maintained high yield for >8 weeks. ( A) Stable distribution of                                   

spike amplitudes recorded on different days in the same subject. Spike amplitude distributions from each day are superimposed                                   

and color-coded by days since implantation. (B ) Firing rates across channels are stable over nearly a year, in cortex (Ctx),                                       

hippocampus (HC), and thalamus (TH). Firing rates in spikes/s (sp/s) from each shank of the probe are separated by an orange                                         

line. Spikes are spatially binned across 15 µm. (C) Total firing rates over the course of 60 days for all probes used in this study. A                                                   

linear regression line (in log10 units) was fitted to the total firing rate of each probe versus days since implantation. The color of                                             

each series represents data collected in different laboratories. (D) Rate of change in log total firing rate extracted from the linear                                         

fits (slope) of eac experiment in C. Each point represents one experiment. A rate of -0.01 log units per day indicates that over 100                                               

days, the value declines by one log unit, i.e. a factor of 10. Filled dots represent significant correlations of the firing rate (or                                             

cluster count) with time. (E ) Rate of change in log yield of spike-sorted neurons for each probe over the course of 60 days. (F)                                               

Same as D for neuron yields. 
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To record individual neurons stably over short and long timescales, it is necessary to maintain                             

detection of spikes from the neuron over time and to match the spikes to the same unit. Classically,                                   

neurons are observed to decrease amplitude and disappear over individual recording sessions and                         

over long timescales (days to months). We hypothesized that this amplitude decrease may be generally                             

due to relative motion between the brain and the probe over time (Fig 3a, blue arrows). With a small                                     

number of recording sites a neuron that moves relative to the probe will be lost, but with a large                                     

number of recording sites the neuron will simply be recorded on different sites provided that                             

brain-probe motion is in the direction along the length of the probe. We expect motion primarily along                                 

this axis because resistance to movement is much greater in axes perpendicular to the probe shank,                               

along which the probe would have to sever the surrounding tissue to move. Indeed we commonly                               

observed consistent shifts in spiking patterns along the length of the probe in many of our recordings                                 

(Fig 3b).  

We therefore asked whether spikes from individual neurons were preserved and detectable even                         

during brain-probe relative motion, and if so, whether we could correct for the effects of this motion.                                 

To test this, we devised an approach to give us ground truth knowledge of the motion of the probe                                     

relative to the brain, in order to assess whether the effects of the motion could be computationally                                 

stabilized. We performed acute recordings in awake, head-fixed mice during which the probe was                           

moved up and down programmatically using an electronic micromanipulator to impose a fixed and                           

known pattern of brain-probe relative motion on the recording (Fig 3a, red arrows; 10 cycles of                               

triangle wave movement with amplitude 50 µm and period 100 s / cycle).  

We then devised a novel unsupervised algorithm to stabilize recordings post-hoc, and we tested it on                               

these ground-truth datasets with known movement. The algorithm determines the motion over time                         

from the spiking data and stabilizes it with spatial resampling of the original raw data, as in image                                   

registration (Fig 3c; see Methods). Before applying the post-hoc stabilization algorithm, datasets with                         

imposed motion clearly reflected the triangle wave pattern (Fig 3d). Applying the algorithm to the raw                               

data and then re-detecting spikes demonstrates that the algorithm removed the relative motion                         

between the brain and the probe, resulting in stable patterns of spiking activity over time (Fig 3e). We                                   

assessed whether each neuron’s spikes were detected throughout the motion by computing a                         

correlation coefficient between each neuron’s firing rate and the probe position. If the spikes from a                               

neuron are lost when the neuron is located at a certain position along the length of the probe, then the                                       

observed firing rate would decrease in a way that is correlated with the time course of the imposed                                   

motion. The post-hoc stabilization algorithm significantly reduced the absolute value of correlation                       

between firing rate and probe position, decreasing it to near chance levels (Fig 3f; 0.224±.007                             

mean±s.e.m. before correction, 0.067±.003 after stabilization, chance level .042±.001; two-way ANOVA,                     

main effect of stabilization p<10-10). Moreover, the algorithm markedly improved yield of neurons with                           
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stable firing rates (n=156, 103, and 22 stable units without stabilization versus n=181, 201, and 108                               

stable units respectively with stabilization; corresponding but opposite changes in the number of                         

unstable units; Fig 3g). Applying post-hoc stabilization also improved firing rate motion correlation                         

and neuronal yield in data obtained under the same paradigm with NP1.0 probes, though the firing                               

rate motion correlation after stabilization was significantly higher (i.e. worse) than that achieved in                           

NP2.0 datasets (0.097±.005 mean±s.e.m., two-way ANOVA, main effect of probe type p<10-10; data not                           

shown). Stabilization was presumably       

more successful in NP2.0 probes because           

of the vertically aligned sites and smaller             

gaps between sites (Fig 1a), which           

together increase the spatial resolution         

of sampling along the direction of           

motion.  

Figure 3. Post-hoc computational recording         

stabilization with an ‘image registration’         

algorithm. (A) The brain moves relative to the               

probe primarily along the axis of the probe shank                 

(blue arrows). In the test experiment, brain-probe             

relative motion was imposed by moving the probe               

up and down programmatically along the same             

axis with an electronic micromanipulator while           

recording (red arrows). (B) A spiking raster with               

spikes plotted at the position they occurred along               

the probe. Darker spikes have larger amplitude.             

Relative motion of neurons along the probe is               

observed across the whole probe over both             

relatively fast (<1 minute) and slow (~10 minutes)               

timescales, indicated by shared movement of the             

traces across depth. (C) Raw data snippets showing               

the stabilization approach. After motion was           

estimated, the raw data was re-sampled with             

spatial interpolation to shift the signals opposite to               

the direction of motion. The first sample shows a                 

raw data segment from several channels where             

position was estimated near zero relative to the               

recording’s zero point. The second sample shows             

raw data from a later time point in the recording                   

where position was estimated to be 53.0 µm from                 

the zero point, or about three and a half channels                   

shift. The third sample shows the results of               

correcting the raw data in the second sample to                 

shift it to match position = 0. All spikes are shifted                     
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downward by this process, and the large spike to the left now aligns with the large spike from the first sample, presumably from                                             

the same neuron. ( D ) Spiking raster of a complete example recording with spikes plotted at the depth they occurred on the probe.                                           

The triangle-wave pattern of imposed probe-brain motion is shown in red, and is reflected in the movement of spikes along the                                         

probe during the middle of the recording. The blue dashed box shows the segment of data represented in panel B, which includes                                           

naturally occurring neuron motion. (E ) Raster of spikes detected after applying the stabilization algorithm, showing stabilization                               

of both imposed motion as well as naturally occurring motion. (F) The stabilization algorithm improved stability measured as                                   

the absolute value of the correlation coefficient between firing rates and probe-brain motion. (G) The stabilization algorithm                                 

improved yield of neurons whose firing rates had no correlation with the imposed motion (“stable”) and reduced the number                                     

whose firing rates correlated with the motion (“unstable”).  

Relative movements between the brain and probe occur not only on a fast time scale but also across                                   

days. Given that NP 2.0 probes record from neurons stably even as the brain moves relative to the                                   

probe, we reasoned that we could apply a similar approach to data recorded across multiple sessions                               

over weeks or months. As in the acute situation, we observed that the spiking activity appeared to                                 

represent the same patterns but shifted in depth across weeks (Fig 4a).  

To track neurons across sessions, we implemented a version of the motion stabilization algorithm                           

described above. Unlike the dynamic stabilization, the version used here inferred and corrected the                           

shift only at the point where datasets from the two days are spliced together, i.e. at the end of the first                                         

and start of the second dataset (see Methods). Following this step, spikes were sorted together across                               

the splicing point, using only the shapes and spatial footprints of the waveforms. Thus, spikes were                               

joined into single clusters across days without reference to their functional properties.  

With this improved algorithm for motion stabilization, we were able to record from the same neurons                               

in visual cortex across days. To establish a ground-truth metric for whether a group of spikes (a “unit”)                                   

recorded across two different days corresponded to a single neuron, we relied on the fact that neurons                                 

in rodent primary visual cortex have visual responses unique amongst their neighbors (Ohki et al.,                             

2005). Here, we used a battery of 112 natural images to establish a visual fingerprint of a large subset                                     

of units (Figure 4b,c). We then assessed whether the algorithmically-tracked units represented the                         

same neuron by determining whether their responses to our battery of images across two sessions                             

were more similar to each other than to the responses of the nearest other unit. This procedure                                 

revealed that most units are successfully tracked across days (Fig 4d) and weeks (Fig 4e). For recording                                 

sessions that are 16 days apart or less, an estimated 93%±9% of well-isolated units were successfully                               

tracked in time (mean±st. dev. across shanks; n=1110 units, 36 shanks, 15 recordings in 3 subjects; see                                 

Methods; Fig 4f). Across sessions separated by 3-9 weeks, we could still successfully track 83%±20% of                               

the well-isolated units (n=638 units, 30 shanks, 11 recordings in 3 subjects, Fig 4f). In one of the three                                     

subjects we observed a case of a loss of almost all of the tracked units, which we speculate may have                                       

been due to a non-coaxial shift of the probe relative to the brain. We did not attempt to track units                                       

across this discontinuity event. However, even in this mouse we were able to track units if both                                 

recording days were on the same side of the discontinuity. Recording with NP2.0 and applying our                               
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stabilization algorithm therefore permits the study of neuronal and population coding over timescales                         

of learning and plasticity.  

 
Figure 4. Successful tracking of neurons across days and weeks. (A) Data from an example mouse with a chronic NP 2.0                                         
probe in visual cortex, showing significant drift between recordings on consecutive days. Plotting conventions as in Fig 3b. (B)                                     
Peri-stimulus time histograms (PSTHs) of an example neuron for three images (n=5 repetitions each) eliciting different levels of                                   
response. The visual stimulus was presented for the time period marked by the grey box. (C) Top: Average spike count response                                         
of the same unit to all the natural images presented to the animal (the three example images from b are indicated by arrows) on                                               
two consecutive days (z-scored). The two responses have a correlation of 0.75. Bottom: Example average spike count response of                                     
all units with visual fingerprint on one of the shanks on two consecutive recording days, with both neurons and images in sorted                                           
order according to similarity of responses. Color bar: z-scored response. (D) In order to gauge unit stability by assessing visual                                       
response stability, each unit’s visual fingerprint on the first day was matched with its own fingerprint and with the fingerprint of                                         
the closest other unit (not necessarily labeled with a consecutive index) on the second day. The majority of units matched to                                         
themselves (points on the diagonal, 439/448), but in a few cases units matched better with the visual fingerprint of their neighbor                                         
(red points off the diagonal, 9/448). Each grey square delineates the units belonging to one of the four shanks, indicated by the                                           
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numbers. (E ) Same format as D, for two recordings that are three weeks apart (229/275 are matches). (F) Summary of stability of                                           
well-isolated units across 26 spliced pairs of recordings in three mice. Each point represents a single shank, and data from each                                         
subject is shown by a different symbol. In total, 1748 well-isolated units with visual fingerprints were analyzed. The estimated                                     
percentage of stable units is calculated as where Pr(match) is the probability that a unit’s visual fingerprint              Pr(match) 12 −                       

matched more closely than the nearest neighbor on the two days (see Methods for derivation). For presentation purposes only,                                     
points were jittered along the x-axis. Note that the interval between implantation and the first recording in each pair of                                       
recordings was variable, in some cases exceeding 6 months. 

