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Abstract 
 

Polygenic risk scores (PRS) derived from summary statistics of genome-wide association studies 

(GWAS) have enjoyed great popularity in human genetics research. Applied to population cohorts, 

PRS can effectively stratify individuals by risk group and has promising applications in early 

diagnosis and clinical intervention. However, our understanding of within-family polygenic risk is 

incomplete, in part because the small samples per family significantly limits power. Here, to 

address this challenge, we introduce ORIGAMI, a computational framework that uses parental 

genotype data to simulate offspring genomes. ORIGAMI uses state-of-the-art genetic maps to 

simulate realistic recombination events on phased parental genomes and allows quantifying the 

prospective PRS variability within each family. We quantify and showcase the substantially 

reduced yet highly heterogeneous PRS variation within families for numerous complex traits. 

Further, we incorporate within-family PRS variability to improve polygenic transmission 

disequilibrium test (pTDT). Through simulations, we demonstrate that modeling within-family risk 

substantially improves the statistical power of pTDT. Applied to 7,805 trios of autism spectrum 

disorder (ASD) probands and healthy parents, we successfully replicated previously reported 

over-transmission of ASD, educational attainment, and schizophrenia risk, and identified multiple 

novel traits with significant transmission disequilibrium. These results provided novel etiologic 

insights into the shared genetic basis of various complex traits and ASD.  
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Introduction 

 

Polygenic risk scores (PRSs) derived from summary statistics of genome-wide association 

studies (GWASs) have enjoyed great popularity in human genetics research. Applied to a variety 

of complex traits and diseases, PRS can effectively stratify individuals by risk group and has 

promising applications in early diagnosis and clinical intervention [1, 2]. However, most PRS 

applications only leverage population-based cohorts and contrast each individual’s risk with that 

in the general population. It remains challenging to model and quantify within-family polygenic 

risk due to very limited samples in each family. Given parental data, it is statistically 

straightforward to model the Mendelian inheritance of any single genetic variant. However, PRS 

models include from dozens to millions of single-nucleotide polymorphisms (SNPs) that are 

scattered across the genome. These SNPs are often in linkage disequilibrium (LD) in the 

population. In addition, PRSs of family members are expected to have reduced variability 

compared to the population risk distribution due to limited crossover activities during meiosis. 

Such variability also varies across families. Therefore, modeling PRS within families requires 

careful considerations of phasing, linkage, and recombination. 

 

Here, we introduce ORIGAMI (Offspring Risk Inference through GAMete sImulation), a 

computational framework to simulate offspring genotypes using parental genetic data. ORIGAMI 

uses state-of-the-art, sex-specific genetic maps to simulate recombination events in phased 

parental genomes. Through extensive simulations and analyses of real data, we demonstrate that 

ORIGAMI simulations are computationally efficient and genetically realistic. By calculating PRS 

on simulated offspring for a couple, we can estimate the risk distribution for their potential children 

and compare this distribution to their observed children. To showcase the application of our 

approach, we incorporate ORIGAMI in polygenic transmission disequilibrium test (pTDT) [3] and 

demonstrate a substantial gain in statistical power after accounting for within-family PRS 

variability. 

 

We applied ORIGAMI-informed pTDT to 7,805 trios of autism spectrum disorder (ASD) probands 

and healthy parents. ASD is an etiologically complex, clinically heterogeneous, and highly 

heritable neurodevelopmental disorder. Exome sequencing studies have identified more than 100 

genes harboring ultra-rare or de novo variants for ASD [4]. Recently, heritability studies and 

GWAS implicated critical roles of common SNPs in the etiology of ASD [5, 6]. Additionally, multi-

trait modeling revealed strong genetic correlations of ASD with various complex traits [7]. 

Compared to other approaches, pTDT leverages a robust, family-based design to assess the 

transmission disequilibrium of complex traits’ polygenic risk between healthy parents and ASD 

probands and shed important light on the shared genetics between ASD and other genetically 

correlated phenotypes [3]. In this paper, we showcased the improved power of pTDT after 

modeling within-family PRS variability and identified novel traits associated with the risk of ASD. 
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Results 
 

Method overview 

 

ORIGAMI takes parental VCF (or BCF) files as input and simulates offspring genotypes for the 

whole genome or a pre-specified list of SNPs (Figure 1). First, ORIGAMI simulates crossover 

locations in parental genomes. We used a chiasma interference model [8] implemented in 

Simcross (URLs) to simulate the chiasmata positions on each chromosome and then reduces the 

number of chiasmata positions to obtain the crossover locations. Between two neighboring 

crossover positions, we randomly select one phased haplotype to construct the gamete genome. 

Then, the offspring genome can be naturally constructed by combining the two gametes simulated 

from both parents. When needed, we repeat the procedure to generate a user-required number 

of offspring genomes in order to quantify the distribution of offspring polygenic risk. ORIGAMI 

outputs simulated genotypes into a set of PLINK files [9] which are readily analyzable in various 

downstream applications. We describe the detailed procedure in the Methods section. 

