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ABSTRACT

Recent multiplexed protein imaging technologies make it possible to character-
ize cells, their spatial organization, and interactions within microenvironments at
unprecedented resolution. Although observational data can reveal spatial asso-
ciations, it does not allow users to infer biologically causative relationships and
interactions between cells. To address this challenge, we develop a generative
model that allows users to test hypotheses about the effect of cell-cell interactions
on protein expression through in silico perturbation. Our Cell-Cell Interaction
GAN (CCIGAN) model employs a generative adversarial network (GAN) archi-
tecture to generate biologically realistic multiplexed cell images from semantic
cell segmentations. Our approach is unique in considering all imaging channels
simultaneously, and we show that it successfully captures known tumor-immune
cell interactions missed by other state-of-the-art GAN models, and yields biolog-
ical insights without requiring in vivo manipulation. CCIGAN accepts data from
multiple imaging technologies and can infer interactions from single images in
any health or disease context.

Keywords— Semantic Image Synthesis, Generative Adversarial Networks, Multiplexed Imaging,
Tumor Immunology

1 INTRODUCTION

The spatial patterns of cells in a neighborhood dictates signaling relationships and interactions with
the cellular environment that are critical to development and disease. Tumor-immune cell interac-
tions within the tumor microenvironment are a prime example, implicated in many facets of cancer
pathogenesis and treatment (1; 2).

Recent advances in multiplexed tissue imaging, from fluorescence microscopy to ion mass spec-
trometry, are now enabling the acquisition of cell and protein localizations at a high dimensional
subcellular resolution, providing unmatched insight into cellular interactions (3; 4). While these
emerging technologies improve the resolution of tissue imaging, methods to effectively interpret
and analyze the data are lacking.

A model that can predict changes in protein localization—not just abundance—as a result of changes
in neighboring cellular environments would provide unique insight into important mechanistic ques-
tions, such as how the expression of inhibitory immune checkpoint receptors on a T cell change when
it migrates into a particular tumor environment. Here, we present Cell-Cell Interaction Generative
Adversarial Network (CCIGAN), a tool that addresses the complexity and limited nature of mul-
tiplexed imaging data, and allows for testing counterfactual cell interaction scenarios to elucidate
interactive processes within tissues.
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Technology Cell of Interest Marker of Neighboring Neighbor Protein
interest cell type Channel

MIBI

CD8 T, Endo. PD-1 tumor PD-L1
CD3 T, Endo., Tumor β-catenin tumor, dendritic dsDNA (11)(12)
CD8 T, Tumor pan-keratin CD8 T dsDNA (11)(12)
Macrophage PD-L1 tumor PD-L1

t-CyCIF CD8 T PD-1 tumor PD-L1
CD8 T LAG3 tumor PD-L1

Table 1: Rediscovery of known cell-cell interactions as positive controls for CCIGAN

The high dimensionality and scarcity of multiplexed cell datasets pose unique challenges for image
modeling and interpretation. Multiplexed imaging quantifies many proteins, each in a separate chan-
nel, resulting in high-dimensional data fundamentally different from typical red green blue (RGB)
images and rendering conventional image analysis methods inadequate. Moreover, the time inten-
sive nature of multiplexed image generation limits the data availability and scale. This restricts the
number of observed instances containing specific cell neighborhoods observed and thus impedes
modeling, exploratory analysis, and interpretation.

Existing methods for analyzing imaging data can be broadly grouped into cell classification and cell
population analysis, neither of which take advantage of multiplexed imaging to investigate protein
localization. Methods for cell classification (5) focus on clustering cell-types by protein characteris-
tics but do not predict protein expression and localization. Bayesian methods for cell-cell interaction
analysis (6) only predict scalar magnitudes of protein expressions and and lack spatial information.
Traditional binning and regression-type methods can be used to quantify neighboring cell contribu-
tions, but are fundamentally limited by issues such as bin size selection, high dimensionality, feature
extraction and nonlinear effects, motivating the use of alternative neural-network-based methods.
Some recent GAN-based methods augment cell imaging data for training purposes (7) or synthe-
size cell images into multiple channels (8), but none can be used to study cell cell interactions.
The few existing conditional cell image synthesis models do not consider a cell’s spatial context or
incorporate data multiplexity (9; 10).

We have developed a framework consisting of a deep generative network, CCIGAN, and a compan-
ion pipeline for image testing analysis. CCIGAN introduces a novel end-to-end deep architecture
that is able to predict multiple channels of pixel-level protein magnitude and spatial information
influenced by cell-cell interactions. CCIGAN can conditionally capture realistic but potentially un-
observed cell scenarios for rapid counterfactual hypothesis testing. The accompanying data analysis
pipeline interprets CCIGAN’s outputs at the neighborhood, single cell, and subcellular levels in a
biologically meaningful manner. Lastly, we include an algorithm to search for specific cell scenar-
ios that result in significant protein expression changes. CCIGAN successfully recapitulates well-
studied patterns in tumor immuno-biology not captured by other state of the art GAN models and
yields novel biological insights in immune cell-tumor interactions that are not plausible to deduce
using solely ’wet lab’ experimental perturbations. Our experiments provide insights into cellular
interactions in disease pathogenesis that cannot be achieved by direct observation of multiplexed
data alone.

2 RESULTS

We first report results that validate the CCIGAN methodology from a technical perspective. We then
walk through a series of positive controls, where CCIGAN rediscovers known biological effects for
various cell types (denoted as the cell of interest) due to neighboring cell influences (presented in
different microenvironments) in the context of simultaneous different protein channels. We present
6 such controls across two different technologies (Table 1), and then leverage CCIGAN in discovery
mode, to identify new potential effects.

The CCIGAN Model and Image Analysis Pipeline. We first considered multiplexed images of
triple negative breast cancer (TNBC) biopsies (3) and primary lung cancer (13) that were input into
CCIGAN. As a deep conditional image synthesis model, CCIGAN takes as input cell segmenta-
tion patches (a subsection of the full cell segmentation, as a cell-typed neighborhood) and outputs
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a prediction of the proteins expressed on the cells within the segmentation patch, including their
localization (Figure 1; see Online Methods 4.2 for data format and processing).

Figure 1: CCIGAN model overview and components (A) CCIGAN takes a labeled segmenta-
tion patch as input and returns predicted expression values (between 0 and 1) in each channel. (B)
CCIGAN segmentation maps can be synthetically altered to pose different counterfactual biological
scenarios for in silico hypothesis testing. Example scenario in the first row tests the effect on a
CD8 T cell (orange) of adding tumor cells (red) around it. Second and third row pose different im-
mune infiltration scenarios. (C) CCIGAN convolutional architecture (see Online Methods 4.1.1 for
equations). A low dimensional noise vector (z) is convolutionally upsampled and normalized by an
input segmentation through a series of spatially adaptive normalizing (SPADE) res-net blocks. The
intermediate representation passes through a multiplexed attention module to reason biological rela-
tionships. (D) Attention module description (see Online Methods 4.1.2 for equations). The module
first disentangles the fully connected representation into individual channels through grouped con-
volutions, then uses an outer product attention layer to model relationships and interactions between
specific markers and cell types. Using an outer product forces attention at a pairwise pixel-level
comparison for all combinations of a learned prior vector over markers and different cell types.

In doing so, CCIGAN learns a many-to-many mapping between different cell types and different
protein markers. Due to its conditional nature, CCIGAN is able to take any segmentation patch as
input, including those with user-defined cell types, cell shapes, and neighbors. Our model predicts
protein expression changes in a cell of interest resulting from the influence of neighboring cells.
We can ask questions such as “how would a tumor cell be affected by adding a CD8 T cell next
to it?” (Fig. 1B) by artificially inserting an adjacent cell in the segmentation patch and observing
the inferred protein expression change exerted on the cell of interest. Without CCIGAN, isolating
and manipulating cells to investigate their independent protein expressions would be problematic
because a simple deletion of adjacent cells around the cell of interest would fail to alter the cell
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of interest’s protein localization as it will still assume a neighborhood interaction (see S2.3 for an
illustration).

Specifically, CCIGAN’s convolutional architecture (Fig. 1C, Online Methods 4.1.1) is built on top of
spatially adaptive normalization (SPADE) (14). CCIGAN associates the types, shapes, and relative
locations of a cell of interest and its adjacent cells to predict spatial maps of protein expression.
The ability of SPADE to modulate the neural network’s activations based on the context of adjacent
cells allows the network to effectively model the behaviors and interactions for cells of interest. A
technical exploration into model interpretability is given in S1.4.

Addressing multiplexed data is critical. This is because channels dedicated to biological mark-
ers are relatively independent, compared to the typical RGB information. Without addressing this
independence, a conventional GAN would equally attend to every location of the current latent rep-
resentation, even if it is irrelevant to the current protein, making it difficult for a standard RGB
multihead decoder to output multiple independent channels. CCIGAN is unique in its ability to
tackle such complexity via a novel attention architecture. Since each protein channel is unique,
the attention module individually models and conditions the final output of each protein channel on
the cell types within the input segmentation patch (Fig. 1D). For example, for the protein marker
pan-keratin (typically expressed only in tumor cells), the attention module focuses on generating the
subcellular pattern of the tumor cell’s pan-keratin while ignoring irrelevant cells. This is achieved
through grouped convolutions, learned weights, and Einstein summations (S1.4).