Finally, we reasoned that the high signal-to-noise ratios (SNRs) of many recorded neurons may allow a                               

novel strategy for increasing recording coverage, in which the signals from multiple distant recording                           

sites are combined on a single recording channel (Fig 5a). From physical considerations, connecting                           

two distant sites to one electrical line and one recording channel ought to average the signals at the                                   

two sites, in principle allowing for recording from twice as many (or more) sites as there are channels                                   

on the device. This strategy would result in a diminution of signal magnitude by a factor of 2 and                                     

changes the noise level according to the equation: 

 N c = √NADC
2 + ( )2

N 1
2

+ ( )2
N 2

2
  

where is the noise level when recording on banks 1 and 2 combined, is channel noise from  N c                           NADC          

the recording system, and and represent noise from biological and physical sources at each        N 1     N 2                    

electrode site (assumed uncorrelated). The SNR would thus decrease by a factor of (in the limit                           √2        

where and substantially exceed ). However, although the SNR of each neuron will  N 1     N 2       NADC                  

decrease, the number of recorded sites will double, yielding a viable strategy for scaling recording                             

beyond limits on the number of recording channels.  

We designed the single-shank version of NP 2.0 to allow for connecting multiple sites to a single                                 

recording channel, with a modification to the channel mapping that allows for reconstruction of the                             

locations of the original recorded neurons. In particular, we designed the mapping between channels                           

and sites to be scrambled from one bank of 384 sites to the next (Fig 5a). Since nearly all recorded                                       

neurons are visible on more than one recording site, the pattern of observed waveforms across                             

channels from one neuron will form a spatially compact group only when interpreted as arising from                               

one bank, and not the other (Fig 5b). To classify recorded neurons to channel banks, we devised a                                   

“mismatch score” to describe how dispersed the waveforms are across sites under each bank’s channel                             

mapping, with low scores indicating compact waveforms. This procedure could reliably identify which                         

bank each neuron was recorded on, in that recordings made truly on just one bank resulted in nearly                                   

all neurons correctly classified as arising from the recorded bank rather than from the other (Fig 5c;                                 

393/394, 99.8% of neurons, n=3 recordings; see Methods for detailed criteria).  
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Figure 5. Recording from twice as many sites as the number of recording channels. (A) Sites from multiple banks connect                                       

to a single set of recording channels, and switches control which sites connect to which channels. 10 sites out of 384 are                                           

illustrated for each bank. Right, when both sets of switches are closed, the recorded signal will combine the signals at each bank                                           

of sites (indicated by purple color). In bank 2, the mapping from sites to channels is scrambled relative to bank 1. (B) Due to the                                                 

scrambled mapping, waveforms of recorded neurons appear correctly clustered only when interpreted as arising from one of the                                   

two banks. Each panel shows the waveforms of the example neuron arranged spatially according to either the bank 2 (top) or                                         

bank 1 (bottom) channel mapping. (C) The mismatch score for banks 1 and 2 under conditions when bank 1 was connected alone                                           

(left), bank 2 was connected alone (center), or both banks were connected (right). The dotted lines demarcate the region where                                       

mismatch scores differed by less than 0.5 between the banks; units in this range (grey points) were excluded as being uncertain.                                         

( D) Spiking raster (conventions as in Fig 3b) from recordings with all three configurations. In the condition with bank 1 and bank                                           
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2 recorded together, spikes are plotted at their inferred locations based on the mismatch score of their source template. Spike                                       

amplitudes are lower by a factor of two with both banks connected. (E) The noise level on each site is plotted under each                                             

recording configuration. The prediction of the combined bank 1 and 2 noise level using the equation given in the text is shown in                                             

black. 

Using this strategy, we could reconstruct the pattern of spiking activity across 768 recording sites in a                                 

single recording session despite recording with only 384 channels (Fig 5d). The spikes recorded in the                               

double-bank configuration were indeed lower amplitude than those in the single bank configuration                         

by a factor of 2. Moreover, the noise level on the combined channels closely matched the prediction of                                   

the equation given above (r = 0.92 and 0.95 in two recordings; Fig 5e). In our recordings, the empirical                                     

SNR of spikes recorded in the double-bank configuration was 63.5 ± 0.3% that of the single bank                                 

configuration (mean±s.e.m., n=1536 recording sites, 2 recordings). As a result, the yield of sortable                           

single neurons was less than the total yields when recording each bank separately (summed yields of                               

215, 139, and 40 neurons for separate banks versus 75, 44, and 20 for combined banks). Nevertheless,                                 

these neurons were recorded across a span of the brain twice as long as that covered by a single bank                                       

of sites. This is the first demonstration of truly simultaneous recording across more sites than available                               

channels, a recording strategy that is suitable for capturing neurons with large SNR over a large spatial                                 

extent.   

Discussion 

In summary, we have demonstrated a suite of novel electrophysiological tools: a miniaturized                         

high-density probe; recoverable chronic implant fixtures; software algorithms for fully-automatic                   

post-hoc computational stabilization; and a strategy for extending the number of recorded sites                         

beyond the number of available channels. We have presented experiments that validate the quality of                             

the recordings, the stability of the recordings over timescales of months, and the reliability of their use                                 

chronically in six different laboratories. Finally, we provide ground-truth proof of the efficacy of                           

stabilization on both short and long timescales. Together these tools enable an order of magnitude                             

increase in the number of sites that can be recorded over long timescales in small animals such as                                   

mice, and the ability to record from them stably.  

While our approaches for computationally stabilizing recordings achieved marked improvements over                     

prior state of the art, as well as improvements relative to processing the same datasets with previously                                 

available algorithms (Figs. 3, 4), we nevertheless did not completely eliminate indications of instability                           

(Fig 3f) nor could we record every neuron stably over long timescales (Fig 4d). The remaining                               

instability could be due to underlying experimental factors: mechanical forces in experiments with                         

imposed probe motion could alter neuronal firing of nearby neurons; and, neuronal death or true                             

changes in visual response properties (Deitch et al., 2020) could result in failure to track neurons over                                 

weeks. Another possibility is that the remaining instability could be due to imperfect spatial sampling                             
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of the NP 2.0 probe. In biophysical models of neurons’ extracellular potentials (Gold et al., 2006), some                                 

features of these potentials are predicted to be smaller than the spatial sampling density of this probe                                 

(15 µm), raising the possibility that applying the algorithms developed here to data from probes of still                                 

higher density (Fiáth et al., 2019) may in the future yield even better solutions to these challenges. 
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Supplemental Figures and Table 

 

Supplementary Figure 1. Optogenetic activation of neurons recorded with NP2.0. (A) Raw data traces show LFP and                                 

spiking components recorded from 5 nearby channels in the cerebellar cortex in an awake, head-fixed mouse. Optogenetic                                 

stimulation fiber was placed on the brain surface and channels shown are approximately 750 µm below the brain surface. (B)                                       

Optogenetic stimulus artifacts recorded with NP1.0 probe (using gain=500, left) and NP2.0 probe (right) showing that                               

comparable levels of stimulation saturate NP1.0 probes used at recommended gain settings but not NP2.0 probes. Signals from                                   

10 adjacent channels recorded on a single trial are overlaid. (C) Maximal (left) and mean (right) optogenetic stimulus-evoked                                   

signal amplitude recorded with NP2.0 probes (n = 7 recordings, 7 mice). Optogenetic stimulation never saturated NP2.0 probes.                                   

( D ) Example waveform of a neuron responsive to optogenetic stimulation in an L7-cre; Ai32 mouse (i.e., a Purkinje cell). (E)                                       

Autocorrelogram of the neuron shown in panel D measured from spikes recorded during an initial baseline period. (F) Spike                                     

raster of the neuron shown in panel D in response to optogenetic stimulation (after synaptic cocktail application). Note that the                                       

neuron responded reliably within ~3 ms of stimulus onset. (G) Peri-stimulus time histogram of the neuron shown in panel D                                       

showing full response to optogenetic stimulus.   
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Supplementary Figure 2. A custom implantation fixture enables reusing probes in chronic experiments. (A) Schematic                             

overview of the single-probe fixture. (B) Retrieval mechanism. This tool is used to help extract the probe after the conclusion of                                         

the experiment, and is not carried by the mouse during the experiment. (C) Rendering and cross section of dual-probe fixture.                                       

Total weight of this fixture is 2.76 g. (D ) Consistent high unit yield with reimplanted probes. Two probes (probe 1, blue, probe 2,                                             

red) were separately implanted into olfactory cortex 4 and 2 times, respectively, in different mice. Each implantation resulted in                                     

similar total firing rates (top) and unit yield (bottom), obtained over the 12 day period of the experiment. These results                                       

demonstrate that the fixture enables consistent, stable recordings with reused probes. 
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Supplementary Figure 3. Chronic recordings with NP2.0 for >200 days. (A) Top: Schematic of the implantation (for a                                   

4-shank NP 2.0 probe). The shanks of the probe were inserted approximately 5 mm into the brain, through primary visual cortex.                                         

The brain was subsequently protected by a thin layer of Kwik-Cast. The probe was then cemented to the skull. The head-plate on                                           

the right is not shown to scale. Bottom: Schematic of a custom 3D printed holder. The holder was lowered after the probe was                                             

securely cemented to the skull, so that the probe PCB was protected by the semi-circular rim (shown in white), then the central                                           

part of the holder (shown in grey) was cemented to the skull above the frontal cortex. (B) Total firing rates and unit yields over                                               

the course of 150-250 days for the 3 animals with primary visual cortex implants (performed as illustrated in A). A linear                                         

regression line (in log space) was fitted to the change in total firing rate of each probe and unit yield versus days since                                             

implantation. (C) Example waveforms of neurons in primary visual cortex from three shanks of the probe, recorded 237 days                                     

after implantation. Orange marks on the cartoon of the 4-shank probe depict the region where the sample channels were located.  
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Supplementary Figure 4. Spike detection for the motion stabilization algorithm. (A) Randomly-chosen examples of 24                             

spikes detected from the recording shown in the main Figure 3, together with the generic templates that were used to match                                         

these spikes in the raw data. Red/gray hues indicate negative/positive potentials. The nearest 21 channels to each channel peak                                     

are shown and 61 time samples. (B ) Example drift map for the entire ~45 min recording, including the period of manipulator                                         

movement from 1000 s to 2000 s. Same conventions as main Figure 3 (darker points indicate larger amplitudes). (C) (left) Spikes                                         

from a single 2 s batch of data, i.e. zoom in of panel B. (right) Conversion of the spikes in this batch to an amplitude/depth                                                 

histogram.    
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Supplementary Figure 5. Rigid and non-rigid registration for motion stabilization. (A) Four example amplitude/depth                           

histograms from different parts of the recording (like Supp Fig 4C). These provide fingerprints that can be used to align                                       

vertically. The average of aligned histograms represents the target image (right), that can be used in another re-alignment pass                                     

until convergence. (B ) (left) Example overlapping blocks used to partition the channels. (right) Estimated drift traces for each                                   

block of channels. (C and D) Drift maps of spikes re-detected from the stabilized binary file. The correction was computed and                                         

applied as a rigid registration (C), and in a non-rigid manner (D). The rigid registration option can be obtained in the software by                                             

setting the number of blocks to 1 (see B).   
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Lab Species 
Implanted 
probes 

Duration 
(wks) 

Reason 
for end 

Recovery 
device? 