 

 

Figure 1. ORIGAMI workflow. Blue and red chromosomes represent paternal and maternal chromosomes, 

respectively. 
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We applied ORIGAMI to the spousal pairs in 7,805 ASD trios from three cohorts (Methods): the 

Autism Genome Project (AGP), the Simons Simplex Collection (SSC), and the Simons 

Foundation Powering Autism Research for Knowledge (SPARK). We simulated 100 pseudo 

children for each parental couple. We calculated PRS of ASD and other 67 complex traits (Table 

S1) for all parents and simulated offspring. Each PRS was statistically fine-tuned from GWAS 

summary statistics using PUMAS [10] (Methods) and standardized by cohort using the mean and 

standard deviation of parental scores. 

 

Validity of simulated offspring genotypes 

 

We applied transmission disequilibrium test (TDT) to assess the transmission probability of each 

SNP between 15,610 parents and 780,500 simulated children. We performed TDT on three ASD 

cohorts separately and used METAL [11] to meta-analyze the associations. The results were 

consistent with the null distribution and suggested SNP-level transmission equilibrium from 

parents to their simulated offspring (Figure 2A). 

 

 

Figure 2. Evaluate the validity of simulated offspring genotype data. (A) Q-Q plot for TDT p-values. The x-axis 

shows the quantiles of the Unif(0,1) distribution. The y-axis shows the observed p-values in TDT. (B) We regressed 

child-parent PRS deviation on the estimated within-family PRS standard deviation. Q-Q plot for p-values is shown. 

The diagonal lines in both panels are highlighted. 

 

Next, we compared PRS of 67 traits between simulated offspring and real samples in 3,242 trios 

with healthy parents and offspring (Methods). The parental average of PRS strongly associates 

with the average PRS of simulated offspring (Table S2), with 64 out of 67 traits showing 

correlations greater than 0.9. However, a unique and more important application of ORIGAMI is 

to quantify the variability of offspring PRS. We calculated the deviation of real siblings’ PRS from 

mid-parental PRS and associated these deviation values with the empirical standard deviation of 

simulated offspring’s PRS. The estimated PRS standard deviations were significantly associated 
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with the absolute value of sibling-parent PRS deviation in 33 out of 67 traits (Table S4). The lower 

number of significant associations may be explained by the lack of real offspring samples per 

family, which poorly quantifies the variability of PRS within families. Still, these association p-

values showed a significant deviation from the null (p=3.14e-12, Kolmogorov-Smirnov test; 

Figure 2B and Table S3). Of note, we observed particularly strong associations in PRS with fewer 

SNPs (e.g., Alzheimer’s disease; Figures S1a), but associations were also observed in more 

polygenic models (Figure S1b). These results suggest that ORIGAMI effectively accounts for the 

linkage between SNPs and produces realistic genotype data for simulated offspring.  

 

 

Figure 3. Within-family variability of polygenic risk. (A) a workflow for quantifying the variability of offspring PRS. 

We used ORIGAMI to generate n=100 pseudo offspring and estimated the offspring PRS distribution for each family. 

By comparing the PRS distribution across families, we quantified its between-family heterogeneity. (B) Histogram of 

the offspring PRS standard deviation. This distribution showcases the heterogeneous PRS variability across families. 

The orange line shows the standard deviation of PRS in the population. PRS was calculated using an ASD GWAS. (C) 

The heterogeneity of within-family PRS standard deviation is associated with number of SNPs in PRS. Each data point 

denotes a GWAS. Each value on the y-axis shows the standard deviation of a distribution similar to that in (B). The x-

axis shows the log10-transformed number of SNPs. The fitted regression line is also shown. 
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Variability of genetic risk among siblings  

 

Due to genetic similarity among family members, within-family variability of genetic risk is 

expected to be lower compared to the population-level variability. ORIGAMI-simulated offspring 

allow straightforward estimation of such variability. We calculated the PRS standard deviation 

among 100 simulated offspring of each family for 68 traits. We observed substantially reduced 

among-sibling PRS variability compared to that in the population (Figure 3A). The average 

among-sibling PRS standard deviation ranged from 46.6% to 80.8% of the standard deviation in 

the population across 68 traits (Table S4). We also observed substantial heterogeneity of such 

variability across families. Using ASD risk score as an example, the among-sibling PRS standard 

deviation ranged between 42.2% and 91.8% (mean = 66.8%) of the population standard deviation 

in our data (Figure 3B). Across 68 traits, the range was 13.3% to 208.8% (Table S3). These 

results were consistent across multiple ASD cohorts (Figure S2) and also in simulated children 

for 2,715 spousal pairs in the Health and Retirement Study (HRS) (Figure S3). The between-

family heterogeneity is significantly associated with the number of SNPs in PRS (p = 5.46e-06; 

Figure 3C). Traits with lower number of SNPs showed substantially flatter distributions of within-

family standard deviation. 