In order to assess the outputs of CCIGAN and extend its utility, we use a series of biologically
motivated image analysis techniques and a search algorithm, that we refer to collectively as the
image analysis pipeline. Each of these techniques, cumulative expression, weighted centroid, and
directional mass shift, quantify how one particular cell’s protein expression at a pixel wise level
reacts to newly introduced adjacent cells (Fig. 2) .

Figure 2: Image analysis pipeline. (A) We designed metrics to evaluate changes in protein expres-
sion (red dots) within a cell of interest (blue circle) due to changes in cell neighbors: (i) total protein
expression in cell of interest, (ii) center of mass of a protein expression within cell, and (iii) spatial
shift in expression. (B) To explore unknown interactions, we provide an automated search algorithm
that scans CCIGAN predictions for a wide range of cell types and segmentation arrangements, and
assesses changes in a specified metric. Red circles indicate a different cell type. (C) EM (Earth
Mover’s) Score. To evaluate differences in spatial-directional protein expression (directional mass
movement), the cell is first warped into a standardized format with interpolated expression values,
values are then binned, and a histogram is computed along its polar axis; finally, center of mass ge-
ometries are used as guiding directions to positively or negatively weight the earth mover’s distance
in computing the EM Score. Positive EM Score indicates a cell’s protein shift towards another cell
whereas a negative EM Score indicates a protein shift in the opposite direction.
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Model evaluation and results. CCIGAN is unique among biological tools because current cell
image analysis methods either do not perform multichannel or multicellular image synthesis for
spatial protein map prediction, or consider protein expression counts only and do not predict a
protein expression map.

We first benchmark our model (with and without the attention module) against other current state-of-
the-art image synthesis techniques using our image analysis pipeline (Fig. 1B) to establish biolog-
ical plausibility and using standard image evaluation criteria on the multiplexed ion beam imaging
(MIBI) triple negative breast cancer dataset (3). Only CCIGAN is able to recapitulate established
patterns of cell-cell interactions linked to known biological phenomena while other models fail to
learn correct cell-cell interaction associations. We also report that CCIGAN’s image generation
outperforms or matches current methods for standard image evaluation criteria (Online Methods
4.3.1).

Figure 3: Evaluation of CCIGAN compared to existing GANs. Inference of cell-cell interactions
from MIBI images of triple negative breast tumors. For nondeterministic models (CCIGAN and
SPADE), we ran each experiment 50 times and use the mean in 3A and 3B, and provide error margins
in 3C. (A) Predicted effects of neighboring CD8 T or endothelial control cells on pan-keratin levels
in a tumor cell of interest. When CD8 T cell’s surround a tumor cell, CCIGAN accurately predicts a
decrease in total pan-keratin expression. In a control where a tumor cell is surrounded by tumor cells,
CCIGAN accurately predicts no significant trend in pan keratin. Slopes represent rates of change
in pan-keratin as a function of the number of cell neighbors. (B) Differences in predicted center of
mass (COM) between T-cell-expressed PD-1 and tumor-cell-expressed PD-L1. Larger differences
between the model (blue) and control (green) scores indicate the model is better at capturing the true
response of PD-1 in a real scenario. (C) Differences in predicted spatial shift of protein expression.
Higher Earth Mover’s (EM) Scores (15) reflect stronger shifts. Predicted PD-1 expression shift in a
T cell of interest resulting from PD-L1-expressing tumor cell neighbors or control endothelial cells.
CCIGAN supports the tumor PD-L1 and CD8 T cell PD-1 interaction with large positive EM Score.

First, we examine trends in pan-keratin levels when CD8 T cells mediate tumor killing. Previous
literature states that CD8 T cells release granzymes or induce extrinsic apoptosis which results in the
release of enzymes that cleave the tumor cell’s pan-keratin (15), disrupting cell structure (16) (17)
(18) (19). We explored how a drop in pan-keratin levels in a tumor cell of interest could be used as
a proxy for the likelihood of tumor cell death (prior to observed cell destruction) in the presence of
adjacent CD8 T cells (Fig. 3A, Online Methods 4.3.4, S3.4). CCIGAN predicted decreases in tumor
pan-keratin expression that became more dramatic when surrounded by more CD8 T cells, whereas
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introducing adjacent tumor cells (control) produced no change. Other methods failed to detect a
negative relationship and incorrectly reported changes under control conditions.

Next, we examined how PD-1 expression in a CD8 T cell of interest is affected by adjacent tumor
cells (Fig. 2A.ii, Fig. 3B, Online Methods 4.3.2, S3.1). T cells located within the tumor microen-
vironment upregulate PD-1 expression as a result of influences from the tumor milieu (20; 21; 22).
The T cell’s PD-1 center of mass (COM) was used as a proxy for its localization, and adjacent tumor
cells’ PD-L1 center of mass was used as a proxy for cell contact. The score represents the distance
between the PD-1 and PD-L1 centers of mass in pixels, with greater predictive accuracy represented
by lower scores, since shorter distances are expected for this direct protein-protein interaction (13).
Larger differences in score between model and a randomized control indicate the model is better at
capturing the true PD-1 response. Using these metrics, CCIGAN predicts better localized PD-L1
expression than other methods such as Pix2PixHD (23) and CycleGAN (24), which do not yield
any meaningful biological insight. CCIGAN also outperforms SPADE (14) in achieving the most
accurate PD-1 center of mass prediction.

As a final model evaluation, we tested whether CCIGAN can identify cell-cell interaction effects
on subcellular protein localization, by hypothesizing that iterative introduction of adjacent PD-L1-
expressing tumor cells will induce directional shifts in PD-1 expression in a T cell of interest (Fig.
2A.iii, Fig. 3C, Online Methods 4.3.3). An Earth Mover’s (EM) Score with a higher magnitude
indicates a stronger cell-cell interaction; positive scores indicate the direction of protein localiza-
tion moving towards cell neighbors and negative values otherwise. CCIGAN confirmed biological
expectation by generating a large positive EM Score, indicating a shift in T-cell PD-1 expression to-
wards the PD-L1 center of mass in adjacent tumor cells (Fig. 3C). In contrast, the addition of control
endothelial cells only resulted in a small shift in T-cell PD-1 expression. PD-L1 is found on a variety
of endothelial cell types and serves as an important immune checkpoint that protects normal cells
from T-cell-driven autoimmune reactions (25; 26); thus, CCIGAN results for the endothelial control
also conform to biological expectation. The difference in magnitude and directional effect of T-cell
interaction with tumor and endothelial cells highlights the greater degree to which the PD-1/PD-
L1 immune checkpoint is exploited by malignant cells to escape immune detection. Off-the-shelf
methods SPADE, Pix2PixHD, and CycleGAN fail to capture this interaction.

Applications to MIBI data. To corroborate previously established biology, we design various cell
microenvironments and assess these interactions utilizing the image analysis pipeline.

We applied an analysis (similar to Fig. 3C) on β-catenin expression in dendritic cells (DCs), antigen-
presenting cells important in the adaptive immune response, upon interacting with tumors. Wnt
signaling from tumors have been found to induce β-catenin expression in dendritic cells (DCs),
suppressing DC activation (27). Increasing tumor cell presence adjacent to DCs triggers downstream
immunosuppressive effects of the Wnt pathway, increasing directional β-catenin expression in the
DC cell. To quantify changes of DC cell β-catenin expression due to neighboring cells, we measure
mass movement between dsDNA expression of neighbors (indicating magnitude of cell presence)
and a DC cell’s β-catenin expression (Fig. 4A). Using CCIGAN to add tumor cells next to a DC
cell of interest resulted in a directional increase in β-catenin (EM Score 333.9) that is greater than
that observed upon adding endothelial cells (EM Score 233.6) or CD3 T cells (EM Score 89.3).
These findings confirm that CCIGAN is capable of detecting expected directional patterns of the
Wnt pathway activation in DC cells as a result of cell interactions in the TME.

In another study across TNBC patient groups within the MIBI dataset (Fig. 4B, Online Methods
4.3.5, S3.5), CCIGAN corroborated Keren et al.’s predictions on the PD-1/PD-L1 pathway and the
variability of PD-L1 expression in macrophage and tumor cells in different TMEs. In compartmen-
talized TMEs, tumor and immune cells are spatially segregated, whereas in mixed TMEs, tumor and
immune cells are mixed together. We trained 4 individual models on 2 exemplar patients chosen per
TME type1 from the TNBC cohort to demonstrate CCIGAN’s ability to learn cell-cell interactions
dependent on specific TMEs. In the mixed environment (Fig. 4B Upper), CCIGAN first predicted
increases in PD-L1 expression in tumors and macrophages in infiltrated neighborhoods when com-
pared to reference neighborhoods containing endothelial (control) cells. Reiterating Keren et al.’s
finding in mixed TMEs, we observe tumors expressing the highest average PD-L1 expression, sub-