Recovery 
successful? Figures Notes 

Haesler mouse One 4-shank 2  ED Y 1/1 2 c,d,e,f, Supp. 1 d  

Haesler mouse One 4-shank 2  ED Y 1/1 2 c,d,e,f, Supp. 1 d  

Haesler mouse One 4-shank 2  ED Y 1/1 2 c,d,e,f, Supp. 1 d  

Haesler mouse One 4-shank 2  ED Y 1/1 2 c,d,e,f, Supp. 1 d  

Haesler mouse One 4-shank 2  ED Y 1/1 2 c,d,e,f, Supp. 1 d  

Haesler mouse One 4-shank 2 ED Y 1/1 2 c,d,e,f, Supp. 1 d  

Haesler mouse Two 4-shank <1 ED Y 2/2 1 e  

Haesler mouse Two 1-shank >8 ED/Fail Y 1/2 2 c,d,e,f 
One of two probes broke 
after 8 months 

O'Keefe rat Two 4-shank >8 ED -  2 c,d,e,f  

O'Keefe rat Two 4-shank >8 ED -  2 c,d,e,f  

Lee rat One 4-shank >8 ED -  2 c,d,e,f  

Lee rat One 4-shank >8 ED -  2 c,d,e,f  

Moser rat One 4-shank >8 ED -  2 c,d,e,f  

Moser rat One 4-shank >8 ED -  2 c,d,e,f  

Moser rat Two 4-shank >7 ED -  2 c,d,e,f  

Moser rat Two 4-shank >8 ED/Fail -  2 c,d,e,f 
One of two probes broke 
after <1 week 

Carandini mouse One 4-shank 20 ED -  2 c,d,e,f, Supp. 3  

Carandini mouse One 1-shank 44 ED -  2 b,c,d,e,f, Supp. 3  

Carandini mouse One 4-shank 35 ED -  2 c,d,e,f, Supp. 3  

Carandini mouse One 4-shank <1 Fail -   Probe broke 

Hantman mouse Two 4-shank >8 ED/Fail -  2 c,d,e,f 
One shank of one probe 
malfunctioned 

Supplementary Table 1. Results of chronic implantation experiments across six labs. Each row represents an individual                               

experimental subject implanted with one or two NP2.0 probes. In the Reason for End column, ‘ED’ means ‘Experimenter’s                                   

decision’, i.e. the probe did not fail but the experimenter decided to end the experiment for other reasons. In three cases, ‘ED/Fail’                                           

is indicated because probes exhibited partial failures (described in Notes) but the experiment continued with reduced capability                                 

until the experimenter’s decision.  
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Methods 

Neuropixels 2.0 device design 

The Neuropixels 2.0 probe consists of one or four shanks (i.e., the thin segment inserted into the brain)                                   
and a base (containing the electronics for filtering, amplification, multiplexing, digitization, and power                         
management), fabricated with 130 nm CMOS process as one piece (Wang et al., 2019). The base is                                 
affixed to a rigid printed circuit board (PCB) and a thin flexible ribbon cable (“flex cable”) that plugs                                   
into a headstage. From the headstage, a 5 m cable runs to a custom PXIe (“Peripheral Component                                 
Interconnect (PCI) eXtension for Instrumentation”; a standardized modular electronic instrumentation                   
platform) data acquisition card (Putzeys et al., 2019) which connects to a computer via an off-the-shelf                               
PXI chassis (e.g. NI 1071, National Instruments), and custom software collects the data and writes to                               
disk. Each of these system components are described in turn below. The details presented here apply                               
to the “alpha” version of the probe, and all data presented in this paper are from this version. A                                     
forthcoming “beta” version is planned with broadly similar specifications, but notably with an                         
improved ADC design expected to reduce noise levels. Both the probe electronics (Wang et al., 2019)                               
and the data acquisition system (Putzeys et al., 2019) have been described previously, but aspects of                               
those reports are summarized here for clarity.  

The shank is 10 mm long with two columns of sites with 32 µm center-to-center spacing between the                                   
two columns, and 15 µm center-to-center spacing along the length of the shank, for 1280 total sites on                                   
one shank (Fig 1a), or 5120 sites on the four shank probe version. The shank has a 70 x 24 µm                                         
cross-sectional profile. A stress compensation process ensures a deflection of <100 µm from base to tip                               
on each shank. The porous TiN recording sites are 12 x 12 µm2 and have an impedance of 148 ± 8 kΩ at                                             
1kHz. The tapered tip of the probe is 175 µm long (tip angle ~ 20°). Due to the planar nature of CMOS                                           
manufacturing technologies, the tip is only tapered in the two-dimensional plane of the probe; the tip                               
shape that enters the brain is therefore a line as long as the probe thickness (24 µm). However, the tip                                       
can be sharpened to form a point, using a micropipette grinder or similar at an angle as small as 15°                                       
(detailed procedure not described here). The triangular tip area is covered by a single large electrode                               
site that can be configured as an internal reference. In addition to the internal reference electrode at                                 
the tip, four of the 12 x 12 µm2 sites along the shank are also reserved for optional use as internal                                         
references, but their use is not recommended because of the much larger impedance of these small                               
sites does not allow for correct cancelation of common-mode noise in all the channels. The                             
center-to-center spacing between shanks on the four-shank version is 250 µm. 

The probe base is mounted onto a rigid PCB that has an arrow shape (Fig 1a) with a total width of 3.5                                           
mm at the thin part of the arrow near the shanks, a width of 6.9 mm at the thicker portion, and                                         
thickness of ~1.2 mm. The length of the rigid PCB, from shank to flexible ribbon, is ~ 14 mm. The base,                                         
affixed to the rigid PCB with wire bonding and epoxy, is 2.2 x 8.7 mm2, consumes 36.5 mW of power,                                       
and records 384 full band (0.5 Hz - 10 kHz) signals sampled at 30 kHz and at 14 bit resolution. The total                                           
data rate is 161.3 Mb/s (or ~23.0 MB/s on disk). The mean input-referred noise level in the action                                   
potential range (300 Hz - 10 kHz) is 8.2 µV root mean square, including the electrode noise (the number                                     
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given in the main text, 7.2 µV r.m.s., reflects the noise of the recording channel alone, which is the only                                       
aspect in which the noise of NP1.0 and NP2.0 differ). The input range is 12.5 mV peak-to-peak and the                                     
mean gain is ~84. Because of the good channel-to-channel gain uniformity (Wang et al., 2019), gain                               
values are not calibrated for each channel separately, but per probe to reduce global process variation,                               
and this calibration is applied during acquisition. Cross-talk is 0.35% on average between sites at 1 kHz                                 
on the single-shank version and 1.51% on the four-shank version. The shank heats < 1° C in the brain.  

The flex cable is 43.5 mm long, 4.0 mm wide, and 80 µm thick. Solder pads for attaching referencing                                     
and ground connections are provided both near the top of the rigid PCB (Fig 1a, gold squares with                                   
holes on the right side of the rigid PCB) as well as along two flexible “wings” on either side of the flex                                           
cable; these wings can be cut off if not used. The probe in total (shanks, base, rigid PCB, and flex cable)                                         
weighs 0.19 g.  

The headstage connects to the flex cable via a 27-pin zero insertion force (ZIF) connector. The                               
headstage has two such connectors, one on either side of the PCB, so that two probes can be connected                                     
to a single headstage and stream data from each of their 384 channels simultaneously, for a total of 768                                     
channels. The headstage is 10 x 14.3 mm2 in size and weighs 0.72 g. The headstage features a solder                                     
pad for ground, and a separate solder pad that connects directly to the tip site(s) and can be used to                                       
deliver current. The headstage has a 4-pin Omnetics connector to connect to the cable.  

The cable, PXI base-station card, and software are identical to that used for NP 1.0 (Putzeys et al., 2019),                                     
but described briefly here for completeness. The cable has two twisted-pair strands (each with 0.41                             
mm diameter), is 5 m long, weighs 5 g, and terminates in a USB-C connector. Data from all 768                                     
simultaneously recorded channels at 30 kHz are transmitted across this twisted pair cable. The                           
base-station card has four USB-C connectors, accepting input from four headstages (up to 8 probes)                             
simultaneously, and at least two base-stations can be used together in a PXI chassis to stream data to a                                     
single computer. A single set of firmware on the base-station allows for recording interchangeably                           
(and simultaneously) from NP 1.0 and 2.0 probes. The base station also accepts an optional digital TTL                                 
input channel for synchronization or triggering and an optional battery power supply for isolation.                           
The probe can be configured, and data can be visualized and streamed to disk, with either SpikeGLX                                 
(https://billkarsh.github.io/SpikeGLX/) or OpenEphys (https://open-ephys.org/gui) open-source software           
packages. 

As there are 1280 or 5120 electrode sites (i.e. physical TiN electrodes located on the shank) on the                                   
single- or 4-shank probe versions, but only 384 recording channels (i.e. signal processing pathways                           
including amplification, filtering, digitization, and data transmission) available, analog switches are                     
used to control which subset of sites is recorded at any given time. The switches are set in software                                     
and, after setting, induce a transient voltage deflection lasting < 1 s. The switching schemes that govern                                 
which sites connect to which channels differ for the single- and four-shank probe versions, as follows.  

The logic of the single-shank scheme is that each block of 32 sites maps onto consecutive groups of 32                                     
channels, allowing for the selection of any contiguous stretch of 384 sites, given that the selected sites                                 
start with a site that is a multiple of 32. However, within groups of 32 sites, the mapping from site to                                         
channel is scrambled such that any physically clustered group of sites maps onto a set of channels that                                   
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do not correspond to any other physically clustered group of sites (Fig 5a, b). In this way, a given                                     
recorded neuron on some set of channels can be localized to one of the groups of sites that connect to                                       
those channels according to which of those groups of sites are physically clustered (see also analysis                               
methods section “Combined bank recordings” below and Fig 5).  

