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October 23, 2020

Abstract

Super-resolution structured illumination microscopy (SR-SIM) pro-
vides an up to two-fold enhanced spatial resolution of fluorescently
labeled samples. The reconstruction of high quality SR-SIM images
critically depends on patterned illumination with high modulation
contrast. Noisy raw image data, e.g. as a result of low excitation power
or low exposure times, result in reconstruction artifacts. Here, we
demonstrate deep-learning based SR-SIM image denoising that results
in high quality reconstructed images. A residual encoding-decoding
convolution neural network (RED-Net) was used to successfully de-
noise computationally reconstructed noisy SR-SIM images. We also
demonstrate the entirely deep-learning based denoising and reconstruc-
tion of raw SIM images into high-resolution SR-SIM images. Both
image reconstruction methods prove to be very robust against image
reconstruction artifacts and generalize very well over various noise
levels. The combination of computational reconstruction and subse-
quent denoising via RED-Net shows very robust performance during
inference after training even if the microscope settings change.

Keywords: Structured illumination microscopy, fluorescence microscopy,
super-resolution, RED-Net, deep-learning, fairSIM.

1

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.352633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.352633


1 Introduction

Fluorescence microscopy remains one of the most powerful tools for imag-
ing cell biology samples because of its ability to specifically label molecular
structures and to visualize them in different fluorescence color channels. It
also offers exceptionally high sensitivity and can visualize molecular processes
even below the optical diffraction limit. Several methods have been developed
during the last two decades [1] that enable imaging of fluorescently labeled
samples down to the nanoscale. Super-resolution structured illumination
microscopy (SR-SIM) is a particularly compelling method, because it works
with the majority of samples and fluorophores commonly used in cell biology
without imposing specific requirements to sample preparation [2,3]. Therefore,
it can even be applied to living samples [4–12]. SR-SIM in its most common
form utilizes a series of sinusoidal illumination patterns with a pattern pe-
riodicity at or near the diffraction limit. This patterned excitation light is
phase-shifted laterally and rotated to different discrete angles to acquire a
series of raw images, which are then passed on to an image reconstruction
algorithm to obtain the final super-resolved SR-SIM image [13]. Several
implementations of reconstruction algorithms that operate in frequency space
were developed and a number of open-access tools are now available that
aim to enhance the speed, spatial resolution and minimize reconstruction
artifacts in the final reconstructed image, i.e. fairSIM [14], OpenSIM [15],
SIMToolbox [16], and CC-SIM [17]. The most common property among
all these image reconstruction algorithms is that they require a series of
high-quality raw images in order to be able to reconstruct a high-quality
super-resolution image. However, reconstruction in frequency space fails to
reliably reconstruct SR-SIM images if the signal-to-noise ratio (SNR) is too
low, e.g. because the laser excitation power level was too low, the sample
exposure time was chosen too short, or the sample has already undergone
irreversible photobleaching [18].

Recently, several developments with the aim to reduce reconstruction
artifacts from SR-SIM images have been undertaken. Huang et al. used
a fully analytical approach to reduce noise and minimize reconstruction
artifacts using a Hessian matrix approach [10]. Hoffman and Betzig used
the reconstruction of SIM images in lower pixel count tiles and subsequent
merger to reduce reconstruction artifacts [19]. Jin et al., on the other hand,
used deep neural networks to reconstruct the cropped regions of SR-SIM
images [20]. Christensen et al. used a deep learning architecture for the
reconstruction of synthetic SR-SIM images [21] with subsequent testing on
real microscope images. Ling et al. relied on a special type of convolutional
neural network, a CycleGAN, for the same purpose [22]. Weigert et al. used
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deep learning algorithms to enhance isotropic resolution and signal-to-noise
ratio of fluorescence microscopy images in general [23].

In our work, we first suggest an end-to-end deep learning architecture and
workflow which is related to the work by Jin et al. [20]

but uses a different network architecture and works directly on full-size
microscope images (also in contrast to [21] where synthetic data is used
for training). Furthermore, as completely novel workflow, we combine the
classical computational SIM reconstruction with subsequent denoising via a
deep network. Therefore, the focus of our work is to demonstrate and compare
(1) the direct reconstruction of SIM raw images with a low signal-to-noise
ratio into high-quality SR-SIM images and (2) the denoising and artifact
reduction of low SNR SR-SIM images.