1These 4 patients were chosen because they best demonstrate clearly delineated compartmentalized and
mixed TMEs.
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Figure 4: Recapitulating discovered biological subcellular interactions (A) Predicted shifts in
directional β-catenin expression in dendritic cells (DCs) on adjacent tumor vs non-tumor cells.
CCIGAN predicts high EM Score of DC cell β-catenin expression with a tumor cell neighbor,
suggesting strong Wnt activation in the DC cell and confirming biological findings on the tumor’s
immunosuppressive effects on the DC. (B) Effects of tumor compartmentalization in tumor-immune
cell interactions (1B Row 2), evaluated on MIBI data from TNBC patients in Keren et al. 200 test
neighborhood segmentations were generated to simulate different environments. Control/reference:
endothelial (endo.) cell. (Upper) Within the mixed tumor microenvironments experimental set
up, PD-L1 expression in tumor and macrophage cells is induced by T cells & macrophages or
tumors & T cells respectively, representing infiltrated neighborhoods. The PD-L1 expression in
tumor or macrophage cells (legend) was measured next to their appropriate cell neighbor combi-
nations (x-axis). (Lower) Macrophage PD-L1 expression increases induced by neighboring tumor
cells within compartmentalized and mixed cell environments. Greater PD-L1 expression increase in
macrophages in the compartmentalized environment than mixed environment recapitulates previous
literature. (C) CCIGAN inference of cell-cell interactions from t-CyCIF images of primary lung
cancer (13). (Left) PD-1 expression in CD8 T cells as a function of number of PD-L1 expressing
tumor cell neighbors and type of tumor environment. Slope is calculated similarly to 3A. In an
infiltrated environment (high lymphocyte presence within the tumor microenvironment, indicating
strong anti-tumor immune response), reduced PD-1 expression on infiltrating T cells signals a more
robust anti-tumor immune response. (Right) LAG3 expression in CD8 T cells as a function of PD-
L1 expressing tumor cell neighbors and type of tumor environment. In an infiltrated environment, a
decrease in T cell LAG3 expression indicates reduced T cell exhaustion in situations where there is
a robust anti-tumor immune response.
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stantially higher than macrophage PD-L1 expression, in their infiltrated neighborhoods. We also
observed Keren et al.’s second claim of macrophages exhibiting the highest PD-L1 expression in
compartmentalized TMEs (Fig. 4B Lower). Models trained on compartmentalized patient data
were used to evaluate macrophage PD-L1 expression on both compartmentalized and mixed neigh-
borhoods and predicted greater PD-L1 expression in macrophages that reside in tumor compartments
as opposed to mixed environments (Fig. 4B Lower). This phenomenon further reveals CCIGAN’s
capability to learn general biological interactions even if trained on different TMEs. Ultimately,
CCIGAN is robust when trained on individual patient samples and supports biological findings.

Applications to Tissue Cyclic Immunofluorescence (t-CyCIF). t-CyCIF data is obtained through
a novel iterative immunofluorescence staining procedure that works with existing fluorescence mi-
croscopes (28). By applying CCIGAN to a t-CyCIF primary lung cancer image dataset (13), we
demonstrate CCIGAN’s ability to generalize across datasets and learn microenvironment-specific
cell-cell interactions.

Utilizing a patient sample that exhibited progressive tumor cell growth, we split the image data
according to three different stages of tumor-infiltration by immune cells – poorly-infiltrated (T1),
semi-infiltrated (T2), and heavily-infiltrated (T3) (S2.2.2). We trained one CCIGAN model per mi-
croenvironment to summarize its cell-cell interactions and allow for differential analysis of protein-
level interactions.

Similar to the CD8/pan keratin trend experiment (Fig. 3A), we examined the correlation between
PD-1 and PD-L1 in tumor and T-cell patches in each microenvironment-specific model (Fig. 4C
Left, S3.6). In the non-infiltrated microenvironment model, we observe a substantially higher trend
of T-cell PD-1 expression as a function of tumor area than in the semi-infiltrated which, in turn, was
also slightly higher than the heavily-infiltrated microenvironments. These findings are consistent
with the idea that tumors with poor lymphocyte-infiltration have had greater success in suppressing
anti-tumor immune responses and thus, an increase in PD-1 would be expected in the T cell (cell of
interest).

In a similar fashion (Fig. 4C Right, S3.6), we examined the association between exhaustion marker
LAG3 (29) (30) expression on T cells, and PD-L1 expression on neighboring tumor cells. CCIGAN
predicted an increase in LAG3 expression on the T cell (cell of interest) as tumor neighbors were
added, with greater levels of induction from infiltrated to semi-infiltrated to non-infiltrated tumor
scenarios. These results agree with the biological expectation that increased tumor PD-L1 expres-
sion would suppress T cell function and induce T cell exhaustion, and that T cells within tumor
environments of higher lymphocyte-infiltration would have lower LAG3 expression, indicating less
T cell exhaustion.

The t-CyCIF findings highlight the utility of CCIGAN in reliably reproducing biologically expected
patterns of immune cell-tumor cell interaction, even from limited patient tumor samples. Moreover,
CCIGAN robustly quantifies protein expression changes as a result of cell-cell interactions.

Search algorithm for detecting interactions. We developed a search algorithm to identify addi-
tional cell-cell interactions (Online Methods 4.4). Evaluating MIBI data (31), we find that while
most changes in protein expressions are plausible and/or significant (Fig. 24), there are some erro-
neous correlations (e.g. a CD8 T cell expressing PD-L1 while in close contact to tumor cells) that
are attributed to poor segmentations, imaging faults, and other noisy effects. In other experiments,
we not only confirm our previous findings but also posit further interactions of biological signifi-
cance for later exploration. A further discussion and investigation to these cell-cell interactions, and
in particular, vimentin, are given in S4.2.

3 DISCUSSION

While multiplexed imaging technologies continue to rapidly increase in resolution and availabil-
ity, tools to analyze and interpret their outputs remain primitive or nonexistent. To address these
limitations, we introduced the idea of applying image synthesis in the form of a novel generative
architecture, CCIGAN, and developed a computational image analysis pipeline to interpret CCI-
GAN’s output. By simultaneously and generatively associating cell shapes, type, and sizes to their
protein expression patterns, CCIGAN allows users to specify these parameters in a test environment
to pose counterfactual cell-cell scenarios and observe their resulting protein expressions. Subse-
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quently, users can employ the image analysis pipeline to interpret and quantify protein expression at
the subcellular level as a function of their defined variables.

CCIGAN’s capacity for generating subcellular protein predictions represents a step forward in our
ability to understand cellular relationships within a microenvironment. Rather than assessing in vivo
incidence of cell interaction phenomena, CCIGAN allows for hypothetical biological situations to
be generated and analyzed. In other words, any individual cellular responses to a neighborhood
of cells of any identity can be assessed without having to seek this specific occurrence within the
available biological tissue sample. This addresses the issue of limited multiplexed data and greatly
expands the power of individual datasets for causal inference.

On tumor data, we have shown that CCIGAN outperforms state-of-the-art image synthesis methods,
and is able to to capture, recapitulate, and quantify clinically established cell-cell interactions. CCI-
GAN performed well on both mass-spectroscopy and immunofluorescence based images, and can
interrogate cell-cell interactions in any biological or disease contexts beyond cancer.

Despite recent advances in imaging technology, current datasets are of limited utility for studying
cell-cell interactions, as protein markers are typically chosen for cell typing rather than functional
protein localization. However, as these technologies become pervasive, more protein markers will
also become available, furthering the need for CCIGAN. Although CCIGAN represents a promising
rapid hypothesis testing tool for in silico prediction of cell-cell interactions, guided in vivo experi-
ments are needed to corroborate CCIGAN’s quantitative predictions. The greatest limitations in the
current model are in the input data’s noisy cell segmentations and cell type classifications. While
the model performs well in learning and associating clear trends and could potentially correct for
erroneous classifications, exceedingly rare cell-cell protein interactions may be interpreted as noise
or with low confidence. Nonetheless, given the strong corroboration with previous clinically es-
tablished biology and the utility of giving users freedom to posit new interactions to guide further
experiments, we expect this work to be useful in the multiplexed imaging domain.
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4 ONLINE METHODS

4.1 METHODS

4.1.1 MODEL OVERVIEW

For CCIGAN, we use SPADE residual blocks (14) as our generative backbone and DCGAN’s dis-
criminator’s architecture (32). (14) have shown SPADE to be an effective way to inject conditioning
into a generative model. The SPADE normalization layer serves as a replacement for previous layer
normalization techniques. Instead of learning a universally shared per channel affine transformation,
like in Batch or Instance Normalization, SPADE learns to predict affine transformations based on
segmentation maps; each feature is uniquely transformed based on its cell type, size, and neigh-
boring cells. The ability for SPADE to modulate activations based on the context of adjacent cell
segmentations allows the network to effectively model the behaviors and interactions of cells. The
input of CCIGAN is a noise vector z ∈ R128 and a segmentation map S. f denotes a linear layer
R128 7→ R2048. Ri are feature map representations from SPADE resblocks and X denotes the final
output of M cell expressions. Below, each layer’s output dimensions are given next to their respec-
tive equations. Further details such as kernel size, activation functions, training regimen, and model
interpretability are given in S1.1.