The logic of the four-shank scheme is that the following selections are possible: any continuous set of                                 
384 channels on any shank; any set that includes 96 continuous sites on each of the four shanks, where                                     
the 96 sites are located at the same depth along the probe; any set that includes 96 continuous sites on                                       
each of the four shanks, but where the sites on each shank are offset by 96 from shank to shank,                                       
forming a diagonal stripe across the four shanks. Other selections consistent with the wiring                           
constraints are also possible (Wang et al., 2019).  

Recording Methods 

Chronic recordings in mice in Haesler Lab at NERF (Figures 1, 2, Supp Figure 2) 

To facilitate chronic recordings with Neuropixels 2.0 probes, we used custom-designed 3D printed                         
fixtures which were developed at NERF, Leuven, Belgium (Figs 1, 2 and Supp Fig 1). Specifically, we                                 
used two different types of fixtures, holding either one or two probes respectively. The fixtures consist                               
of two main parts: a) a probe mount and b) a skull connector. The probe mount holds the probe and is                                         
reversibly mounted on the skull connector, which is in turn fixed on the animal’s skull. The system                                 
further features a headstage cover, which protects the headstage during experiments and a probe                           
retriever tool, which is used to safely recover probes for re-use after an experiment is terminated. All                                 
pieces were 3D printed by selective laser sintering (SLS, Materialise, PA12) allowing threaded inserts to                             
be integrated using heat from a soldering iron. For fixture assembly we first aligned the probe(s) in the                                   
probe mount with a camera-controlled system and then fixed them in place with light-curable dental                             
cement (SDI Wave). The probe mount holding the probe was then attached to the skull connector with                                 
screws. Reference and ground pins on the probe(s) were connected by soldering thin wires both for                               
single and dual probe configurations. Then, the headstage was connected to the probe(s), placed inside                             
the probe mount and covered with the headstage cover. To avoid failures related to                           
connecting/reconnecting the zero-insertion-force (ZIF) connector on the headstage during each                   
experimental session, the headstage was left on the animal for the entire duration of the experiment.                               
The total weight of the assembled fixture with probes was 2.76 g for the dual probe version.  

The implantation of the probes was carried out according to animal experimentation protocols                         
approved by the KU Leuven animal ethics committee in accordance with the European Council                           
Directive, 2010/63/EU. Eight male C57BL/6 mice were used for chronic recordings, weighing 28.5 ± 2.4 g                               
(mean + std) at the time of the surgery while 12:12h light:dark schedule was maintained. Two dual                                 
probe fixtures with one shank and four shank configurations were chronically implanted into the                           
hippocampus (ML 1.5 mm, AP -2.7 mm w.r.t. bregma) and lateral habenula (ML 1 mm, AP -1.3 mm)                                   
equidistant from the midline. Two single probe fixtures with four shank configurations were                         
chronically implanted into olfactory cortices (ML 0.7 mm, AP 2.7 mm).  

The animal was anesthetized with ketamine (7.5 mg) and medetomidine (0.1 mg) solution (100 µl/10g                             
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body weight). Eyes were moistened with Duratears and hair over the animal’s head was trimmed.                             
Animal’s head was aligned in the anterior-posterior and lateral-medial plane and fixed in the                           
stereotaxic frame by using earbars. Skin was disinfected with iso-betadine Dermicum and ethanol                         
(70%) and ~50 µl xylocaine solution (5% in saline) was injected under the skin over the head for local                                     
analgesia. Skin was incised along the midline and removed to expose the skull. Skull was cleaned from                                 
remaining biological tissue using sterilized cotton swabs. Skull surface was roughened by scraping                         
grids using a scalpel blade. Vetbond tissue adhesive was applied to cover the exposed tissue.                             
Craniotomy for the desired location was marked with the tip of the drill bit. Head plate was placed                                   
over the lambda and secured with Vetbond. Bone screw with a ground pin was implanted over the                                 
cerebellum ensuring electrical ground. Headplate and almost the entire skull surface was covered with                           
Metabond leaving the craniotomy location blank. Craniotomy was performed while making concentric                       
circles around the center of the craniotomy and edges were thinned out. Sterile saline solution was                               
applied frequently during the craniotomy to avoid complications. Dura matter was removed by using                           
sharp surgical forceps. Skull clamps were removed and the animal was restrained by the headplate.                             
Probe shank was dipped into a fluorescent dye solution (DiI in ethanol). A wall of 1:1 bone wax and                                     
mineral oil was formed around the probe to create a protective medium during the application of                               
cement. After positioning the fully assembled fixture above the target location, it was lowered with the                               
z-axis of the stereotaxic frame with the help of a motorized micromanipulator. The skull connector                             
was fixed in place with Metabond. Then the ground socket on the fixture was connected to the ground                                   
pin. A final layer of light-curable cement was applied to cover the remaining gaps. Analgesics (50 µl                                 
Metacam, 2 mg/ml) and antibiotics were administered subcutaneously (20 µl Cefazoline, 15 mg/kg body                           
weight) after surgery. 

After data collection was completed, we used the retriever tool to recover the probe(s). The retriever                               
tool was first connected to the skull connector. By turning two guiding screws on the retrieving tool,                                 
which exert a vertical force on the skull connector, we detached the probe mount from the skull                                 
connector. Seven out of eight mounts were retracted successfully without damaging the probes. The                           
probes remained in the probe mount and were cleaned as described previously (Jun et al., 2017). Two                                 
out of four probes were re-implanted four and two times, respectively (Supp Fig 2).  

Chronic recordings in mice in Carandini/Harris Lab at University College London (Figures 2, 4, 5;                             
Supp Figure 3) 

Experimental procedures at UCL were conducted according to the UK Animals Scientific Procedures                         
Act (1986) and under personal and project licenses released by the Home Office following appropriate                             
ethics review. The basic implantation strategy has been described previously (Okun et al., 2016). In                             
brief, a mouse with a previously implanted head-plate was anaesthetized and a craniectomy over the                             
left primary visual cortex was made for the probe, and Ag reference wire was cemented in an                                 
additional small craniectomy above the olfactory bulb. The probe was then held by a miniature                             
dovetail cemented onto it, and advanced into the brain while recording. When in place, dental cement                               
(Super-Bond C&B; Sun Medical, Japan) was applied to encase the probe PCB and reliably attach it to the                                   
skull. Once the cement was fully cured, the dovetail holder was retracted. Next, a custom-designed                             
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3D-printed shell was cemented to the skull next to the probe. This shell served to protect the probe and                                     
provided a place to tuck the flex ribbon of the probe and the Ag reference wire into while the mouse                                       
was in the home cage. The shell was covered with Micropore tape. The total implant weight was ~3g,                                   
and its height was ~2cm. The animal was gradually acclimated to head restraint, starting with a few                                 
minutes per day, and monitored continuously for signs of stress. For subsequent recordings, the mouse                             
was head-fixed in front of three screens, and the visual stimuli were shown on the front screen and                                   
right screen, while the data was collected. For 4-shank probes, the 384 recording channels were                             
mapped to 96 sites on each shank, forming a horizontal stripe of sites across the 4 shanks. The                                   
recordings were made in external reference mode, using the Ag wire or the headplate as the reference                                 
signal. 

Chronic recordings in mice in Hantman Lab at Janelia Research Campus (Figure 2) 

All procedures were approved by the Institutional Animal Care and Use Committee at Janelia Research                             
Campus (protocol 19-177). One mouse (male, 13 weeks, Pcp2-Cre X Ai32) was chronically implanted                           
with two four-shank Neuropixels 2.0 probes, one in motor cortex and the other in the cerebellum. The                                 
animal was anesthetized with 2% isoflurane and placed on a heating pad in a stereotactic frame (Kopf                                 
Instruments). Buprenorpine (0.1 mg/kg) was administered subcutaneously. The head was shaved and                       
sterilized with three alternating swabs of antiseptic scrub (Betadine) and alcohol. The scalp was                           
removed, and the skull was cleaned with a scalpel. A head post (RIVETS (Osborne and Dudman, 2014))                                 
was attached to the skull with UV-curing dental cement (Relyx Unicem, 3M) to provide a flat surface for                                   
the implant enclosure and to allow head fixation during recording. A small hole was drilled over right                                 
visual cortex, and a stainless steel reference wire soldered to a gold pin was inserted to a depth of 0.5                                       
mm. A drop of silicone sealant (Kwik-Sil, WPI) was placed in the hole, and the gold pin was attached to                                       
the skull with UV-curing dental cement (Relyx Unicem, 3M). Craniotomies approximately 1.5 mm in                           
diameter were performed with a dental drill over motor cortex (anterior +0.5 mm, left 1.7 mm w.r.t.                                 
bregma) and the intermediate cerebellum (posterior 7.0 mm, right 2.5 mm w.r.t. bregma). The dura                             
was left intact. At each craniotomy, a NP 2.0 probe was slowly lowered to the target depth (2.5 mm into                                       
motor cortex and striatum, and 2.5 mm into the cerebellum) with a micromanipulator (Scientifica).                           
The probe was held on a rod with a dovetailed plate at the end, and the probe and plate were kept                                         
snug with a set screw. Silicone elastomer (Kwik-Sil, WPI) was applied to the brain surface to seal the                                   
craniotomy and to the probe shanks. UV-curing dental cement (Relyx Unicem, 3M) was applied from                             
the top of the probe to the skull to hold the probe assembly in place. Once each probe was secured, the                                         
set screw holding it to the micromanipulator plate was loosened, and the fixture was removed. The                               
ground connections for the two probes were patched together and kept in the air. The reference                               
connections for the two probes were patched together and connected to the reference pin in visual                               
cortex. The top of a centrifuge tube (Falcon 15mm, Fisher) was attached to the top of the head post                                     
with dental cement to protect the implant. Ketoprofen (5 mg/kg) was then administered                         
subcutaneously, and the animal recovered from anesthesia. The animal received an additional dose of                           
ketoprofen (5 mg/kg) on each of the following two days, and its health was monitored by the                                 
experimenter and animal care staff. The animal was gradually acclimated to head restraint, starting                           
with a few minutes per day, and monitored continuously for signs of stress. On each day of recording,                                   
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data were obtained from the 384 deepest channels on each shank. One of the shanks in the cerebellum                                   
failed, so we recorded from four shanks in motor cortex and striatum, and three shanks in the                                 
cerebellum. During the recording sessions, the animal was always awake and was either sitting quietly                             
without restraint on the bench or head-fixed. 