The first approach is named super-resolution residual encoder-decoder
structured illumination microscopy (SR-REDSIM), the second approach is
named residual encoder-decoder fairSIM (RED-fairSIM). Both are used to
reconstruct super-resolved images from raw noisy SIM input images, but they
differ in their use of deep learning: SR-REDSIM is an end-to-end deep learning
model, where the full SIM reconstruction process is performed by the deep
learning network. RED-fairSIM, on the other hand, is the combination of the
fairSIM image reconstruction package, which performs image reconstruction
using the widely used frequency-domain algorithms, and then subsequently
uses a deep learning network for artifact reduction and denoising. We found
that both of these methods are robust in their ability to significantly improve
the quality of reconstructed SR-SIM images. We also demonstrate that both
these methods are robust in reconstructing SR-SIM images from noisy raw
SIM images with different noise levels. Similarly, we also showed, that the
RED-fairSIM generalizes better even if the microscope settings are changed
after training.

2 Results

Deep learning methods rely on training data, which in our case consist of
noisy raw SIM images as input and ideally noise and artifact free, super-
resolved SIM reconstructions as output. Thus, we first need to generate
such a data set that is large enough to effectively train the network, but also
captures all aspects of the SIM imaging process (sample behaviour, instrument
imperfections, data processing artifacts) well enough.

In principle, the data acquisition process of a SIM microscope can be
simulated. In this case, the expected output represents the ground truth data
on which the simulation is based upon, and which is known without SNR or
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Figure 1: Schematics of the deep learning CNN architecture of the two
different SR-SIM image denoising (RED-fairSIM) and image denoising and
reconstruction (SR-REDSIM) methods. In both approaches a stack of 15 raw
(noisy) SIM images (3 angles with 5 phases each) is used as input. The output
is the reconstructed SR-SIM image. a SR-REDSIM is composed of three main
blocks. The encoding block contains mainly the convolutional layers whereas
the decoding block consists of deconvolutional layers and the up-sampling
block of deconvolutional up-sampling layers. b In the RED-fairSIM method,
fairSIM is first used to computationally reconstruct noisy SR-SIM images
which are then further propagated into the RED-Net for denoising. The
architecture of RED-Net is composed of the encoder and the decoder block.

resolution limits. Also, the amount of available training data would only be
limited by processing time, as the generation would be fully automated and
not rely on access to a microscope system.

However, we have decided against this in silico approach. While the basic
effects of structured illumination, Poisson-distributed noise and even basic
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optical imperfections are rather easy to simulate, modelling the response of a
full structured illumination microscope correctly is very complex. Additionally,
such a simulation would likely have to be adjusted to reflect the properties
of a specific SR-SIM instrument in order to capture changes, e.g. when
switching to a different manufacturer or even a specific installation of an
SR-SIM microscope. The same argument holds for the fluorescent samples
themselves. While some simulations providing perfect ground-truth data
exist, e.g. for single molecule localization microscopy [24, 25], they, again, do
not capture all of the variability found in real-world samples.

The option chosen for data generation for the work presented here is
to use the real microscope and standard biological samples. This approach
naturally captures all aspects and imperfections of the samples and of the
specific instrument in question [23], but also poses constraints. As data
collection requires both instrument time and manual sample preparation
and handling, the amount of training data is naturally limited. Also, there
is no perfect ground-truth available. To acquire the high-quality reference
images presented to the networks as desired output, we thus adjusted the
instrument to provide high SNR raw frames and processed those with the
classical, frequency-domain-based image reconstruction algorithm. While
these images are low in noise and reconstruction artifacts, they are never
completely devoid of them. To acquire noisy, low-SNR images as input, the
samples were then photo-bleached by continued exposure and acquisition of
raw SIM images, which naturally reduces fluorescent light output over time
and results in a series of images with steadily decreasing SNR (see 4.2 for
details).

2.1 SR-REDSIM: SR-SIM image denoising and recon-
struction using the super-resolution REDSIM method

In the first deep-learning based SR-SIM image reconstruction method, named
SR-REDSIM, both the tasks of reconstruction and denoising of noisy raw
SIM images are performed by a single deep learning model. This model is
a modified version of the “Residual Encoder-Decoder Network” (RED-Net).
RED-Net is an encoding-decoding framework with symmetric convolutional-
deconvolutional layers along with skip-layer connections. It was previously
used to accomplish different image restoration tasks such as image denoising,
image super-resolution, and image inpainting [26]. The original RED-Net
architecture is only composed of encoding-decoding blocks with the size of the
network input being the same as the size of the network output. Therefore,
super-resolution with this architecture has to rely on explicit image pre-

5

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.352633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.352633


upsampling [26]. In contrast, our modified RED-Net architecture contains
an additional upsampling block after the encoding-decoding blocks. This
upsampling block inside our model has the advantage that the input images
are first denoised in their lower-dimensional space which reduces training time
and effort.