Z ∈ R(128,4,4) = f(z) (1)

R1 ∈ R(128,8,8) = SPADE RESBLK(Z,S) (2)

R2 ∈ R(128,16,16) = SPADE RESBLK(R1,S) (3)

R3 ∈ R(128,32,32) = SPADE RESBLK(R2,S) (4)

R4 ∈ R(128,64,64) = SPADE RESBLK(R3,S) (5)

X ∈ R(M,64,64) = ATTENTION(R4,S) (6)

4.1.2 ATTENTION MODULE

Our architectural contribution is a protein marker dependent attention module in the final output
layer. The goal of the attention module is to condition the final output of a channel on a protein
marker m and S’s cell types. For example the protein marker, pan-keratin mpk, is expressed exclu-
sively in tumor cells but not in other cells. Appropriately, an attention mechanism should attend to
tumor cells and ignore irrelevant cells in S for mpk. To replicate a marker searching for specific cell
types that express it, we define a learned persistent vector for each marker denoted by sm∈M ∈ R8

that undergo a series of operations with the final feature map representation attending to m’s spe-
cific cell types. It is also worthwhile to note that these persistent vectors sm offer a degree of model
interpretability that mimic real world markers. The current input dimensions to the attention module
are R(128,64,64) following the last resblock R4 and m indexes from 1, ..,M .

O ∈ R(M,64,64) = CONV2D(R4) (7)

C ∈ R(KM,64,64) = CONV2D(O) (8)

Ci ∈ R(K,64,64) = SPADE(CK(i−1):Ki,:,:,S) (9)

Ai ∈ R(|s|×K,64,64) = Ci ⊗ sm (10)

Bi ∈ R(1,64,64) = σ(CONV2D(Ai)) (11)

X ∈ R(M,64,64) = O + B1,..,M (12)

After R4, a bottleneck convolution is applied to match the original data’s dimension as O (step
1), which is used in a residual manner with the final output. Intuitively at this stage, O’s feature
maps resemble the target Y, but we wish to further refine the output channels. We convolve O into
MK channeled features for each protein marker where K = 8. Considering each Ci where i ∈
{1, ...,M} as a group ofK channels, the model spatially adaptive normalizes each Ci and computes
an outer product with the corresponding persistent vector si and Ci. The resulting matrix is flattened
and convolved (with a kernel size of 1 on the pixel level) from Ai ∈ R(|s|×K,64,64) 7→ R(1,64,64)

followed by a sigmoid σ(·) activation. Lastly, the attentions B1,...,M are added to O to obtain the
output X.

Initially, the model has no priors over the interaction of protein markers and cell types. The pro-
posed outer product attention layer (outer product and 1 × 1 convolution) excels at modeling these
relationships and interactions between specific markers and cell types. By using an outer product,
the model forces attention at a pairwise pixel level comparison for all combinations of elements be-
tween sm and Ai. As training progresses, both the learned features over segmentation patches and
the learned persistent vectors sm improve, in turn allowing the learned 1× 1 convolution to reason
about positive or negative relationships from the pairwise pixel combinations.
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4.2 DATA AND DATA PROCESSING

We trained CCIGAN on two types of cell data, MIBI-TOF (multiplexed ion beam imaging by time-
of-flight) and t-CyCIF (tissue cyclicimmunofluorescence) data. While these two types of multi-
plexed image data were obtained through different procedures, they share structural similarities.

Multiplexed cell images display multiple protein marker expression levels. These images are repre-
sented as high dimensional tensors T ∈ R(M,H,W ), M being the number of markers, H being the
height of the image, and W being the width. Each of these markers m ∈ {1, ...,M}, are given as
a channel taking on real values continuous in [0, 1] at each (x, y) coordinate, indicating the expres-
sion level at a given protein. Protein markers’ particular expression levels (either separately or in
conjunction with other protein markers) demarcate different cellular subtypes and furthermore, are
indicative of the functional properties of a cell. By simultaneously imaging over multiple protein
markers, multiplexed images are able to identify cell type as well as provide detailed information of
sub-cellular structure, cell neighbors, and interactions in the tumor microenvironment across these
different marker settings.

4.2.1 MIBI-TOF

MIBI-TOF images are represented in T ∈ R(M,2048,2048). These images are then further processed
at a cell by cell basis into Y ∈ R(M,64,64) patches, where a cell is at the center of the patch along
with its neighbors. Next, we construct semantic segmentation maps S ∈ R(C+1,64,64), where a
vector S:,i,j is one-hot encoded based on a cell type C = 17, and the C + 1-th channel denotes
empty segmentation space. The data is train-test split at a 9:1 ratio at the MIBI-TOF image level to
avoid cell neighborhood bias.

Data obtained through MIBI-TOF characterized tissue samples were collected from triple-negative
breast cancer (TNBC) patients. MIBI-TOF images over 36 protein markers, but M = 24 markers
were used in our training. A description of the technology and full list of these markers is given in
S2.1.

4.2.2 T-CYCIF

T-CyCIF (tissue cyclicimmunofluorescence) images of primary lung squamous cell carcinoma are
represented in T ∈ R(M,H≈12000,W≈14000). Segmentation patches are constructed in an similar
fashion. The main salient difference from MIBI is the processed patch size Y ∈ R(M,128,128), and
the segmentation patch size Y ∈ R(C+1,128,128). This was intentionally done to demonstrate the
scalability of CCIGAN. 44 markers were imaged in t-CyCIF, however we excluded background cell
markers to yield M = 37 markers. A description of the technology and full list of these markers is
given in the S2.2.

Unlike MIBI, a significant amount of data processing was done in order to analyze the data. Full
treatment of data is given in S2.2.

4.3 EVALUATION

To conduct fair experiments, all models were optimized, tuned, and set with similar parameters.
They were also taken from their official online implementations and trained for 120 epochs or until
convergence (max 150). CCIGAN is identical to our designed SPADE comparison baseline with the
exception of the attention module.

4.3.1 IMAGE EVALUATION AND RECONSTRUCTION

First, we use the following evaluation metrics in order to compare with baseline results: adjusted L1

and MSE score, L1 and MSE score, structural similarity (SSIM) index (33) and cell based mutual
information (MI) shown in Table 2. Bolded scores indicate the best scores. Equations and motivation
are given in S3.

Three evaluation metrics were then used to conduct experiments and validate the trained model’s
utility in generating biologically meaningful cellular proteins in the tumor microenvironment and
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Metrics CCIGAN SPADE Pix2PixHD CycleGAN
Adjusted L1 Score 0.613 0.618 0.875 4.745
L1 Score 0.594 0.602 0.745 3.959
Adjusted MSE Score 0.026 0.031 0.061 1.841
MSE Score 0.026 0.031 0.055 1.523
SSIM 0.810 0.802 0.709 0.394
Cell Mutual Information 10.46 10.25 9.26 7.96

Table 2: Comparison of conventional reconstruction metrics between different models.

ability to recapitulate and quantify previously established biological phenomena. Each subsection
provides additional relevant information.

4.3.2 CENTER OF MASS (COM)

For a generated cell image, its weighted centroid, or center of mass, is the mean position of all the
points in the cell weighted by a particular channel expression. Given a cell image X ∈ R(H,W ),
with indices of the segmented cell V ⊆ {1, . . . ,H} × {1, . . . ,W}, the COM p̄ = (x̄, ȳ) is defined

as x̄ =
∑

(x,y)∈V xXx,y∑
(x,y)∈V Xx,y

and ȳ =
∑

(x,y)∈V yXx,y∑
(x,y)∈V Xx,y

.

For example, in the PD-1/PD-L1 experiment, we compute the COM of the CD8 T cell (cell of
interest) weighted by PD-1 expression, given as p̄CD8, and the COM of all tumor cells weighted
by PD-L1 expression, given as p̄Tumor. Since T cells located within the tumor microenvironment
often have upregulated expression of PD-1, we assume that p̄CD8 should have the roughly the same
PD-L1 COM of all its surrounding tumor cells p̄Tumor. The center of mass score is defined below as
the relative distance between p̄CD8 and p̄Tumor, where N is defined as the number of patches:

COMprojection =
1

N

N∑
i=1

‖p̄CD8
i − ProjCD8(p̄Tumor

i )‖2 (13)

The projection function Proj(·) is used to project p̄Tumor onto the CD8 T cell to ensure the expected
COM of the tumor cells is inside of the CD8 T cell. As a reference we choose a random position
p̄Random in the CD8 T cell (PD-1) which replaces p̄CD8 in Eq. 13 and compute the random COM
score to show the effectiveness of the result. An example illustration is given in the figure in S3.1.

4.3.3 EARTH MOVER’S SCORE

We develop Earth Mover’s (EM) Score to measure the dissimilarity between two distributions and
the direction of distributional shift. While Earth Mover’s Distance is a nonnegative measurement of
shift between two distributions, we incorporate the direction of shift in protein localization (positive
indicating cell’s protein shifting towards another cell, negative otherwise) into our EM Score. For
our Pan Keratin/CD8 experiment, we used EM to evaluate the shift in protein localization between
CD8 T cells and tumor cells. EM can be generalized to experiments involving other cell-cell inter-
actions, but for the purposes of clarity, below we describe our EM approach in the context of the Pan
Keratin/CD8 experiment.

For a segmentation map, we add T tumor cells around one CD8 T cell. The COM for the t-th tumor
(t ∈ {1, ..., Ti}) is defined as as p̄Tumor

t . Similarly, the PD-1 COMs of the CD8 T cell by adding
the t-th tumor is defined by p̄CD8

t . Initially when there are no tumor cells, p̄CD8
0 is the centroid of the

CD8 T cell.

We proceed to define vector a vector vt which points from p̄CD8
0 , to the COM of the t-th tumor cell

p̄Tumor
t . We also define vector ut which points from the previous COM p̄CD8

t−1 to the current COM
p̄CD8
t of the CD8 T cell. We define θt as the angle between vt,ut.