Chronic recordings in rats in O’Keefe Lab at University College London (Figure 2) 

These experimental procedures were conducted at UCL according to the UK Animals Scientific                         
Procedures Act (1986) and under personal and project licenses granted by the Home Office following                             
appropriate ethics review. Three male Lister Hooded rats were used for chronic recordings, weighing                           
~400g at time of surgery and maintained on a standard food deprivation schedule and a 12:12h                               
light:dark schedule. Each rat was implanted with two NP 2.0 probes into the hippocampus and                             
entorhinal cortex. A custom 3D printed metal holder was designed to house the probe and provide a                                 
fixation point for the stereotactic surgery frame. No microdrive was used. To protect the electronic                             
components the probe body was encapsulated in epoxy (Araldite Rapid). During the implantation                         
procedure, the probes were secured in the stereotaxic frame, yaw and pitch axes were adjusted to                               
assure that the probe shanks were perpendicular to the horizontal plane through bregma and lambda.                             
A hole for the ground screw was drilled in the right frontal plate and five additional screws were                                   
distributed around the implant sites (mEC: 4.3 mm lateral to the midline, 0.3 mm anterior to the sinus;                                   
HPC: 2.5 mm lateral to the midline, 4 mm posterior to bregma) to provide anchoring for dental acrylic.                                   
The whole surface of the skull except the implant locations was covered with Super-Bond cement (Sun                               
Medical). Two 2.4 mm craniotomies were drilled over the implant locations and bone was carefully                             
removed. The dura was gently lifted and a small incision was made to facilitate the probe insertion.                                 
The probes were slowly lowered (10–20 µm/s) until they reached the target location. The brain was                               
sealed with artificial dura (3-4680, Dow Corning). The probe shanks above the brain surface were                             
covered with Vaseline. The probes were then fixed to the skull using dental acrylic. A copper mesh                                 
cage was attached to the acrylic and connected to the skull screw to shield the probe assembly from                                   
external noise. The probe’s ground and reference were connected to the skull screw. Recordings were                             
made in external reference mode. After experiments were concluded, probes were extracted, detached                         
from the metal holder, recovered, cleaned and reused. 

Chronic recordings in rats in Moser Lab at NTNU (Figure 2) 

All procedures were performed in accordance with the Norwegian Animal Welfare Act and the                           
European Convention for the Protection of Vertebrate Animals used for Experimental and Other                         
Scientific Purposes. Four male Long-Evans rats, aged 3-4 months were chronically implanted with                         
either one or two NP 2.0 4-shank probes. The basic implantation procedure has been previously                             
described (Gardner et al., 2019). Probes were attached to the stereotactic manipulator by means of a                               
custom-designed interface block made from CNC-machined aluminium, to which the probe was glued                         
prior to surgery. Three probes were targeted at left posterior parietal cortex, hippocampus and                           
thalamus (AP -4.0 from bregma; ML 2.8; shanks aligned with coronal plane); the other three probes                               
were targeted at left medial entorhinal cortex (0.1 mm anterior to the transverse sinus; ML 4.3 mm;                                 
25-degree angle in sagittal plane). In two animals, both locations were implanted; in the other two                               
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animals, only one location was implanted. All probes were lowered to a depth of 6 mm beneath the                                   
brain surface. The probe’s ground and reference terminals were both connected with silver wire to a                               
single ground screw placed over the cerebellum. OptiBond All-In-One adhesive (Kerr) was applied to                           
the skull to provide an adhesive interface layer, and Venus Diamond Flow (Kulzer) and Meliodent                             
dental cement (Kulzer) were used to fix the probe to the skull. The unimplanted portion of the probe                                   
shank was enclosed with a protective layer of Vaseline. A plastic screw-top casing made from a 50-ml                                 
centrifuge tube was placed over the implant to provide a convenient protective housing. 

Electrophysiological recordings were performed while the animals foraged for scattered food crumbs                       
in an open field arena, for a time of 45 minutes or more. Animals were trained to high performance on                                       
the task prior to implantation. For each animal, two different channel configurations were recorded:                           
(1) 384 sites on a single shank or (2) 96 sites on each of the four shanks in a horizontal strip. External                                           
reference mode was used for all recordings. 

Chronic recordings in rats in Lee Lab at Janelia Research Campus (Figure 2) 

These procedures were conducted in accordance with the Janelia Research Campus Institutional                       
Animal Care and Use Committee. Two male Long-Evans rats, aged ~5 months were each chronically                             
implanted with a NP 2.0 4-shank probe. The implant surgery followed previously described methods                           
(Jun et al., 2017). Briefly, animals were anesthetized with isoflurane and mounted in a stereotaxic                             
frame (Kopf Instruments). After thorough cleaning of the skull, a ground screw was placed through the                               
skull above the cerebellum. A small craniotomy was made above the target areas (AP: 3.24 mm, ML:                                 
0.6 mm in one animal, AP: -5.4 mm, ML: 0.8 mm in the other animal) in the right hemisphere. Probes                                       
were centered above the craniotomy and lowered perpendicular to the skull surface to 6 mm depth                               
(rat 1) or at an angle of 20 degrees in medio-lateral direction to 8.1 mm depth (rat 2). Probes were                                       
lowered over the course of about an hour to the target depths. Ground and reference of the probe                                   
were connected to the ground screw. The craniotomy was covered with artificial dura (Dow Corning                             
Silicone gel 3-4680) and any parts of the probe outside of the brain were covered with sterile Vaseline.                                   
The probe was permanently fixed to the skull with dental acrylic, a protective cone made of copper                                 
mesh and dental acrylic and light cured cement was built around the probe, and the mesh was                                 
connected to the ground. Freely-moving recordings were conducted in a small cardboard box (~ 1 m x                                 
50 cm). Recordings were made in external reference mode. 

Acute recordings in mice in Dudman Lab at Janelia Research Campus (Figure 1) 

Experimental procedures were conducted in accordance with the Janelia Research Campus                     
Institutional Animal Care and Use Committee. A brief (<2 h) surgery was first performed to implant a                                 
3D-printed headplate (Osborne and Dudman, 2014). Following recovery from surgery, the water                       
consumption of the mouse was restricted to 1.2 ml per day. The water restricted mouse was habituated                                 
over three sessions to head-fixation and the lick port in the recording setup. The mouse was trained to                                   
perform a forelimb reach-to-pull task, similar to the previously described joystick-based reaching task                         
(Panigrahi et al., 2015), for approximately one month. Briefly, the mouse reached and pulled a                             
manipulandum positioned approximately 1.5 cm away from the initial hand position. For acute awake                           
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recordings in the fully trained mouse, a small craniotomy was made at 0.5 mm anterior and 1.7 mm                                   
lateral relative to bregma in the left hemisphere. The probe was centered above the craniotomy and                               
lowered with a 10 degree angle from the axis perpendicular to the skull surface at a speed of 0.2                                     
mm/min. The tip of the probe was located at 3 mm ventral from the pial surface. The 384 recording                                     
sites were uniformly distributed across the four shanks to allow for recording from the approximately                             
750 µm horizontal and 720 µm vertical tissue area in the dorsal striatum. 

Acute recordings in mice with optogenetic stimulation in Hausser Lab at University College                         
London (Supp Figure 1) 

All animal procedures were performed according to the Animals (Scientific Procedures) Act 1986                         
under license from the UK Home Office and were approved by the UCL Animal Welfare and Ethical                                 
Review Body. Transgenic mice expressing Channelrhodopsin-2 (ChR2) in cerebellar Purkinje cells were                       
generated by crossing a Pcp2-Cre line (B6.Cg-Tg(Pcp2-Cre)3555Jdhu/J) to the Cre-dependent ChR2-EYFP                     
reporter line, Ai32 (Madisen et al., 2012). 

To restrain mice during in vivo awake recordings, we installed custom-made aluminium headplates                         
with a 5 mm long and 9 mm wide oval inner opening over the cerebellum. Mice received a steroid                                     
anti-inflammatory drug at least 2 hours before surgery (Dexamethasone, 0.5 mg/kg), followed by an                           
analgesic NSAID (Meloxicam, 5mg/kg) immediately before surgery. Inhalation anaesthesia was                   
maintained with 1.5 – 2% isoflurane. The headplate was positioned over the lobule simplex of the left                                 
cerebellar hemisphere, angled at 26° with respect to the transverse plane, and attached to the skull                               
with dental cement (Super-Bond C&B, Sun-Medical). Post-operative analgesia (Carprieve, 5 mg/kg) was                       
given for 3 days. After recovering from surgery (minimum 5 days), mice then habituated to the head                                 
restraint and the experimental set up for 15 to 30 minutes a day for at least 3 days before the                                       
experiment. 

On the morning of the recording days, 1 mm-diameter craniotomy and durotomy were performed to                             
allow access for NP probes into the lobule simplex (3 mm lateral to the midline, anterior to the                                   
interparietal-occipital fissure). Before the craniotomy, a conical nitrile rubber seal (Stock no. 749-581,                         
RS components) was attached to the headplate with dental cement to serve a bath chamber. The                               
exposed brain was then covered with a humid gelatinous hemostatic sponge (Surgispon) and silicone                           
sealant (KwikCast, World Precision Instruments) until the experiment was performed (1-2 h after                         
recovery). 

At the beginning of the experiment, mice were head-fixed, the silicone sealant was removed, and                             
physiological saline solution was immediately applied to keep the craniotomy hydrated. We used                         
single-shank NP 2.0 probes, recording from the 384 most distal channels. To allow post-hoc tracking of                               
the recording site, the electrode shank was coated with a lipophilic fluorescent dye (DiI, Invitrogen).                             
The probe was attached with dental cement to an aluminium dovetail adapter screwed to a 15cm                               
aluminium rod and angled forward 26° (to match the headplate angle and be parallel to the stereotaxic                                 
vertical) to target the lobule simplex and lowered at approximately 4 µm/s until reaching the target                               
depth, at which point data acquisition was initiated after 15 minutes of tissue relaxation. For                             
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optogenetic stimulation, a fiber-coupled LED generating blue light of 470 nm with a 200 µm diameter                               
and 0.39 NA (M470F3, M95L01 and CFMXB05, Thorlabs) was positioned over the craniotomy. Power at                             
the fiber tip was 4 mW/mm2. Optogenetic stimulation consisting of 250 ms steps was used to activate                                 
labelled neurons, repeated 50 times at 10 second intervals to minimise desensitization of ChR2. Each                             
recording session consisted of: (1) a 20 minute period of spontaneous activity, (2) a set of 50                                 
optogenetic stimuli, (3) an application of a synaptic blocker cocktail (Gabazine 0.2mM, NBQX 0.8mM,                           
APV 1.6mM) followed by a 20 minute period to let the drugs take effect, and (4) a second set of 50                                         
optogenetic stimuli in the presence of synaptic blockers. After each recording, the probe was soaked in                               
Tergazyme overnight, then washed in distilled water for 1 h and isopropyl alcohol for 1 h.  