Most of the super-resolution architectures such as the enhanced deep
super-resolution network (EDSR) [27] or the residual channel attention
network (RCAN) [28] are very deep and require a significant amount of
training data. In comparison, our architecture is comparably light-weight.

The complete pipeline of this method is shown in Fig. 1 and the architecture
of SR-REDSIM ( see supplementary Fig. 1) is explained in more detail in
section 4.3. During the training process, we used all 15 raw noisy SIM
images (3 angles with 5 phases each) of size 512 × 512 pixels (i.e., stack
dimensions were 15× 512× 512 (frames, width, height)) as input along with
the reconstructed super-resolved SIM image of size 1024 × 1024 pixels as
output. The output was generated by the fairSIM software from raw SIM
images recorded with the best signal-to-noise ratio, while the input images
were taken from noise level 4 (for an explanation of the noise levels see
section 4.2). The trained network was afterwards tested on unseen test data
from noise level 4. The super-resolution images obtained during this test
are depicted in column 2 of Fig. 2 whereas column 1 and 5 show the results
of “noisy fairSIM” (reconstructed by fairSIM from noisy raw SIM images;
noise level 4) and “reference fairSIM” (reconstructed by fairSIM from raw
SIM images with the highest SNR). The comparison of these images and
of specific regions of interest (ROIs) between fairSIM in Fig. 2 (column 1,
all rows) and SR-REDSIM (column 2, all rows) clearly shows that the noise
is completely removed by SR-REDSIM. However, in the reconstruction by
SR-REDSIM fine cell structures are partly suppressed as compared to the
reference output (compare column 2, row 2, ROI 1 in Fig. 2 with column
5, row 2, ROI 1). Anyhow, in rows 3/4 and 5/6 of Fig. 2 the structure of
the cell is well denoised and reconstructed by SR-REDSIM. Moreover, the
evaluation of the SR-REDSIM method on the basis of peak single to noise
ratio (PSNR) and structural similarity index measurement (SSIM) [29] values
in Table 1 shows a significant improvement compared to fairSIM.
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Figure 2: Super-resolution SIM (SR-SIM) images of three different test samples
(U2OS osteosarcoma cells, tubulin cytoskeleton labeled with anti-tubulin-
Alexa488) at high-level noise (time stamps 175 − 199; noise level 4). Each
column represents a different reconstruction approach: fairSIM (first column),
SR-REDSIM (second column), U-Net-fairSIM (third column), and RED-
fairSIM (fourth column). The fifth column depicts the reconstructed reference
images which were generated by applying fairSIM image reconstruction to
high SNR image data at noise level 0 (lowest noise level, i.e. timestamp 0).
All reconstructed SR-SIM images have 1024 × 1024 pixels. The first, third,
and fifth rows correspond to the full-size SR-SIM images, whereas the second,
fourth, and sixth rows depict magnified regions of interest (ROIs) of the white
squares (bounding boxes) indicated in the full-size images. The extracted
ROIs of size 100 pixels × 100 pixels were upsampled to 300 pixels × 300
pixels using bicubic interpolation for illustration purposes. Scale bar: 4 µm.
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2.2 RED-fairSIM: SR-SIM reconstruction of noisy in-
put data by using the combination of fairSIM and
RED-Net

fairSIM is one of the well known open-source reconstruction algorithm im-
plementations and is widely used for super-resolution tasks among the other
tools in SIM microscopy. However, it cannot reconstruct a clean high-quality
super-resolution image from noisy raw SIM images. In the RED-fairSIM
method, fairSIM is first used to reconstruct the SIM samples of noisy raw
SIM images and then RED-Net is used to denoise the output of fairSIM and
to generate in this way high-quality super-resolution images. During the
reconstruction process, again the stack of 15 noisy images (3 angles, 5 phases)
of size 512 × 512 is propagated into the fairSIM reconstruction algorithm
which then generates a single noisy reconstructed image of size 1024× 1024
pixels. The noise and artifacts found in these images do not follow a typical
distribution (e.g. Poisson or Gaussian), but have a distinct form which comes
from the frequency-based reconstruction algorithm. This single noisy recon-
structed images is further passed into the RED-Net architecture to achieve
the final result that can be seen in Fig. 2 (column 4). The complete pipeline
of the RED-fairSIM method can be seen in Fig. 1 and the architecture of
RED-Net is shown in supplementary Fig. 2.