If cos θt > 0, that is to say if the cosine similarity is positive, the COM of a CD8 T cell p̄CD8
t , moves

correctly towards the COM of the added tumor cell p̄Tumor
t . An illustration of the points and vectors

is given in the figure in S3.2.
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Formally:
vt = p̄Tumor

t − p̄CD8
0 , ut = p̄CD8

t − p̄CD8
t−1, cos θt =

ut · vt

‖ut‖ · ‖vt‖
(14)

After obtaining the directional information, we use EM Score (34) to evaluate the changes in PD-
1 expression of the CD8 T cell. Earth Mover’s Score, which measures the dissimilarity of two
distributions, is used in this context to measure the protein localization shifts in PD-1 before and
after adding a tumor cell. We consider each cell X in polar coordinates (r, θ) with respect to its
centroid, integrate its expression along the radius coordinates, and evaluate the resulting histogram
hist(X) along the angle coordinate. The 2nd figure in S3.2 shows an example histogram of cells by
coordinate location.

This allows for the definition of distance for moving one histogram to another, i.e. em(Xt
i ,X

t−1
i ) =

dEM(hist(Xt
i ), hist(Xt−1

i )), for the generated PD-1 expression of the CD8 T cell Xt
i when adding

the t-th tumor cell.

The final EM Score is defined as:

EM Score =
1∑N

i=1 Ti

N∑
i=1

Ti∑
t=1

1(‖Xt
i‖ > ‖Xt−1

i ‖) · em(Xt
i ,X

t−1
i ) · cos θt,i (15)

where the indicator function 1(·) = 1 if and only if ‖Xt
i‖ > ‖Xt−1

i ‖, otherwise 1(·) = 0. This
ensures that the biological constraint of PD-1 expression increasing as a response to added tumor
cells is met. Recall, if cos θt > 0, p̄CD8

t has moved in the direction of p̄Tumor
t , implying the shift in

PD-1 expression is correct, and in turn increases the EM Score. By contrast, the EM Score decreases
when p̄CD8

t moves in the opposite direction.

This can be adapted and used for any two channel protein interactions (such as in the β-catenin and
dsDNA experiment for analyzing Wnt pathways).

4.3.4 PROTEIN EXPRESSION AND CELL SURFACE AREA TREND EXPERIMENTS

In this experiment, we used a Student’s t-test as the statistical hypothesis test to evaluate the corre-
lations of the protein expression of a specified cell as a function of the area/number of surrounding
cells in the specified cell’s microenvironment.

Given a generated protein channel Xi ∈ R(H,W ) and the segmentation map channel for the sur-
rounding cells Si ∈ R(H,W ), we compute the total area of the cells ai =

∑H
h=1

∑W
w=1 Si, and

the total expression level of the specified cell ei =
∑H

h=1

∑W
w=1 Xi. We then regress {ei}Ni=1 on

{ai}Ni=1 and assess significance of the slope using a t-test against the null of no change in expression
as a function of surrounding cells.

Additional figures of other models and explanations for pan-keratin and CD8 are given in S3.4.
Additional figures for t-CyCIF experiments are given in S3.6 and S3.7.

4.3.5 TUMOR INFILTRATED AND COMPARTMENTALIZED MICROENVIRONMENTS

CCIGAN was used to compare protein localization in tumor infiltrated versus compartmentalized
microenvironments. We used CCIGAN to predict on 200 directly manipulated mixed and non-
mixed tumor environment segmentation patches. For each experiment, we challenge the cell in
question with an opposing cell in a microenvironment with macrophages (for example T Cell is
challenged with Tumor cell to result in increased PD-1 expression in the T Cell) and use endothelial
cells as control cells to show our result has biological significance. Similar to Online Methods
4.3.4’s experimental settings, we compute the average expression of a specific marker for the cells
of interest for all patches.

Data resulting from the experiment is located in S3.5. The increase in PD-L1 for the above tumor and
macrophage scenarios (S3.5 table 7) indicate that CCIGAN has appropriately captured previously
reported biological outcomes and is capable of quantifying these phenomena at single cell levels.
Furthermore, the model is adaptable to various different types of tumor architecture depending on
its training set to produce different hypothesis testing environments.
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4.4 SEARCH ALGORITHM

Here we provide a modular search algorithm framework to try to discover further cell-cell inter-
actions in other channels. As a high level overview, the algorithm uses CCIGAN to automate and
measure a specific cell’s change in a specified protein’s expression level due to user specified mi-
croenvironment changes. The algorithm allows a user to change and specify such changes as cell
type, shape, size, and quantity. If the change in expression is greater than a user specified input, then
the particular instance is logged. It is important to note that this tool is meant to guide and search
for particular interesting interactions and still susceptible to issues such as noisy segmentations.

Algorithm 1: Search Algorithm
Input: Cell segmentation list {Si}ni=1, the cell type cf for the cell of interest, the protein index

m that is measured, potential neighbors and their specified types ci ∈ Ctypes fixed noise
δ, threshold β, a chosen metric dy , and the generator G.

Randomly chose initial cell index i0 ∈ {1, ..., n};
Input segmentation SINPUT = Si0 ;
Assign cell type SINPUT to cf ;
Mask for the initial cell U =

∑n
j=1 Si0 [j, :, :] ;

Generated image X0 = G(δ, SINPUT);
Specified channel M0 = U ∗X0[m];
Show SINPUT and M0;
for k = 1 to n− 1 do

Random index ik ∈ {1, ..., n}/ ∪k−1j=0 {ij} ;
Random index ci ∈ Ctypes;
Assign Sik to cell type ci;
SINPUT = SINPUT + Sik ;
Xk = G(δ, SINPUT);
Mk = U ∗Xk[m];
Show SINPUT and Mk;
Ek = dy(Mk−1,Mk);
if Ek > β

∑
i,j Ui,j then

Log Significance;
if
∑

i,j Mk−1,i,j <
∑

i,j Mk,i,j then
Log Increase;

else
Log Decrease;
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Supplementary Materials

1 MODEL

1.1 MODEL ARCHITECTURE

The detailed architecture of our generator is shown on Table 3.

Layers Output Size Generator
Linear (128, 4, 4) Linear 128× 2048

Upsampling (128, 8, 8) Upsampling 2× 2

SPADE ResBlk-1 (128, 8, 8)

SPADE 128, Leaky ReLU
Convolution 3× 3

SPADE 128, Leaky ReLU
Convolution 3× 3

Upsampling (128, 16, 16) Upsampling 2× 2

SPADE ResBlk-2 (128, 16, 16)

SPADE 128, Leaky ReLU
Convolution 3× 3

SPADE 128, Leaky ReLU
Convolution 3× 3

Upsampling (128, 32, 32) Upsampling 2× 2

SPADE ResBlk-3 (64, 32, 32)

SPADE 128, Leaky ReLU
Convolution 3× 3

SPADE 64, Leaky ReLU
Convolution 3× 3

SPADE 64, Leaky ReLU
Shortcut Convolution 3× 3

Upsampling (64, 64, 64) Upsampling 2× 2

SPADE ResBlk-4 (64, 64, 64)

SPADE 64, Leaky ReLU
Convolution 3× 3

SPADE 64, Leaky ReLU
Convolution 3× 3

Convolution (24, 64, 64) Leaky ReLU, Convolution 5× 5
Convolution (24 ∗ 8, 64, 64) Leaky ReLU, Convolution 5× 5

Group SPADE (24 ∗ 8, 64, 64) [SPADE 8] * 24

Modulation (24 ∗ 64, 64, 64) [Outer Product 8⊗ 8] * 24
(24, 64, 64) Convolution 1× 1, Sigmoid

Output (24, 64, 64) Sum residual, Sigmoid

Table 3: Architecture details of CCIGAN’s generator

where ResBlk is the residual block with skip connection used in ResNet (35), and SPADE is the
spatially-adaptive normalization layer. The detailed architecture of our discriminator is shown on
Table 4.
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Layers Output Size Discriminator

Conv-1 (32, 32, 32)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-2 (64, 16, 16)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-3 (128, 8, 8)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-4 (256, 4, 4)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-5 (512, 2, 2)
Convolution 4× 4, stride 2

Instance Norm, Leaky ReLU

Conv-6 (1, 1, 1)
Convolution 3× 3, stride 2

Sigmoid

Table 4: Architecture details of CCIGAN’s discriminator

1.2 IMPLEMENTATION DETAILS AND TRAINING REGIMEN

Our implementation of the generator applies Spectral Norm to all layers (36). The discriminator’s
input is the output of the generator concatenated with the segmentation patch [X,S] and [Y,S] for
the ground truth. Finally CCIGAN uses ADAM (lrG = 0.0004, lrD = 0.0001) with GAN loss and
feature matching loss. Full training details and loss functions are as follows.