Acute recordings in Steinmetz Lab at University of Washington (Figures 1, 3, 5, Supp Figures 4,                               
5) 

For awake, head-fixed mouse recordings, mice were both sexes, between 2 and 8 months of age. In all                                   
cases, a brief (<2 h) surgery to implant a steel headplate and 3D-printed plastic recording chamber was                                 
first performed. Following recovery, mice were acclimated over two sessions to head-fixation in the                           
recording setup. During head-fixation mice were seated on a plastic apparatus with forepaws on a                             
rotating rubber wheel. Three computer screens were positioned around the mouse at right angles. On                             
or before the day of recording, mice were again briefly anaesthetized with isoflurane while one or                               
more craniotomies were made with a dental drill. After several hours of recovery, mice were                             
head-fixed in the setup. Probes had an Ag wire soldered onto the reference pad and shorted to ground;                                   
these reference wires were connected to an Ag/AgCl wire positioned above the skull. The craniotomies                             
as well as the wire were submerged in a bath of ringer lactate solution, enclosed in the 3D printed                                     
plastic chamber. Electrodes were then advanced through the saline and through the intact dura, and                             
lowered to the final position at approximately 10 µm/s. Electrodes were allowed to settle for                             
approximately 20 min before starting recording. Recordings were made in external reference mode.                         
Recording locations included visual cortex, hippocampus, and thalamus.  

Acute recordings in Svoboda Lab at Janelia Research Campus (Figure 5) 

All animal procedures adhered to the guidelines set by the Janelia Research Campus Institutional                           
Animal Care and Use Committee. One wildtype C57BL/6 mouse (male, 6 months) underwent a brief                             
stereotaxic surgery (<2 h) during which a stainless steel headbar was implanted and a recording                             
chamber was built using dental cement for acute head-fixed recordings. Following recovery from                         
surgery, the animal was habituated under head restraint in a recording setup for two days with                               
incremental duration (30 minutes to one hour). On the first day of recording, a 1 mm diameter                                 
craniotomy was prepared with a dental drill over the right motor cortex (AP: -0.5 mm, ML: 0.5 mm to                                     
Bregma) and dura was left intact. After three hours of recovery, the mouse was head-fixed in                               
recording setup and a single-shank NP 2.0 probe was inserted from the anterior side of the animal at                                   
an angle of 47 degrees from perpendicular to the skull surface to the target depth. As such, an insertion                                     
covered brain regions including cortex, hippocampus, midbrain, pons and medulla. Prior to each                         
insertion, the tip of the electrode was coated with CM-Dil (Invitrogen), a red fixable lipophilic dye, for                                 
later histological reconstruction of probe tracks. Probe was slowly lowered at a speed of 10 µm/s to the                                   
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final position of 6.6 mm using a micromanipulator (uMP-4, Sensapex, Inc). After reaching the desired                             
depth, the probe was allowed to settle for approximately 10 minutes before commencement of                           
recording. The probe had a wire soldered onto the reference pad which was shorted to the ground                                 
pad. This wire was then connected to an Ag/AgCl wire positioned above the skull. During recordings,                               
the craniotomy as well as the reference wire were submerged in cortex buffer ( NaCl 125 mM, KCl 5                                   
mM, Glucose 10 mM, HEPES 10 mM, CaCl2 2 mM, MgSO4 2 mM, pH 7.4). Between recording days, the                                     
craniotomy was protected with removable silicone sealant (Kwik-Cast, World Precision Instrument).                     
Daily recording sessions lasted 1-2 hours, and were repeated for 2 days in a craniotomy with each                                 
insertion separated by at least 200 µm at the point of entry. All recordings were made with                                 
open-source software SpikeGLX (http://billkarsh.github.io/SpikeGLX/) in external reference mode and                 
the animal was awake sitting quietly in a body restraint tube throughout the recording sessions.  

Imposed motion recordings at Steinmetz Lab (Figure 3) 

All procedures were approved by the Institutional Animal Care and Use Committee at the University of                               
Washington (protocol 4461-01). To make recordings with imposed motion between the brain and the                           
probe, custom software was used to move the probe after insertion. The probes were affixed to steel                                 
rods held by Sensapex uMP-4 micromanipulators (Sensapex, Inc.). Two probes were inserted                       
simultaneously, held by two separate manipulators: a NP 1.0 probe in one hemisphere and a NP 2.0                                 
probe in the opposite hemisphere, using location and angles of insertion matched as closely as possible                               
between the two probes for symmetrical, matched recording sites. The hemisphere used for each                           
probe was counterbalanced across sessions. After ~10 minutes of recording, custom software using the                           
Sensapex API via Matlab was executed to move the manipulators 10 steps forward and 10 alternating                               
steps backwards, each step at 1 µm/sec for a duration of 50 sec, such that the period of the triangle                                       
wave motion was 100 sec, the total duration of the pattern was 1000 sec, and the amplitude was 50 µm.                                       
A synchronization signal was issued at the start of the motion and at the end for later alignment with                                     
neural data. The manipulator position was monitored online programmatically with further API calls                         
during the progression of the motion to ensure that motion proceeded as expected, further confirmed                             
by the visible pattern of motion in the detected location of spikes on the probe (Figure 3d). After                                   
completion of the pattern of motion, another ~10 minutes of recording was carried out before ending                               
the session. A total of n=3 such recordings were made, each on a separate day, in n=2 mice.  

Dual-bank recordings in Carandini/Harris Lab, Svoboda Lab, and Steinmetz Lab (Figure 5) 

Subjects were prepared and probes inserted as described above (n=1, Carandini/Harris Lab; n=1,                         
Svoboda Lab; n=2, Steinmetz Lab). Single-shank NP 2.0 probes were used, as the multi-shank version of                               
the probe does not have the scrambled channel mapping required to recover neuron locations. After                             
probes were inserted to the desired depth, ~5-7 mm deep at the tip, three recordings were made for                                   
~10 minutes each: a recording from the sites on bank 1 (i.e. sites 1-384); a recording from the sites on                                       
bank 2 (sites 385-768); and a recording from all 768 of these same sites at once, by connecting banks 1                                       
and 2 simultaneously to the 384 readout channels. The recordings were made with SpikeGLX software,                             
which permits the double-bank connection pattern via custom configuration files.   
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Data Analysis Methods 

Spike sorting and quantification of chronic unit yield (Figure 2) 

Bandpass filtering (300-9000 Hz) and common average referencing across simultaneously sampled                     
channels ("demuxed CAR") were applied (using custom software;               
https://billkarsh.github.io/SpikeGLX/#catgt) to the raw data. We detected events (spikes), calculated                   
spike amplitudes, and calculated firing rates with custom Matlab routines                   
(https://github.com/jenniferColonell/Neuropixels_evaluation_tools), as follows. Putative neuronal         
spikes higher than the noise floor (constant threshold: 80 µV) were first detected; spikes which occur                               

on neighboring sites within a time window of ± 0.2 ms were grouped together to form an “event”. The                                     

spike amplitude for an event was defined as the amplitude on the peak site. Total event/firing rate (Fig.                                   
2d) was then calculated as the sum of all detected events from all channels divided by the time of the                                       
entire recording session. As a descriptive function, a linear regression line was fit to the change in total                                   
firing rate of each probe/animal days since implantation. The rate of change in log total firing rate was                                   
extracted from the slope of the descriptive function. Filled dots in Fig. 2e represent significant                             
correlations (p<0.05; p-values are computed for Pearson's correlation using a Student's t distribution                         
using Matlab corrcoef function) of the decay observed in the linear regression line. 

For quantification of the unit yield (Fig. 2f), filtered raw data was sorted with the Kilosort2 software                                 
(Stringer et al., 2019b). The number of well-isolated single units was automatically estimated by                           
Kilosort2 with a criterion on estimated refractory period violations (<10%). The rate of change in log                               
cluster count was extracted from the slope of the descriptive function (Fig. 2g). Filled dots in Fig. 2g                                   
represents significant correlations of the decay, as described above.  

Motion stabilization algorithm (Figures 3, 4) 

To stabilize motion within and across recordings, we developed a data processing pipeline that takes                             
advantage of the increased site density and optimized geometry of the NP 2.0 probes. Here we describe                                 
this motion stabilization algorithm in more detail. The pipeline starts by detecting spikes across the                             
entire recording with a new template-based algorithm. We then perform an iterative procedure to                           
simultaneously estimate: 1) the distribution of spike amplitudes across the length of the shank, and 2)                               
the vertical offset of each channel as a function of time and position on the shank. Finally, the vertical                                     
offsets are used to shift the data back or “register” it, using an approach based on kriging interpolation.                                   
A standard spike sorting algorithm (Kilosort2, (Stringer et al., 2019b)) was then used on the registered                               
data, with different settings for acute and chronic recordings. Below we describe each of the steps in                                 
more detail. The algorithm is implemented in Matlab as a part of the Kilosort2.5 package, as well as in                                     
Python in an upcoming release.  

Spike template detector 

To estimate drift from raw data, we characterize the time-dependent distribution of spike amplitudes                           
and firing rates across the probe length. Since spikes have small spatial footprints on the probe, they                                 
can be used to estimate drift at high spatial resolution. In contrast, fluctuations in the local field                                 
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potential have large spatial correlations, and thus cannot be used to determine micron-scale shifts of                             
the probe. 

We start by detecting spikes densely from the entire dataset. One could use standard threshold                             
crossings for this step, but that would not take advantage optimally of the waveform shapes, which are                                 
distributed over many nearby channels. We thus devised a more sensitive template-based detection                         
method that we refer to as a “template detector”. Like other template matching algorithms recently                             
used in spike sorting (Pillow et al., 2013; Pachitariu et al., 2016), the template detector sweeps                               
templates across time in a convolutional manner, to find matches with the multi-channel voltage                           
traces. Unlike previous spike sorting methods, the templates we use are not designed and optimized to                               
capture individual waveform shapes from the neurons in the dataset. Instead, they are designed to                             
capture a large range of possible spike shapes, as described below. 

Formally, consider a collection of spike templates parametrized by the template center in              W x,y,σ,k              

two-dimensional coordinates as well as by a spatial scale and a template type . The shape of    x, )  ( y                 σ           k        

this template on a channel at position  is given by:x , )  ( ′ y′  

W x,y,σ,k (x , , )′ y′ t = wk (t) · e− 
σ2

(x−x ) +(y−y )′ 2 ′ 2

· nx,y,σ,k  

where is one out of a few prototypical template shapes extracted from the data (see below), and  wk                                  

is a normalizing constant that ensures . We choose five different values of nx,y,σ,k             W ‖  ‖ x,y,σ,k = 1           σ      

µm to capture spikes of different spatial extent, and we used 2D centers tiling the, 10, 15, 20, 25  5                                 x, )  ( y      

probe in the horizontal and vertical dimension, with a horizontal spacing of half the horizontal                             
inter-site distance (16um), and a vertical spacing of half the vertical inter-site distance (7.5um for NP                               
2.0 and 10um for NP 1.0). Furthermore, we included horizontal centers slightly outside the probe                             
(-16um and 48/64um for NP 2.0/1.0). 