The parameters which were used to generate SIM reconstructed samples
from the raw SIM images are explained in section 4.4.1. RED-Net was trained
in a supervised way where the input-output pairs contain the noisy and
reference reconstructed images. The noisy reconstructed images are selected
from noise level 4. For the output image we used the term reference instead
of ground truth because the reconstruction by fairSIM shows artifacts even
for rather clean raw images.

The performance of this method on the unseen test samples is the best
among our experiments with respect to PSNR and SSIM values (see table 1) as
well as visually. The regions of interest (ROIs) in Fig. 2 show clearly that the
output images generated by RED-fairSIM are of high quality with fine details
and smooth lines. They are superior compared to “noisy fairSIM”, “reference
fairSIM”, and SR-REDSIM. Even the artifacts introduced by fairSIM in the
reference images are completely removed by RED-fairSIM.

Furthermore, preliminary tests of RED-fairSIM and SR-REDSIM con-
cerning their ability to generalize to different SIM imaging conditions were
carried out (see supplementary Fig. 3). As before, U2OS cells were stained for
microtubuli, but a dark-red dye with illumination shifted to 642nm was used,
which subsequently also shifts the spatial frequencies of the illumination pat-
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tern. The RED-fairSIM approach is able to denoise these images and remove
SIM reconstruction artifacts, while the SR-REDSIM approach creates heavy
ghosting artifacts. This is unsurprising, as in the case of SR-REDSIM, all
specific properties of the SIM pattern (spatial frequencies, orientation, phases)
are learned by the network. In the RED-fairSIM approach, parameters spe-
cific to the SIM pattern are absorbed by the classic, frequency-domain-based
reconstruction, and only reconstruction artifacts are carried into the network.
Those artifacts might still depend on the SIM imaging parameters, so further
cross-checks should be carried out. As an initial result, RED-fairSIM seems
to generalize well to different SIM pattern settings.

U-Net-fairSIM U-Net is also a popular learning architecture that is exten-
sively used in the domain of image restoration such as image denoising and
super-resolution [23,30,31]. In the pipeline proposed for RED-fairSIM, we
replaced the RED-Net by U-Net and analyzed the resulting super-resolution
images. The architecture of U-Net is shown in supplementary Fig. 4. Hence-
forth, we named this approach as U-Net-fairSIM. Figure 2 (column 3) shows
that U-Net-fairSIM also produces better results as compared to the noisy, ref-
erence and SR-REDSIM images. However, it does not surpass RED-fairSIM.
Similarly, the U-Net-fairSIM approach outperforms all other counterparts
except for RED-fairSIM concerning the PSNR and SSIM values in table
1. Comparing RED-fairSIM and U-Net-fairSIM directly as in Fig. 3, the
cell structures reconstructed by RED-fairSIM are smoother. Furthermore,
they are more faithful when taking the reference as “gold standard” into
account. For these reasons, we have focused the presentation in this paper on
RED-fairSIM.

During all of the reported experiments, we did not carry out any prepro-
cessing on the input or output images such as downsampling or cropping
(see section 4.2). Nonetheless, we tested if image augmentation yields any
significant improvement of the results. For this purpose, each image was
rotated by an angle of 180° and added in this form to the training set. This
increased the amount of training data from 2025 to 4050 images. The results
with and without image augmentation are reported in supplementary table 1.
Because image augmentation did not provide a noticeable advantage overall
and did not change the performance-wise ordering of the proposed methods,
but on the other hand doubles the training time and increases the prepro-
cessing effort, we decided to focus in this paper on the results without image
augmentation.
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Figure 3: Reconstruction of SR-SIM images of two different test samples
with the fairSIM, U-Net-fairSIM and RED-fairSIM methods. Each column
represents the results of the corresponding method. The first and third row
show the resulting SR-SIM images whereas the second and fourth row contain
the extracted enlarged regions of interest (ROIs) from the full-size images in
the row directly above. The cell structures reconstructed by RED-fairSIM are
smoother compared to U-Net-fairSIM and fairSIM (reference). Furthermore,
they are more faithful than U-Net-fairSIM when taking the reference as “gold
standard” into account. Scale bar: 4 µm.
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2.3 Alternative Approaches