1.3 MODEL TRAINING

G is the generator andD is the discriminator for CCIGAN. Given segmentation map S, ground truth
Y and noise δ, the generated image is X = G(S, δ). The input of the discriminator is the cell image
conditioned on the segmentation map S. We use LSGAN loss (37) in CCIGAN, which is defined as
follows:

LGAN (G,D) = EY,S [‖D(Y,S)‖2] + ES [‖1−D(G(S, δ),S)‖2] (16)

In addition to GAN loss, we also use feature matching loss (23) during training expressed as:

LFM (G,D) = EY,S

J∑
j=1

1

Nj
[‖Dj(Y,S)−Dj(G(S, δ),S)‖1] (17)

where Dj is j-th layer feature map of the discriminator for j ∈ {1, ..., J}, and Nj is the number of
elements in j-th layer. Consequently, the objective function for training is given as follows:

min
G

((
max
D

LGAN (G,D)
)

+ λLFM (G,D)
)

(18)

where λ = 10. Due to the size of cell patch is (64, 64), we do not use multi-scale discriminators and
perceptual loss in CCIGAN and other baseline models e.g. SPADE and pix2pixHD.

In training, we use ADAM as the optimizer. The generator learning rate is lrG = 0.0004 and the
discriminator learning rate is lrD = 0.0001. We train CCIGAN 120 epochs with a training set of
5648 cell patches. We train other baseline models for 120 epochs or until they converge (max 150).
The full details of training of CCIGAN and baselines are shown as Table 5. The hyperparameters
of each model are fine-tuned to get better performance. The training time was roughly equal for all
models. In particular, CCIGAN was around 1.2 times slower than the SPADE baseline on a single
Tesla V100 GPU.

Metrics Ours SPADE Pix2PixHD CycleGAN
lrG 0.0004 0.0008 0.0002 0.0002
lrD 0.0001 0.0001 0.0002 0.0002

Table 5: Hyperparameters of models
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1.4 MODEL INTERPRETABILITY AND GENERATIVENESS

Examining the model’s persistent vectors sm, we can try to understand if there is a match between
real world protein markers and the representations of sm. For example, the vector spk for pan-
keratin attends to tumor cells and sCD8 attends to CD8 T cells at pixel pairwise levels. It follows
that in a simple experiment where corresponding sCD8 ↔ spk vectors are exchanged internally in
the attention module (Eq. 10, Fig. 1D (Step 3) , outer product) we may observe a lower expression
for tumor cells in channel mpk and a lower expression for CD8 T cells in channel mCD8 since tumor
cells do not express CD8 and CD8 T cells do not express pan-keratin. As a control, we also switch
surface membrane markers HLA Class 1 and dsDNA markers as they are present in all cells and
have very similar average expression values (sHLAc1 ↔ sdsDNA). Accordingly, for our control, we
expect to see negligble changes. We define the expression ratio as after

before − 1.

Protein Markers CD8 pan keratin HLA Class 1 dsDNA
Expression Ratios -0.373 -0.145 -0.054 -0.0012

Table 6: sm persistent vector interpretability experiments.

In Table 12, we can see a larger magnitude decrease of the expression ratios in the sCD8 ↔ spk
experiment and a minute difference in the sHLAc1 ↔ sdsDNA. Further visualizations (Fig. 5) and
discussion (model generativeness, Fig. 6) are as follows.

Fig. 5 shows the persistent vectors si for all proteins. Note the similarity between CD3 and CD8
T cell protein markers and the similarity between dsDNA and HLA Class 1 surface membrane
proteins (expressed in all cells). It is also important to make the distinction that sparse markers
(while different) are similar in state. This is due to the lack of training data for rare cell types,
making it difficult for the model to reason on such a small sample size.

Figure 5: Persistent vectors s for various channels.

Fig. 6 shows the generativeness of CCIGAN through an uncertainty map over 100 instances (random
noise). An uncertainty map shows the differences per pixel (x, y) location. The higher intensities
indicate a higher probability of changing at the specified (x, y) location.
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Figure 6: Uncertainty maps illustrating model generativeness.

2 DATA AND DATA PROCESSING

2.1 MIBI-TOF

Multiplexed ion beam imaging by time-of-flight (MIBI-TOF) represents a novel technology that can
accurately quantify and spatially resolve cellular protein expressions at the single cell level within
tissue samples. Given a tissue sample that is first stained with protein-specific antibodies tethered
to elemental metals, MIBI-TOF bombards the sample with atomic ions (i.e. O+

2 ) from a primary
ion beam. This causes the release of elemental isotopes and tissue-specific material which can be
quantified in a mass spectrometer (31).

For MIBI, the markers used (total 24) in our experiments are: Pan-Keratin, EGFR, Beta catenin,
dsDNA, Ki67, CD3, CD8, CD4, FoxP3, MPO, HLA-DR, HLA-Class-1, CD209, CD11b, CD11c,
CD68, CD63, Lag3, PD1, PD-L1, IDO, Vimentin, SMA, CD31. The markers we didn’t use (total 12)
in our experiments are: CD16, B7H3, CD45, CD45RO, Keratin17, CD20, CD163, CD56, Keratin6,
CSF-1R, p53, CD138. These were not used primarily due to blank expressions.

2.2 T-CYCIF

The t-CyCIF images are obtained through iterative cycles of incubating the sample with antibodies
(markers) conjugated directly with flurophores that will bind to a specific protein of interest, imaging
the samples with a microscope to record the light emitted at each location of the protein, then deacti-
vating the fluorescence signal by soaking the sample in a compound (28). At each iteration, different
antibodies that bind to different proteins of interests are applied. After obtaining multiple images
with few channels at each iteration, the images are stitched together to produce a high-dimension
image.

For t-CyCIF, the markers used (total 37) are: DAPI1, DAPI2, DAPI3, LAG3, ARL13B, DAPI4,
KI67, KERATIN, PD1, DAPI5, CD45RB, CD3D, PDL1, DAPI6, CD4, CD45, CD8A, DAPI7,
CD163, CD68, CD14, DAPI8, CD11B, FOXP3, CD21, DAPI9, IBA1, ASMA, CD20, DAPI10,
CD19, GFAP, GTUBULIN, DAPI11, LAMINAC, BANF1, LAMINB. The markers were didn’t
use (total 7) are: A488background1, A555background1, A647background1, A488background2,
A555background2, A647background2, A488background3.
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Figure 7: Examples generated from a segmentation for certain channels for different models. The
segmentation patch is the one hot encoded patch collapsed and colored into 1 channel. The horizon-
tal labels represent protein markers and the vertical labels are each of the generative models.

2.2.1 T-CYCIF DATA PREPROCESSING

For t-CyCIF data, each cell was first clustered to one of many cell types. Using cell features (log cell
expression data), we clustered the cells using the 26 non-DAPI markers. We exponentiated the cell
features data to restore the data to raw cell intensities, then quantile clipped each marker to retain
only the data from 1% to 99.5%. After 0-1 min-max rescaling the data, we clustered the cells using
the Phenograph tool, developed in the Dana Pe’er Lab.

Let N denote the nuclear probability matrix of the image where Ni,j = Pr[nucleus at index (i, j)]
and let N ′ be the 0-1 nuclear segmentation mask, N ′i,j = 1[ cell nucleus at index (i, j)]. Cytoplasm
probabilities were also provided, the cytoplasm probability mask is denoted as C, where Ci,j =
Pr[cytoplasm at index (i, j)]. N,N ′, C were provided to us from (? ). We modified the cytoplasm
probability mask to a 0-1 cytoplasm mask C ′ where C ′i,j = 1[Ci,j > 0.4∧Ni,j < 0.4] by choosing
these thresholds ourselves. Then we overlayed the nuclear and cytoplasm masks together to form a
mask T of the total cell, where Ti,j = 1[ a cell occurs at index (i, j)]. Because there are small holes
in this mask, we filled the holes using SK-image’s morphology tools. To yield the final segmentation
mask F , we dilated the nuclear segmentation maskN ′ with 2 iterations and perform an element-wise
mask with mask T , where Fi,j = 1[N ′i,j = 1 ∧ Ti,j = 1].

2.2.2 T-CYCIF DATA SPLIT

We split the t-CyCIF primary lung cancer dataset into four segments to test our hypothesis that
CCIGAN can learn biological relationships specific to tumor microenvironments with varying char-
acteristics. Three segments (highly, semi, and poorly infiltrated) were each manually selected based
on the visible proportion of lymphocyte presence within the tumor microenvironment. Figures 8 and
9 show the segments in relation to the lymphocyte and keratin expression. More detailed descrip-
tions of each individual dataset segment are as follows.

1. T1 Infiltrated - High proportion of lymphocyte presence within the tumor microenviron-
ment. Indicative of a strong inflammatory anti-tumor immune response.

2. T2 Semi-infiltrated - Medium levels of lymphocyte infiltration within the tumor microenvi-
ronment.

3. T3 Poorly-infiltrated - Few lymphocytes present within the tumor microenvironment in-
dicative of a poor anti-tumor immune response.
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Figure 8: Splits of the tissue with lymphocyte cell protein markers highlighted

Figure 9: Splits of the tissue with keratin positive tumor cell type highlighted
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2.3 DATA LIMITATIONS

Examples are given in Fig. 10.

Figure 10: Data limitations regarding manually isolating cells and their protein localizations. Simply
deleting cells surrounding a target cell does not reveal the true protein localization of the target
cell (with the X marker), as the protein localization will still assume a neighboring interactions.
In Example 1, the target CD8 T cell should only express PD-1 when it is surrounded by PD-L1
expressing tumor cells which upregulate the PD-1 expression. Note in the real data how deleting the
surrounding cells do not change its PD-1 protein localization. CCIGAN learns that for an isolated
CD8 T cell, PD-1 is not upregulated and therefore not expressed.
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3 EVALUATION

3.1 CENTER OF MASS (COM)

Fig. 11 shows an illustration of the center of mass and projected center of mass of a patch of tumor
and CD8 T cells.