To find a good set of prototypes , we detect threshold crossings (six standard deviations below 0) on             wk                      

a subset of the data, ensuring that the crossings are local maxima across channels. We then cluster                                 
these one-dimensional waveform shapes using scaled k-means to obtain six representative prototypes                       

. This ensures that the prototypes are somewhat adapted to the statistics of the dataset,, k , ,  wk  = 1 … 6                              

although we expected and noticed that the prototypes are similar across most Neuropixels datasets,                           
probably because sufficiently many distinct waveforms are sampled across a multitude of brain areas.  

This procedure gives rise to a total of 57,600 / 69,120 templates for a single Neuropixels 2.0 / 1.0 probe,                                       
at a density of 150 / 180 templates per channel. To determine how well a template matches the data                               W i        

 at time , we consider the cost function:D  t  

(c, )Costi,t = ∑
 

c,t′
(D )(c, )t + t′ − ai (t) ⋅W i (c, )t + t′ 2 − D t + t′ 2  

where the sum is over channels and timepoints (in our case 61 samples) and is the best-fitting             c        t′               (t)  ai        

scalar amplitude for template  at time :i  t   
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ax(0, D )ai (t) = m  ∑
 

c,t′
W i (c, )t′  (c, t ) + t′  

which follows from and the additional restriction that all spike amplitudes should be      W ‖  ‖ i = 1                      

positive. Here, represents the voltage data after high-pass filtering at 300Hz and channel whitening    D                          

(see (Pachitariu et al., 2016)). It follows that  

ost (t)C i,t = ai
2  

which corresponds to the amount of variance that a template would explain at time . We can thus                    i            t        

use to drive the selection of best matching templates. The local maxima of in space and time   ai
2                            ai

2          

were then selected as spikes if their amplitudes . The local maximum is over templates that are                10  ai (t) ≥                  

at most 50 µm away, and at most 20 samples away in time. Examples are shown in Supp Fig 4a.  

The calculations to compute and its local maxima are performed via custom CUDA code that runs        (t)  ai                          

on standard GPUs. Despite using almost 200 templates per channel compared to the more typical 1                               
template/channel for other spike sorting approaches, the GPU operations are highly efficient due to                           
our chosen factorization of across time and space, running in <10 minutes for a ~1 hour recording        W i                            

on an Nvidia Titan V GPU. 

Estimation of probe drift 

The drift stabilization consists of two steps: 1) estimation of drift magnitude as a function of time; 2)                                   
interpolation of data according to the drift estimates. In this section we describe the first step, which                                 
takes as input the spikes found by the template detector, together with their amplitudes and position                               
on the probe. Since the template positions are restricted to a grid, we further refine the position                                x, )  ( y    

on a per-spike basis, by taking the center of mass of the projections for all templates                          (t)  ai        W i = W x ,y ,σ,k′ ′  

with and fixed to the values of the identified best-matching template, but allowed to vary in a  σ     k                       ,x′ y′            

µm range around the values of the best-matching template. Since we only expect drift to vary100  ±                                

along the vertical dimension, we ignore the horizontal position of each spike for the rest of this                                 
analysis.  

Each spike is now described by three numbers: time, vertical position and amplitude or .    n                           , y , )  (tn  n An  

We use these to make the “drift plots” (Figures 3d, 4a and Supp Fig 4b), by assigning darker gray hues                                       
to points of higher amplitude (Supp Fig 4b). These plots show clear horizontal bands where spikes of                                 
high amplitude are likely coming from a single well-isolated neuron, or a collection of neighboring                             
neurons with similar amplitudes. The goal of drift estimation is to track the position of these bands                                 
across time, in a way that is either 1) consistent across the probe (rigid estimation) or 2) varying as a                                       
function of depth (nonrigid estimation). We describe a method to determine rigid shifts for a section of                                 
the probe, and then describe how the method can be extended to estimate nonrigid shifts across an                                 
entire probe. 

Rigid drift estimation 
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We start by splitting the dataset into temporal batches that tile the entire recorded duration (Supp Fig                                 
4c). The batches for all analyses in this paper have been set to ~2 sec, but the software allows setting                                       
longer or shorter batches, with some caveats that we discuss at the end of this section. For each batch,                                     
we convert the data representation from a collection of spikes , to a single 2D histogram of                    , y , )  (tn  n An              

depths and amplitudes . We chose equally spaced bins for depth (5 µm), and  yn       An                      

logarithmically-spaced bins for amplitude (20 bins from the lowest to highest amplitudes, in our case                             
10 to 100). We then log-transformed the counts in each bin for each batch according to                ouc t

ij         ,i j          t      

, where indexes the depth bins, and indexes the amplitude bins. Finally, welog(1 ou )f tij =  + c t
ij     i             j              

applied a gaussian smoothing filter with a standard deviation of 0.5 bins in each direction to get the                                   

final representation  (Supp Fig 4c).f tij   

The matrices can now be used for vertical registration, because they contain the fingerprint of    f tij                            

neural activity patterns across the probe length. The objective of registration is to align these                             
fingerprints to each other vertically so that they match each other best. To achieve this objective, we                                 
use a standard correlation-based registration approach, similar to the approach used for 2p calcium                           
imaging data (Foroosh et al., 2002; Pachitariu et al., 2017). The process needs a registration target to                                 

align each frame to. One could use a single matrix as the target, but that would not take full                  f tij                      

advantage of the SNR of the data, because individual matrices are noisy. Instead, we jointly                  f tij              

optimize a registration target , and the registration offsets which are needed to shift each matrix        F           dk                

 so that it best matches . We iteratively optimize the following cost function:f tij F  

.ostC (D, F ) = ∑
 

tij
|F (d )|ij − f tij t

2
 

On each iteration, we first hold fixed and optimize individually for each batch, and then hold            F         dt                 dt  
fixed for all and optimize (Supp Fig 5a). The optimization of the second step simply sets       t      F                         <F ij = f tij >  

where is the averaging operator. For the first step, we calculate the cost function reduction for   <  >                                

each integer value of in a reasonable range ( 20 bins). On consecutive iterations, we remember        dt           ±               dt  
from the previous iteration and refine it in a range around its previous value. This process is                                 

initialized with for an arbitrarily-picked batch which we choose to be in the middle of the    F = f t            t                      

recording duration.  The optimization needs 5-10 iterations to converge.  

At convergence, we obtain the best estimates of to within 5 µm vertical precision, which we further                dt                    

refine using an interpolation-based method that upsamples the curves of correlation between                        (d )F t
ij t  

and at different values of (individual curves in Supp Fig 5b). For upsampling, we use kriging  F           dt                        

interpolation with squared-exponential kernels of standard deviation of 1 bin.  

We note that the estimation of drift has a space/time accuracy tradeoff. The signal-to-noise ratio (SNR)                               
of the drift estimator varies strongly with the total number of spikes in the batch, regardless of which                                   
channels those spikes were recorded on. Thus, one can either get a temporally-precise estimate of drift                               
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using all channels on a Neuropixels probe (384) or a spatially-precise estimate for smaller sections of                               
the probe, but using longer batch durations. For 32 electrodes, the minimum useful batch duration                             
could be on the order of tens of seconds, although a less precise drift estimate can probably still be                                     
obtained with shorter batches. Determining the optimal trade-offs between temporal and spatial                       
resolution of drift is a topic of further work. Furthermore, there is likely more information available in                                 
the multi-dimensional features of single spikes than the amplitude features we have used here.  

In the next section, we assume that drift can be estimated relatively well for subsections of ~1/3 of the                                     
probe for a batch duration of 2s, and then introduce a smoothing operation to ensure that even                                 
segments with few spikes are assigned good drift estimates.  

Nonrigid drift estimation 

Because one group of 384 sites on a NP2.0 probe is ~3 mm long, it is possible that drift is different in                                           
different segments of the probe, requiring nonrigid registration. This type of nonrigid movement can                           
be seen clearly in the original drift plots (Supp Fig. 4b) and also in the drift plots recomputed on                                     
rigidly-corrected data, where it appears as residual drift (Supp Fig. 5c). From our experience, it is                               
common for cortical and subcortical regions to have differential drift, although this could depend on                             
the penetration angle and other factors specific to each preparation.  

To correct for nonrigid drift, we again turn to a common practice in image analysis: splitting the data                                   
into multiple segments and assuming approximately rigid drift for each small segment (Pachitariu et                           
al., 2017). For a complete Neuropixels probe, we use 7 segments that have consecutive overlaps of 50%                                 
of their lengths (Supp Fig 5b). In other words, each channel is included in exactly two consecutive                                 
segments. For each of these segments, we run the rigid drift estimation algorithm above, with one                               
modification that arises before the upsampling step. This modification is a simple smoothing operation                           
across registration blocks, timepoints and registration offsets, which we use to increase the SNR of the                               

curves of correlation between and , now computed separately for each segment. For        (d )f tij t     F                

smoothing we use a Gaussian kernel of standard deviation of a half sample in each direction. We                                 
found this smoothing operation to be often necessary, because each block has a relatively small                             
number of channels and timepoints. Note it is preferable to improve SNR before taking the peak of the                                   
cross-correlation curves. This is because the nonlinear nature of the argmax operation can result in                             
outlier drifts for some samples, and smoothing would then be highly detrimental to nearby samples.                             
After smoothing the cross-correlation curves, the estimation process for the best shifts proceeds like in                             
the rigid case, including the upsampling step (Supp Fig 5b).  