preRED-fairSIM Similarly, we also tried to generate high-quality super-
resolution SR-SIM images by another method named as preRED-fairSIM.
The pipeline of preRED-fairSIM is shown in the supplementary section (see
supplementary Fig. 5). However, preRED-fairSIM failed to deliver usable
results in the end. In preRED-fairSIM, each noisy SIM image from a different
phase and orientation is denoised separately and then the whole stack of all
15 denoised images is propagated into the fairSIM algorithm to reconstruct a
final super-resolution image. In the preRED-fairSIM approach we trained a
30-layer RED model for one selected phase and orientation and then performed
transfer learning [32] (which implies in our scenario no re-training and no
changes in the network weights) and fine tuning [33] (which implies adaptation
of a subset of the network weights) to other phases and orientations. The
results of transfer learning and fine-tuning are quite promising in terms of
the achieved SSIM and PSNR values (see supplementary table. 2). The
empirical results of this approach on the image level are shown in Fig. 4
(with fine-tuning applied). They also prove that the raw SIM images are well
denoised in the first step of this method. However, fairSIM fails to reconstruct
super-resolution images of sufficient quality from the denoised raw images.
The resulting reconstructed images contain some additional new artifacts.
These artifacts can likely be traced to higher harmonics introduced by the
RED model in the preRED denoising step, which become very clear in the
Fourier power spectrum of the denoised images (see fig 4), and then appear
similarly as artifacts in the Fourier spectrum of the fully reconstructed image.
This is to be expected, as the fairSIM method works in the frequency domain,
and highly relies on the precise phases, orientations and harmonics of the
SIM pattern, which the denoising step obviously breaks.

BM3D BM3D is a conventional state-of-the-art image denoising method
from the field of computer vision [34]. During this work, we also used BM3D
to denoise the noisy super-resolution images reconstructed by fairSIM . BM3D
is able to remove the noise successfully from reconstructed noisy SIM samples
(see supplementary Fig. 6, column 3) but fails to recover lost information.

2.4 SIM reconstruction at varying noise levels

The raw SIM data in this study was collected as a time-lapse of a fixed sample
undergoing photo-bleaching. Thus, data was collected at different noise levels,
which we can be assembled into five noise level groups, with noise level=0
representing the lowest and noise level=4 representing the highest level of

11

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.352633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.352633


a

b

Reference image

 (fairSIM) 

preREDfairSIMNoisy image

 (fairSIM) 

Raw SIM image Denoised image Reference image Raw SIM image Denoised image Reference image Raw SIM image Denoised image Reference image 
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Figure 4: preRED-fairSIM results. a shows three blocks of images where each
block consists of 6 images. The first block depicts the images from phase
0 and orientation 0, the second block from phase 1 and orientation 1, and
the third block from phase 2 and orientation 2. The left image in the first
row of each block represents a noisy raw SIM image from noise level 4. The
second image in each block is the denoised version whereas the reference image
(rightmost in each block) is the ground truth. The Fourier spectra of the
images are shown below each image. The dimensions of each image in these
blocks are 512×512 (width × height). Scale bar: 8 µm. b shows three images
reconstructed by fairSIM along with their Fourier spectrum directly below.
The noisy image (left) is reconstructed using 15 noisy raw SIM images and the
parameter fit summary is: resolution improvement (x :1.90, y :1.90, z :1.90),
modulation estimation (x :0.310, y :0.341, z :0.332) with assessment as “weak”.
Similarly, the preRED-fairSIM image (middle) is generated using 15 denoised
SIM images and the the parameter fit summary is: modulation estimation
(x :0.310, y :0.341, z :0.332) with assessment “weak”, however, there is no
improvement in the resolution. The reference image (right) is reconstructed
from the raw SIM images with the highest SNR and the parameter fit summary
is: resolution improvement is (x :1.90, y :1.90, z :1.90), modulation estimation
(x :0.558, y :0.580, z :0.578) with assessment “usable”. The Fourier spectrum
of preRED-fairSIM shows additional artifacts (white spots) that neither exists
in the Fourier spectrum of the reference nor the noisy output. Scale bar:
4 µm.
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noise found in the data. As we have previously discussed, the models were
trained with input from the highest noise level and therefore, we investigated
whether these pre-trained models will also be useful for the SIM images of
other, lower noise levels. To verify this, we considered only the two best
methods from our work: SR-REDSIM and RED-fairSIM are used to evaluate
the raw SIM images at different levels. No fine-tuning [33] or transfer learning
[32] were performed on these pre-trained models. Figure 5 shows the results of
this attempt. In this figure, one specific sample was captured at different noise
levels. If we further examine the ROIs of all the super-resolution images, it
can be seen that both methods show high-quality super-resolved images at all
of the five different noise levels with a slight degradation towards higher noise
levels regarding smoothness and clarity of the cell structures. Furthermore, it
is again noticeable that the results of RED-fairSIM are overall visually more
appealing compared to the other methods. In addition to visual inspection,
quantitative results are given in table 1 which contains the mean PSNR and
SSIM values of 500 test inputs from each noise level. Here, U-Net-fairSIM is
included in the presented comparison. Both RED-fairSIM and U-Net-fairSIM
show a gradual decrease in PSNR and SSIM values from noise level 1 (light
noise) to noise level 4 (strong noise). SR-REDSIM performs similarly, but
with noticeably smaller PSNR and SSIM values. The results of fairSIM
without denoising deteriorate quickly when moving to higher noise levels. The
most important take-away from table 1 and Fig. 5 are that the networks —
although trained for a specific high noise level — generalize well to conditions
with a better signal-to-noise ratio.