Figure 11: An example illustration of the center of mass (COM) nomenclature. Note the projection
onto the CD8 T cell. This provides a more consistent measurement across different patches by
projecting pTumor onto the CD8 T cell.

3.2 EARTH MOVER’S SCORE

Figures 12 and 13 demonstrate the directional and histogram shifts as a function of adding more
tumor cells.

Figure 12: An example illustration of the points and vector nomenclature from Online Methods
4.3.3. The blue dots are the expression of PD-1 and PD-L1 proteins. The cyan arrows show the
vectors vt and ut. Note the shift in expression of the PD-1 as a response to the added tumor’s
PD-L1 expression.

3.3 RECONSTRUCTION METRICS

Given the generated image set X = {Xi}Ni=1 and the ground truth set Y = {Yi}Ni=1 with Xi,Yi ∈
R(M,H,W ), the L1/MSE score is defined as follows,

L(X ,Y) =
N∑
i=1

M∑
m=1

‖sort(Ui � Xi,m)− sort(Ui � Yi,m)‖∗ (19)

where ‖·‖∗ can be either L1 or L2 norm,� is the element-wise product, Xi,m and Yi,m are them-th
channel of the i-th cell patch, Ui ∈ {0, 1}(H,W ) is the mask matrix which masks all the cells in i-th
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patch. For any matrix A, sort(A) is the sort function that sorts all entries of A. The sorting function
ensures our metrics are position independent and only measures the intensity of the generated image
and ground truth. The score function L(X ,Y) only computes the loss of sorted expression inside of
the cells. Then we add penalization for expression outside of cells. The adjusted L1/MSE score is
introduced as follows,

Ladj(X ,Y) =
M∑

m=1

(
‖sort(Ui � Xi,m)− sort(Ui � Yi,m)‖

− ‖sort((1d −Ui)� Xi,m)− sort((1d −Ui)� Yi,m)‖
) (20)

where 1d is the matrix with all entries equal to 1. A smaller score indicates a better result.

For any two images X,Y ∈ [0, 1](H,W ), the SSIM and MI are defined as:

SSIM(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
(21) I(X;Y ) = H(X) +H(Y )−H(X,Y )

(22)

where H(·) is entropy, µX and σX are the mean and standard deviation of X, c1, c2 are constants.
Then the SSIM between X ,Y is

SSIM(X ,Y) =
1

N

1

M

N∑
i=1

M∑
m=1

SSIM(Xi,m,Yi,m) (23)

In cell based MI, test patches are processed at a cell-cell basis where their mutual information is
computed with the corresponding cell in the ground truth. For the generated image Xi of the i-th
patch, we assume there are Ti cells in the i-th patch. Then for each cell t, the pixels of m-th channel
of the t-th cell in the i-th patch can be expressed as a vector xt

i,m. Hence, the cell based MI is
formulated as:

I(X ;Y) =
1∑N

i=1 Ti

1

M

N∑
i=1

M∑
m=1

(
Ti∑
t=1

I(xt
i,m;yt

i,m)

)
(24)

Figure 13: Example illustration of how a CD8 T cell’s (orange) PD-1 histogram changes as a func-
tion of iteratively added tumor cells.
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The SSIM measures the similarity between the generated image and the ground truth. For SSIM, we
use HLA Class 1 and dsDNA due to the their expressions in all cells. If all channels were considered,
the SSIM would be uninformative due to the majority of the channels being blank or sparse. The MI
measures the information shared between generated image and ground truth at a cell by cell basis
where we consider all channels. Consider the example where a model generates no expression in
marker m but the real data has expression in m, the MI would be 0 and vice versa. Higher SSIM
and MI values indicate better results.

3.4 PAN-KERATIN AND CD8 EXPRESSION

The pan-keratin/CD8 experiment is similar to Fig. 22’s orientation except the center cell (cell of
interest) is a tumor cell (red) and the adjacent neighboring cells are CD8 T cells (orange). CCIGAN
predicted a decrease in tumor cell pan-keratin expression with respect to increasing CD8 T cell
area/number (Fig. 14). This is juxtaposed to the tumor cell control where there is no change in the
pan-keratin level as the number of neighboring tumor cells is increased.

Figure 14: CCIGAN experiment for adding CD8 T cells and tumor cells (control) around a tumor
cell.

SPADE does not predict a decrease in tumor cell pan-keratin expression with respect to increasing
CD8 T cell area/number and shows no difference in pan-keratin expression trends between the T
cell and control groups (Fig. 15).

pix2pixHD erroneously predicts an increase in tumor cell pan-keratin expression with respect
to increasing CD8 T cell area/number and shows no difference in pan-keratin expression trends
between the T cell and control groups (Fig. 16).

CycleGAN fails to predict a decrease in tumor cell pan-keratin expression with respect to increasing
CD8 T cell area/number and shows no difference in pan-keratin expression trends between the T
cell and control groups (Fig. 17).
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Figure 15: SPADE experiment for adding CD8 T cells and tumor cells (control) around a tumor cell.

Figure 16: pix2pixHD experiment for adding CD8 T cells and tumor cells (control) around a tumor
cell.
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Figure 17: CycleGAN experiment for adding CD8 T cells and tumor cells (control) around a tumor
cell.
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3.5 TUMOR INFILTRATED AND COMPARTMENTALIZED MICROENVIRONMENTS

Keren et al. (2018) determined that in situations of mixed tumor-immune environments, where im-
mune cells freely infiltrated the tumor, the tumor cells predominantly expressed PD-L1. Conversely,
in situations of compartmentalized tumors, where there is a greater degree of physical separation
between immune and tumor cells, macrophages were the predominant source of expressed PD-L1,
particularly at the tumor boundary.

These findings were recapitulated by CCIGAN. For a patient with a mixed tumor environment, when
trained with mixed patient samples, CCIGAN reported increased PD-L1 expression on tumor cells.
Furthermore, CCIGAN was able to quantify this difference in expression at the single cell level,
reporting a tumor to macrophage PD-L1 expression ratio of approximately 3.2 and 1.75 for patients
A and B respectively.

Conversely, when trained with compartmentalized patient samples, CCIGAN reported increased
PD-L1 expression on macrophages adjacent to tumor cells when compared to macrophages adjacent
to normal endothelial (inert) cells. This difference was quantified as a ratio of PD-L1 expression of
tumor-adjacent macrophages to endothelial-adjacent macrophages, approximately 1.85 and 2.7 for
patient C and patient D respectively.

Below are tables of the data used to generate Fig. 4B of the main paper. Results from testing
increased PD-1/PD-L1 expression from the bolded cell being challenged with another cell type in
its microenvironment are located in table 7. The 3rd column shows summed pixel intensity of the
specified protein expression.

In table 8, the second row shows that even when using the trained compartmentalized model to
predict on mixed segmentation patches, CCIGAN still reports a 26% (patient C, 0.00408/0.00324)
and 19% (patient D, 0.00608/0.00510) increase of macrophage PD-L1 expression in the compart-
mentalized compared to mixed microenvironment (Table 8). This observation of higher macrophage
PD-L1 expression in the compartmentalized environment supports Keren et al.’s findings.

Experiment Microenvironments Patient A Patient B

PD-1 (T cell) T cell / Tumor / Macrophages 0.01886 0.00131
T cell / Endothelial / Macrophages 0.00558 0.00107

PD-L1 (Tumor) T cell / Tumor / Macrophages 0.00649 0.00100
Endothelial / Tumor / Macrophages 0.00279 0.00046

PD-L1 (Macrophages) T cell / Tumor / Macrophages 0.00204 0.00057
T cell / Endothelial / Macrophages 0.00068 0.00047

Table 7: Average PD-1/PD-L1 expression on the mixed tumor environment. The bolded cells indi-
cate which cells are being measured.

Experiment (Macrophages) Microenvironments Patient C Patient D

PD-L1 (Compartmentalized) T cell / Tumor / Macrophages 0.00408 0.00608
T cell / Endothelial / Macrophages 0.00220 0.00225

PD-L1 (Mixed) T cell / Tumor / Macrophages 0.00324 0.00510

Table 8: Average PDL1 expression of macrophages/monocytes on the compartmentalized tumor
environment.

3.6 T-CYCIF PD-1/PD-L1 TREND EXPERIMENT (FIG. 4C LEFT) EXPLANATIONS

By training CCIGAN models on different segments of the t-CyCIF dataset (S2.2.2), we investigate
the relationship between PD-1 and PD-L1. Using the same experimental setting as S3.4, our cell
of interest (center cell) is a CD8 T cell and we iteratively add tumor cells as adjacent neighboring
cells. Fig. 23 shows an example patch of a CD8 T cell (orange) in the center and iteratively adding
tumor cells (yellow). As surrounding tumor cell surface area increases and surrounding PD-L1
expression increases, we expect PD-1 in the CD8 T cell to be upregulated, as it is an indicator
of T cell exhaustion. PD-1 expression trend differs depending on the level of tumor-infiltration
in the tumor microenvironment. In a poorly infiltrated microenvironment, the PD-1 expression
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Environment T1 T2 T3
Slope 2.629× 10−3 2.953× 10−3 3.134× 10−3

t-test 36.715 14.341 23.803
p-value 3.079× 10−225 1.945× 10−44 2.848× 10−110

Table 9: Slope and statistical values for t-CyCIF PD-1/PD-L1 Trend Experiment (S3.7) with respect
to surrounding tumor cell surface area.