Finally, we upsample the drift estimates for the 7 segments of channels to produce a private estimate                                 
for each channel. This is done by assigning the drift estimate for each segment to the mean channel in                                     
that segment, and using a standard interpolation method (Akima spline interpolation). The final result                           
of nonrigid drift estimation is a set of drift estimates parametrized as for each channel and                        (k, )  d t         k    

each batch , that we use in the next phase to stabilize the data. t    

Drift correction using kriging interpolation 
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Given the drift estimates, we must correct the data by shifting it up or down on each batch and each                                       
set of channels. We directly modify the high-pass filtered and channel-whitened version of the data,                             
since this is what we will use for spike sorting. Each sample time point with data inherits the                            T       qT      

drift estimates for the batch it belongs to, where are understood to indicate vectors across    dt          t           ,qT dt              

channels. Each channel in turn is assigned a horizontal and vertical position defined as and                            x     y  

respectively. Our goal is to estimate the data at channel positions and , which we do using                      x     y + dt          

kriging interpolation. This is a method for producing interpolation matrices that assumes the data was                             
generated by a Gaussian process, which we choose to have generalized Gaussian kernels with a spatial                               
constant defined by the user (15 µm by default). The joint covariance of the sites and  σ                               x, )  z1 = ( y    

 can be written as:x, y )  Z2 = (  + dt  

 
where is the kernel and is the matrix of Euclidian distances between   Kp (Z , )1 Z2 = e−E(Z ,Z ) /σ1 2

p p
           E (Z , )1 Z2                

all pairs of two-dimensional coordinates in and . Given the observation of data on channels            Z1     Z2             qT      

, we can use the covariance to obtain the predictive distribution on channels , which has a meanZ1                          Z2          

given by: 

(Z , ) q  rT = Kp (Z , )2 Z1 Kp 1 Z1
−1

T  

with being the registered data. The kernel computation and matrix inversion need to be calculated   rT                              

once for each data batch, making this interpolation method computationally efficient on GPUs. We also                             
added a small constant to the diagonal of to make the inversion operation more stable, and                (Z , )  K 1 Z1                  

used a default  for all analyses in this paper. p = 1    

After registration, we rerun the spike detector algorithm to make new drift maps (Supp Fig 5c,d). Some                                 
small residual drift can be seen for the rigid registration algorithm (Supp Fig 5c), while the nonrigid                                 
algorithm corrects the drift even better (Supp Fig 5d). The spike sorting algorithm should be robust to                                 
potential small amounts of residual drift. Note also that one putative neuron in fact appears to move                                 
more after drift correction than before (compare Supp Fig 5c,d to Supp Fig 4c). We believe this could                                   
reflect a neuron stuck to the probe and moving up and down with it, a reminder that drift alone does                                       
not account for all non-stationarities in a neural recording.   

Finally, we took special care of modifying the data at batch boundaries, where an abrupt change in the                                   
registration offsets computed by the algorithm would lead to apparent discontinuities in the data, that                             
in turn can affect the spike sorting algorithm. To minimize these discontinuities, we use an                             
overlapping window of 64 samples between consecutive batches, and interpolate linearly between the                         
previous and next batch, with coefficients that vary linearly from 0 on the first sample to 1 on sample                                     
64 of the overlap window. Note that we use a similar approach to minimize discontinuities due to                                 
high-pass filtering. The final result of this step is a high-pass filtered, channel-whitened and                           
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drift-corrected data file of the same size as the original data and which can be further used for spike                                     
sorting with, in principle, any algorithm.  

Spike sorting with Kilosort2 

After the data has been registered, we proceed to spike sorting using the Kilosort2 clustering and                               
template matching algorithm. Because the drift has already been corrected, we did not need to use the                                 
drift tracking step in Kilosort2. The templates were found by processing the data batches in                             
pseudo-random manner, and then frozen to their final values for the entire template matching step,                             
instead of being allowed to change like in Kilosort2. Although we did not use the tracking step of                                   
Kilosort2, we do take advantage of other improvements in Kilosort2, like the initialization of new                             
templates from the residuals of the template matching algorithm, and the post-processing steps that                           
split and merge the final templates to create units of higher quality. The pre-registration step enables                               
the use of powerful quality control (QC) criteria to further automate the spike sorting pipeline. For                               
example, the isolation distance between clusters in feature space would not be a good QC test if the                                   
features of the clusters are drifting over time and thus getting smeared in feature space. However, if                                 
we assume the data is stationary, the isolation distance should become more widely useful.                           
Post-processing packages already exist that compute this metric, and we plan to incorporate such a                             
metric into a Python-based version of Kilosort (coming soon).  

Chronic recordings 

For chronic recordings, we tried to concatenate the raw data files and run the Datashift algorithm as                                 
described above. The results were not always satisfactory, especially when the recording sessions were                           
separated by weeks. In these cases, we noticed substantial changes in the drift maps over days that                                 
were not consistent with a simple vertical drift but may have instead reflected neurons becoming                             
more or less active over days (Deitch et al., 2020). To analyze these data, we used a different strategy.                                     
We started by estimating drifts on each session separately and then we aligned the registration targets                               
from each session to each other, adding this additional drift to the per-session drift estimates. We                               
rounded these drift estimates to integers, and shifted data from both sessions by these amounts to                               
approximately align the recordings. Finally, we ran the standard Kilosort2 algorithm with drift                         
tracking, allowing the waveforms to change as a function of time during template matching.  

Acute motion stabilization test, data analysis (Figure 3) 

To analyze the success of the acute motion stabilization algorithm, we computed three metrics of                             
success: number of stable units, number of unstable units, and correlation coefficient between firing                           
rates and motion trajectory. To compute stable and unstable unit counts, we ran the Kilosort2                             
algorithm on the datasets before and after motion stabilization. Units were selected for analyses if                             
they passed two stringent criteria: 1) the spatial extent of the waveform was sufficiently small; 2) the                                 
fraction of refractory period violations was <10% from that expected of a Poisson process with the                               
same mean firing (Stringer et al., 2019b). For the most part, criterion 1) distinguished neuronal                             
waveforms from noise, and criterion 2) distinguished well-isolated single units from the background                         
activity. We also excluded any units with firing rates less than 0.1 Hz. To compute the correlation                                 
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coefficient between firing rates and motion trajectory, we binned spikes (1 s bin size) across the period                                 
of the recording with imposed motion and computed the correlation coefficient with the triangle wave                             
motion pattern. Since either positive or negative correlations would indicate the presence of                         
problematic failures to detect spikes at some phase of the motion, we took the absolute value of the                                   
correlation coefficients. To estimate the null distribution for this measure, we computed a ‘shuffle’                           
correlation between the firing rate during a period without imposed motion and the triangle wave                             
motion pattern (Fig 3f, ‘shuffle control’). Since firing rates during that period could not truly vary with                                 
the imposed motion, this control provides a lower bound on the measure. We used the null                               
distribution to establish 95% confidence intervals, based on which we classified units as                         
stable/unstable. 

Chronic cross-session stabilization test, data analysis (Figure 4) 

To assess the stability of the sorted units in pairs of spliced recordings performed on different days, we                                   
used units whose baseline firing rate between the two days differed by no more than 4-fold (thus                                 

25%±16% of the units were discarded, mean ± standard deviation across shanks). Note that true                             

baseline firing rates in mouse visual cortex vary substantially over long timescales (Deitch et al., 2020),                               
so these excluded units may not represent recording instability. Next we tested whether each unit’s                             
visual responses differed significantly across the 112 natural images that were shown (p-value < 0.01                             
in a Kruskal-Wallis test of the visual responses). Units that satisfied both criteria were considered to                               
have a reliable visual fingerprint response. The fingerprint consisted of the average spike count                           
response to each image and the mean (across all images) response PSTH.  

The first day visual fingerprint of a unit was compared to its own second day visual fingerprint and to                                     
the second day visual fingerprint of another unit whose location on the probe was closest to the                                 
original unit. The comparison was performed by correlating the spike counts and PSTHs of the two                               
fingerprints, then taking the average of the two values. Such comparison can have two possible                             
outcomes: (i) match - when the fingerprint on the first day has higher similarity to the unit’s own                                   
fingerprint on the second day; (ii) mismatch - when the fingerprint on the first day has higher                                 
similarity to the fingerprint of the other unit on the second day. 

The ratio between the number of matches and mismatches of visual fingerprints allows us to infer the                                 
number of stably-recorded units, based on an approach we described previously (Okun et al., 2016).                             
Briefly, using the equation for total probability, we have:  

r(match) Pr(match|stable unit) r(stable unit) Pr(match|nonstable unit) r(nonstable unit)  P =  · P +  · P  

Since , we get thatr(nonstable unit) r(stable unit)  P = 1 − P   

r(match) Pr(stable unit) Pr(match|stable unit) Pr(match|nonstable unit)] Pr(match|nonstable unit).  P =  · [ −  +   

Thus, 
r(stable unit) [Pr(match)  Pr(match|nonstable unit)] / [Pr(match|stable unit) Pr(match|nonstable unit)].  P =  −  −   

Finally, we use the fact that and (if the neuron          r(match|stable unit)  P ≤ 1     r(match|nonstable unit) /2  P ≤ 1        
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corresponding to the unit on the second day is different from the original neuron, match is no more                                   
likely than mismatch) to derive that For the same reason,            r(stable unit) Pr(match) 1.  P ≥ 2 −           

and  imply r(match|stable unit)  P ≈ 1 r(match|nonstable unit) /2  P ≈ 1 r(stable unit) Pr(match) 1.  P ≈ 2 −   

The above equation (inequality) was used to convert the observed match probability on each shank                             
into an estimate of the (lower bound on the) probability that the units recorded on the shank are stably                                     
tracked.  

was taken as the proportion of well-isolated units that matched out of all well-isolated unitsr(match)  P                                

output by the algorithm for shift-corrected spike sorting (a version of Kilosort 2 (Stringer et al., 2019b)).                                 
A unit was considered well-isolated if Kilosort2 labeled it as ‘good’ rather than ‘mua’ (48% of all units                                   
with a reliable visual fingerprint response). In a subset of recordings we compared these results to                               
results obtained after manual curation of the output using Phy (Rossant et al., 2016). We found that                                 
manual curation produced results that were quantitatively almost identical to those obtained by                         
performing the analysis on the immediate output of the automated spike sorting algorithm (data not                             
shown).  

Combined bank recordings, data analysis (Figure 5) 

We performed spike sorting on the recordings from each bank (1, 2, and 1+2, as described above) using                                   
the standard Kilosort 2 algorithm (Stringer et al., 2019b). The template waveform of each unit returned                               
by Kilosort 2 was analyzed to determine whether the template could be included and to determine the                                 
mismatch score on each bank. The mismatch score was defined as:  

) )S = ∑
191

y=0
∑
80

t=0
(W 1,y,t − W 0,y,t

2 + ∑
1

x=0
∑
190

y=0
∑
80

t=0
(W x,y+1,t − W x,y,t

2  

where is the waveform on the channel at coordinate (x,y) at time t relative to the spike. The  W x,y,t                                    

coordinates x and y specify the two columns (x) and the 192 rows (y), and are sorted differently for                                     
each bank according to the channel mapping. Units were excluded from this analysis when they were                               
not labeled ‘good’ by Kilosort 2, when they had template waveforms extending across more than 20                               
channels (defined as the number of channels with amplitude at least 10% of the maximum amplitude                               
on any channel; values >20 indicate low amplitude spikes that were difficult to discriminate), and                             
when they had mismatch scores that differed by less than 0.5 between the two banks.  

The change in SNR between single- and combined-bank recordings was computed by first calculating                           
the r.m.s. voltage in each case, after band-pass filtering the raw data between 300 and 10000 Hz with a                                     
3-pole Butterworth filter (r.m.s. in each case for an example recording shown in Fig 5e). Then, we                                 
assumed that the spike amplitude decreased by a factor of 2 for spikes recorded on any given channel,                                   
and computed the resulting change in SNR on each channel using this 2x decrease in signal with the                                   
empirically measured changes in ‘noise’ (r.m.s. voltage).  
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