The reconstruction of the lower noise level 0 through SR-REDSIM and
RED-fairSIM highlights a second use case. At this noise level, the SNR of
the raw frames is high enough to provide the reference data sets, which as
discussed before are of high quality, but still feature some SIM reconstruction
artifacts. Those artifacts are successfully removed by both SR-REDSIM and
RED-fairSIM. A reasonable assumption is that, like noise, reconstruction
artifacts are random enough in nature, so they are not picked up by the
network during training, and thus cannot be reproduced. This effect is well
known in applications such as noise2noise [35], where the inability of a neural
network to learn random (noisy) data is explicitly used for denoising.

3 Discussion

The results of this study provide sufficient evidence that SR-REDSIM and
RED-fairSIM can both be employed to denoise and reconstruct high-quality
SR-SIM images. We also investigated the robustness of the proposed methods
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Table 1: Mean PSNR and SSIM values of all methods (computed with the
fairSIM output at noise level 0 as reference on the test data)

PSNR and SSIM values at different noise levels
noise level=1 noise level=2 noise level=3 noise level=4
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

fairSIM 28.84 0.69 25.83 0.45 24.12 0.32 23.61 0.29
SR-REDSIM 26.73 0.69 26.62 0.64 26.66 0.64 26.62 0.69
U-Net-fairSIM 27.44 0.75 27.23 0.69 26.85 0.65 26.80 0.68
RED-fairSIM 28.75 0.80 28.67 0.75 28.18 0.70 27.97 0.71

Noise level = 0 

SR-REDSIM SR-REDSIM

fairSIM fairSIM

Variant C

Noise level = 1 Noise level = 2 Noise level = 3 Noise level = 4
fairSIMReference

 (fairSIM)
fairSIM

SR-REDSIM SR-REDSIM SR-REDSIM

RED-fairSIM RED-fairSIM RED-fairSIM RED-fairSIM RED-fairSIM

Figure 5: Reconstructed SR-SIM images at different noise levels with the
SR-REDSIM and RED-fairSIM methods for a single field of view. Noise level
0 represents the reference image at timestamp 0, noise level 1 comprises the
images from timestamps 25 − 50, noise level 2 from timestamps 75 − 100,
noise level 3 from timestamps 125− 150, and noise level 4 from timestamps
175− 200. Each full image contains an enlarged region of interests (ROI) in
the bottom left. The images reconstructed by fairSIM in the first row show a
significant degradation in quality as the noise level increases. In contrast, the
results produced by SR-REDSIM and RED-fairSIM in the second and third
are far less depending on the noise level. Scale bar: 4 µm

(SR-REDSIM and RED-fairSIM) and showed that high-quality reconstruction
of SIM samples is possible irrespective of the noise level in the raw SIM images.
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The SR-REDSIM and RED-fairSIM methods outperform their counterparts
as shown in Fig. 2 and supplementary Fig. 6. Furthermore, these approaches
are useful even in the absence of clean groundtruth data as we have shown
especially for RED-fairSIM where the reference data used for training contains
many reconstruction artifacts. We have also shown in Fig. 5 (column 1) that
the proposed methods SR-REDSIM and RED-fairSIM can be used to remove
the reconstruction artifacts from the reference image after training, so even if
high SNR data can be acquired easily, SR-REDSIM and RED-fairSIM still
offer an improvement over the classical reconstruction approaches.

A recent study [22] used cycle-consistent generative adversarial networks
(CycleGAN) [36] to reconstruct SR-SIM images by using 3 to 9 clean raw
SIM images. A CyleGAN contains two generators and two discriminators
with multiple losses that are trained in a competitive process. Therefore,
CycleGANs are generally very difficult to train. Furthermore, the authors
did not address the challenge of denoising. Christensen et al. [21] trained
deep neural networks by using synthetic data instead of real microscope
SIM images to reconstruct SR-SIM images. Although the synthetic data
used in their studies for training is unrelated to real microscopes, they were
successful in generating output comparable to computational tools like fairSIM.
However, they did not use real noisy microscope data for their testing of
the denoising performance of their networks, and their approach was also
not completely successful in the case of (simulated) high-level noise. Jin et
al. [20] used multiple concatenated U-Nets to reconstruct SR-SIM images
by using 3 to 15 raw SIM images. They trained their models on cropped
and resized SIM samples and manually discarded tiles with only background
information. These preprocessing steps are time-consuming, and the training
of two adjacent U-Net model is also computationally expensive.