Environment T1 T2 T3
Slope 4.339× 10−5 5.450× 10−5 2.970× 10−4

t-test 35.248 14.477 25.608
p-value 2.098× 10−211 3.285× 10−45 4.520× 10−125

Table 10: Slope and statistical values for t-CyCIF PD-1/PD-L1 Trend Experiment with respect to
total surrounding PD-L1 expression.

trend should be greater than in a highly infiltrated microenvironment, since low infiltration indicates
greater immunosuppression and a higher rate of T cell exhausation. Our results as shown in main
paper Fig. 4C Left are fully displayed in Fig. 19, which illustrates sample runs, and table 9, which
shows the full trend and statistical values from Fig. 4C Left. Additionally, we plotted the slope trend
of CD8 T cell PD-1 expression against surrounding total tumor PD-L1 expression in table 10

Figure 18: PD-1/PD-L1 experiment on tumor microenvironments with varying levels of tumor-
infiltration in t-CyCIF (S3.6) with respect to total surrounding PD-L1 expression.
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Figure 19: PD-1/PD-L1 experiment on tumor microenvironments with varying levels of tumor-
infiltration in t-CyCIF (S3.6) with respect to surrounding tumor cell surface area.

Figure 20: PD-1/PD-L1 experiment on tumor microenvironments with varying levels of tumor-
infiltration in t-CyCIF (S3.6) with respect to total surrounding PD-L1 expression.
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Environment T1 T2 T3
Slope 4.843× 10−5 8.838× 10−5 6.242× 10−4

t-test 35.778 12.711 21.693
p-value 2.172× 10−216 1.238× 10−35 9.723× 10−94

Table 11: Slope and statistical values for t-CyCIF LAG3/PD-L1 Trend Experiment.

3.7 T-CYCIF LAG3/PD-L1 TREND EXPERIMENT (FIG. 4C RIGHT) EXPLANATIONS

Furthermore, we investigate the relationship between LAG3 and PD-L1. Using the same experi-
mental setting as S3.6, our cell of interest (center cell) is a CD8 T cell and the adjacent neighboring
cells are tumor cells. As tumor cells are added and the surrounding PD-L1 expression increases,
we expect LAG3 in the CD8 T cell to be upregulated, as it is another indicator of T cell exhaus-
tion. Similarly to S3.6, we expect a higher trend of LAG3 upregulation with respect to PD-L1 in
microenvironments with lower tumor-infiltration. Our results as shown in main paper Fig. 4C Right
are fully displayed in Figure 21, which illustrates sample runs, and table 11, which shows the full
trend and statistical values from Fig. 4C Right.

Figure 21: LAG3/PD-1 experiment on tumor microenvironments with varying levels of tumor-
infiltration in t-CyCIF
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4 FURTHER EXPERIMENTS AND EXPERIMENT DETAILS

Figure 22: Process of iteratively adding tumor cells in MIBI-TOF. The added red cells are tumor
cells (PD-L1) and the center orange cell indicates a CD8 T cell (cell of interest, PD-1). For this
process, we focus on each instance of an added tumor.

Figure 23: Iteratively Adding Cells for t-CyCIF data. A random dsDNA protein channel is shown.

4.1 EXPERIMENTAL SETUP

In our general experiments that involved iteratively manipulating cell patches, we created a exper-
imental dataset of approximately 1000 patches for each type of data (MIBI-TOF or t-CyCIF) and
manipulated the cell types to the necessary cell types for each experiment. For a patch s in the
experimental dataset with n cells in the patch, we expanded the patch into n individual patches
Ps = {p(s)1 , p

(s)
2 , . . . , p

(s)
n } where for 0 ≤ i ≤ n, p(s)i = patch of cells from 1 to i. An example

can be seen in Fig. 22 for MIBI data where PD-1 expression in the CD 8 T cell of interest reacts to
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newly introduced PD-L1 expressing tumor cells. Another example is shown for t-CyCIF data in Fig.
23. Following this, changes in protein expressions in the cell of interest due to newly introduced
cells were analyzed using a variety of techniques (center of mass, summation, mass shift, regression
trend).

4.2 SEARCH ALGORITHM DISCUSSION

Figure 24: Search algorithm results. Specific cell-cell interactions and the associated magnitude
of change in protein expression. The cell types in boxes on the y-axis represent the cell of interest
in each experiment; cell names adjacent to these boxes represent neighbors. The circle diameter
represents the relative frequency of this specific cell - cell interaction inducing a non-trivial change
in the expression of a given protein. The hue of each circle denotes the order magnitude of change
in expression level. For example, a CD8 T Cell (boxed, y-axis) with tumor cell neighbors (y-axis)
experiences frequent and significant interactions that induce a change in the T cell’s PD-1 expression
(x-axis). These interactions are predicted to induce an average of 3 orders of magnitude increase in
PD-1 expression.

In this section we discuss potential biological trends, erroneous correlations, and algorithm settings.
It is important to note that some of the spurious correlations are easily explained by poor segmenta-
tions (known issue).

Fig. 24 displays the results of our search algorithm, which shows which particular cell-cell inter-
actions are significantly captured in CCIGAN. For four primary cells– tumor, macrophage, CD8,
and endothelial, we measure their expression level change in a subset of protein markers and cal-
culate the relative frequency of this cell-cell interaction. Using a subset of 1268 test cell patches,
we counted the number of significant logged interactions that produced an increase or decrease in
expression level greater than a chosen threshold. Expression level change was measured by simply
calculating the difference in summed pixel intensity (protein expression) in a particular channel.

For the relative frequency of a particular cell-cell interaction, the normalization schema is as follows.
Using the logged counts of significant changes in expression level, we take the max of either the
increase counts or the decrease counts. Then, to quantify the ratio of relative importance within
a primary cell group, we divide the max counts by the total number of logged counts (for either
only increases or decreases). For example, say we are measuring tumor as the primary cell. If 50
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decreases and 200 increases in expression level are recorded, with 1000 total increases logged for
the tumor primary cell, 200/1000 = 0.2 is the relative frequency after normalization.

Algorithm settings were set on the same sensitivity threshold for experiments. Additionally, figure
generation normalization was done across protein markers (within different cell groups). Finally,
interactions comprising of 5% or less of total logged interactions were disregarded.

Individual marker discussions are given below:

1. Vimentin
It was observed that nearly all scenarios of cell-cell interaction accounted for by CCIGAN
resulted in an varying increases of vimentin expression in the cell of interest. While not
necessarily biologically explained, the observed changes are plausible as vimentin is a
structural protein found in all cells and changes in its levels may not be attributable to
specific cell interactions. A continued investigation is given in S4.3 regarding tumor and
CD 8 T cell vimentin expressions.

2. PD-1
A slight increase in the PD-1 expression is seen on tumor cells when surrounded by CD8
T cells. However, this increase was negligible and can be attributed to noisy segmentations
where PD-1 expressing CD8 T cells are located near tumor cells, suggesting in the training
data that a tumor cell expresses PD-1.

3. PD-L1
The model suggests PD-L1 expression on CD8 T cells. This is due to noisy segmentations
similar to the situation in PD-1.

4. CD8
The model predicted an increase in CD8 expression on the tumor cell in several scenarios
despite this not being biologically expected. This also due to the same noisy segmentations.

5. Pan Keratin
The decreased levels in Pan Keratin expression within the tumor cell line with neighboring
non-tumor cells was biologically expected. However, the slight increase in pan keratin
expression when the tumor cell of interest had tumor cell neighbors may be due to the
same noisy segmentations as mentioned before.

4.3 VIMENTIN TABLE EXPRESSIONS

We measure trends of vimentin expression in tumor cells due to varying amounts of surrounding
CD 8 T cells. The cell of interest is a tumor cell and we iteratively change surrounding adjacent
cells from tumor cells to CD8 T cells with different probabilities. Then we measure the number of
instances a change of vimentin is detected, and what that change is.

Vimentin plays an important role in tumorigenesis both as a structural protein and in cellular sig-
nalling. Numerous studies have noted vimentin’s regulatory importance in a variety of cell signalling
pathways which promote tumor survival and resistance to cellular stress (38) (39). CCIGAN experi-
ments wherein a tumor cell of interest was surrounded by increasing numbers of CD8 T cells caused
up to a 91.6% increase in the total tumor vimentin expression (S4.2.1). Increasing CD8 T cell
presence around a tumor cell is likely to be associated with increasing amounts of pro-apoptotic sig-
nalling on the tumor cell, causing a large degree of cellular stress. Thus the increase in the tumor’s
vimentin would be a biologically expected outcome given the protein’s role in promoting cellular
survival pathways.

Cell of Interest Adjacent Cell Neighbor % % of Patches Indicating Increase in Vimentin
Tumor 100% CD8 0% Tumor 91.6%
Tumor 75% CD8 25% Tumor 81.6%
Tumor 50% CD8 50% Tumor 60.4%
Tumor 25% CD8 75% Tumor 26.7%

Table 12: Table indicating net changes in Vimentin expression in a tumor cells due to increasing
CD8 T cell presence.
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