Our proposed methods use the raw SIM images in their original size which
does not involve any major preprocessing steps. The amount of training data
used, about 100 fields of view for training and test data together, is also small
enough that specific training, capturing both a given instrument and a specific
biological structure of interest, should often be feasible. While SR-REDSIM
has similarities to other proposed end-to-end deep learning approaches for
SIM [20–22], RED-fairSIM is a completely novel deep learning approach for
SIM which is — as our data shows — superior to SR-REDSIM.

While both SR-REDSIM and RED-fairSIM provide high-quality recon-
struction, an obvious difference between them is their ability to generalize
to different SIM imaging settings. As an initial test, we varied the spatial
frequency of the SIM pattern (using 642nm instead of 488nm excitation light),
which commonly happens when designing experiments and choosing dyes (see
supplementary Fig. 3). We then reconstructed with RED-fairSIM and SR-
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REDSIM, both trained on the original 488nm data. Here, the RED-fairSIM
approach, where the change in spatial frequency of the pattern is absorbed by
the classic reconstruction step, still works very well in suppressing noise and
SIM artifacts. SR-REDSIM, on the other hand, where the SIM pattern has
been learned by the network, created heavy ghosting artifacts. While further
validation and cross-testing is needed, this suggests that RED-fairSIM should
be able to generalize to different SIM microscopes, excitation wavelength and
probably illumination types (3-beam, 2-beam, TIRF-SIM), while SR-REDSIM
would require retraining whenever larger changes in these parameters occur.

4 Methods

4.1 Sample preparation and data acquisition

U2OS cells were cultured in DMEM supplemented with 10% FBS and grown
on round coverslips of 170±5 nm thickness (No. 1.5H). Cells were fixed with
4% PFA for 15 min, followed by PBS washes, permeabilization with 0.5%
Triton-X100 for 3 min. Another two rounds of PBS washes were done prior
to blocking with 3% BSA. For the immunolabeling of microtubuli, cells were
stained with anti-tubulin Ab (Invitrogen CatNo. 322500) 1:400 for 2 hr
at room temperature, followed by PBS wash and one additional hour of
incubation with Alexa 488-conjugated anti-mouse IgG 1:400. Cells were
then briefly washed with PBS before Vectashield was applied to embed the
coverslip onto the standard slide glass for imaging.

The Delta Vision|OMX (GE Healthcare) was used to acquire 3D-SIM
raw images. A total of 101 randomly selected field-of-views were acquired by
exposing each field-of-view to the full laser power of the 488 nm excitation
laser and the exposure time was set at 20 ms for each of the 15 raw image
frames. 200 image repetitions were collected at each position without delays.
Taking into account camera readout and pattern switching time, acquiring
15 raw SIM images, making up one timestamp in the raw image stack, takes
approximately 375 ms.

4.2 Data preprocessing

In our work, we used 101 different cell structures (fields of view). Out of
these 81 were selected for the training data and the remaining 20 for the
test data. Each cell structure was captured for 200 repetitions. During
each repetition, 15 frames were recorded, iterating the phase and orientation
of the sinusoidal SIM illumination pattern, yielding an image stack of size
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15× 512× 512 (frames, width, height). During this time-lapse acquisition,
the samples underwent photo-bleaching, which reduces the amount of active
fluorescent emitters and thus the amount of emitted photons. Therefore,
less and less light is captured and the SNR steadily decreases during the
acquisition of such a time series.

The cell structures from the timestamps 175 to 200 are therefore considered
as noisy training and test input while the samples from timestamp 0 are
considered as clean output images. All 15 clean raw SIM images of the
101 cell structures from timestamp 0 are used to reconstruct high-resolution
reference SIM images of size 1024 × 1024 pixels by using fairSIM, which
employes a classic frequency-domain-based reconstruction. In this work, the
input dimension is 15× 512× 512 (frames, width, height) whereas the output
dimension is 1024× 1024 (width, height) pixels. The total of 2525 samples
were further divided into training and test data. The traininig data contains
2025 images of the first 81 cell structures whereas the test data is composed
of 500 test images which are created from the remaining 20 cell structures.

The only preprocessing step which is involved in our work is the linear
scaling of the training and test data to match overall brightness between
input and output. In addition, we tested an image augmentation approach to
double the amount of training data by rotating each image by an angle of
180°.

4.2.1 Definition of noise levels

The data from each time series over 200 repetitions was subdivided into noise
levels. Noise level 0 stands for the highest SNR in our data at timestamp
0. This is our reference data. The image data from timestamps 175 − 200
represents the highest noise level 4, the data from timestamps 125 − 150
represents noise level 3, timestamps 75− 100 noise level 2 and timestamps
25− 50 noise level 1. In this study, data from noise level 4 is only used in the
training process whereas data from noise levels 1, 2, 3, and 4 is used in the
test phase.

4.3 Architecture and training of SR-REDSIM

SR-REDSIM is based on a modified version of RED-Net. The complete
pipeline of this approach is shown in Fig. 1a whereas the architecture of SR-
REDSIM and details about the model parameters are given in supplementary
Fig. 1. The SR-REDSIM architecture consists of three blocks which are
encoder, decoder, and the upsampling block. SR-REDSIM contains in total
44 convolutional and deconvolutional layers with symmetric skip connections.
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The encoder block is composed of 21 convolutional layers whereas the decoder
contains 21 deconvolutional layers. The upsampling block consists of 2
deconvolutional layers that perform the upsampling task by adjusting the
size of the stride. The SR-REDSIM model provides the best results after
training the model for 100 epochs. The SR-REDSIM model is trained only
with high-level noise data from timestamps 175 to 200. During the training
process, the ADAM optimizer and the L2 loss function, also known as Least
Squares error, are used:

Loss =
n∑

i=1

(yi − ŷi)2 (1)

In equation 1, yi represents the true pixel intensity whereas ŷi represents the
predicted pixel intensity. n is the number of pixels (in the image).

4.4 Architecture and training of RED-fairSIM

The pipeline of RED-fairSIM is shown in Fig. 1b. In this approach, first
fairSIM is used to transform the raw SIM images into a super-resolved output
image, by employing a classic, frequency-domain SIM reconstruction algorithm.
This output image now contains noise, which due to the frequency-domain
algorithm takes a SIM-specific form, and might show other reconstruction
artifacts. It is subsequently processed by RED-Net.

4.4.1 fairSIM

The fairSIM reconstruction is performed in three steps, parameter estima-
tion, reconstruction and filtering. Mathematical and algorithmic details are
provided in the original publication [14]. A synthetic optical transfer func-
tion, with NA = 1.4, λ = 525 nm, a = 0.31 (a is a compensation parameter,
see [14, 37]) is used. 500 counts of background are subtracted per pixel.
SIM reconstruction parameters (pattern orientation, global phase, etc.) are
automatically determined by fairSIMs standard, iterative cross-correlation
approach. Filter parameters are set to a generalized Wiener filter strength
of w = 0.05, apodization is set at 1.9× the resolution limit with a bend of
0.8, and a notch-style filter implemented as OTF attenuation with a strength
of 0.995 and a FWHM of 1.2 µm−1 is in use. For the detailed meaning and
influence of these parameters, please refer to the fairSIM source code, its
accompanying publication [14] and this general guide to SIM reconstruction
parameters [37].
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4.4.2 RED-Net Architecture

The architecture of RED-Net as used in RED-fairSIM consists of 15 convolu-
tional and 15 deconvolutional layers along with symmetric skip connections
(see supplementary Fig. 2). The output of fairSIM is propagated into the RED-
Net to denoise the reconstructed noisy sample as shown in Fig. 2 (column 1).
During the training phase, the noisy SR-SIM images of size 1024× 1024 along
with the reference SR-SIM images of the same size are used as input-output
pairs for the RED-Net. The network is trained for 100 epochs with the ADAM
optimizer and L2 loss.

4.5 Architecture and training of U-Net-fairSIM

In U-Net-fairSIM we simply replaced the RED-Net from the RED-fairSIM
approach by the U-Net architecture. The U-Net is also trained for 100 epochs
with the ADAM optimizer and L2 loss. The complete architecture and
parameters of the U-Net are shown in supplementary Fig. 4.

5 Hardware and Data availability

During this work we used multiple Nvidia Tesla P100 graphics cards. Each
network is trained in parallel with 2 Tesla P100 to reduce the computational
time. The machine learning code is written based on the Python libraries
keras and tensorflow, whereas the fairSIM code is written in Java. The code
and data which were used during this work can be provided upon request. The
generated results are available at https://doi.org/10.5281/zenodo.4095446.
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