 

ORIGAMI-informed pTDT analysis 

 

The standard pTDT analysis assumes an equal variance in the distribution of offspring PRS 

across different families (Methods). In practice, this assumption is most likely violated due to the 

variability in homozygosity at trait-informative loci, which can be affected by genetic drift, 

population stratification, and assortative mating [12]. Our results support that there exists 

substantial heterogeneity of within-family PRS variance (Figure 3B, Figures S2-S3). Instead of 

assuming an equal variance, we used ORIGAMI-simulated offspring to empirically estimate the 

offspring risk distribution, and standardized the pTDT test statistic (i.e., proband-parent PRS 

deviation) using within-family standard deviation estimates (Figure 4). This allows us to quantify 

the statistical evidence for polygenic transmission disequilibrium using a better-calibrated null 

distribution (Methods). 

 

We conducted simulations to compare the performance of standard pTDT and ORIGAMI-

informed pTDT. We simulated PRS for 1000 trios under the assumption that the offspring PRS 

distribution could have distinct variance across families. We then empirically estimated the PRS 

standard deviation using 50, 100, 500, and 1000 simulated offspring per family and used the 

estimates as input in ORIGAMI-informed pTDT. Detailed simulation settings are described in the 

Methods section. Under transmission equilibrium, neither standard pTDT nor our approach 

showed inflated type-I error rates (Figure 5A). When PRS is associated with disease risk, our 

method showed substantially improved statistical power compared to the standard pTDT 
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approach (Figure 5B). In addition, when sufficiently large (>50 in our analysis), the number of 

simulated offspring used to estimate within-family PRS variability did not influence type-I error or 

statistical power (Figure S4). 

 

 

Figure 4. ORIGAMI-informed pTDT. We simulate offspring genotype data from parental genotypes and estimate the 

expected PRS distribution. pTDT is conducted by comparing the real offspring’s PRS with the expected PRS distribution. 

 

Next, we applied ORIGAMI-informed pTDT to assess the polygenic transmission equilibrium of 

ASD and 67 other complex diseases and traits in 7,805 ASD proband-parent trios. We identified 

9 significant associations with false discovery rate (FDR) below 0.05 (Figure 6 and Table S5), 6 

of which also reached statistical significance under Bonferroni correction (p<0.05/67=7.46e-4). 

We repeated the analysis in 3,242 healthy siblings-parent trios and no traits were significantly 

over- or under-transmitted (Table S6).  

 

 
Figure 5. Statistical power and type-I error of standard and ORIGAMI-informed pTDT. (A) Type-I error of standard 

pTDT and ORIGAMI-informed pTDT with 100 simulated offspring. The dotted lines indicate significance thresholds. (B) 

Statistical power of standard pTDT and ORIGAMI-informed pTDT with 100 simulated offsprings. The scale of x-axis is 

log-transformed. 

 

We confirmed the substantial over-transmission of ASD PRS from parents to probands with highly 

consistent effect sizes across three independent cohorts (p=9.09e-28; Figure S5; Table S5). Two 
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additional traits that were previously identified to over-transmit in ASD probands [3], i.e., 

educational attainment (EA, p=2.70e-39) and schizophrenia (SCZ, p=1.82e-12), were also 

replicated in our analysis (Figures S6-7). In addition to the previously reported traits, we identified 

multiple significant novel associations including cognitive performance (p=7.94e-21), height 

(p=4.10e-4), primary angle closure glaucoma (p=4.94e-4), bipolar disorder (p=1.27e-3), and 

Crohn’s disease (p=1.40e-3) (Figures S8-13). All traits’ PRSs were over-transmitted from parents 

to probands. Notably, PRS of multiple neuropsychiatric traits, i.e., depressive symptoms 

(p=2.93e-3), attention deficit/hyperactivity disorder (ADHD; p=8.11e-3), and SCZ (p=0.034), were 

slightly under-transmitted to 3,242 healthy siblings (Table S6). 

 

Figure 6. Complex traits showing significant transmission disequilibrium from healthy parents to ASD 

probands. Point estimates and standard errors were obtained from the meta-analysis of three ASD cohorts. X axis is 

the transmission between child and mid-parent PRS and Y axis shows the name of traits. Traits are order by p-value. 

 

 

Discussion 
 

In this study, we introduced ORIGAMI, a computational framework to simulate genotypes of 

offspring from parental genomes. ORIGAMI uses sex-specific genetic maps to simulate crossover 

events in gametes and generates realistic offspring genotypes accounting for physical linkage. 

These features distinguish ORIGAMI from single-variant simulation approaches and make it 

particularly suitable for quantifying the polygenic risk within families. Comparing simulated 

offspring with the parents, we demonstrated transmission equilibrium at the SNP and PRS levels. 

We also demonstrated that the standard deviation of simulated PRS distribution is predictive for 

the real offspring-parents PRS deviation. Through estimating PRS variance among simulated 

offspring, ORIGAMI confirmed lower variability of polygenic risk within families and revealed 

substantial heterogeneity of such variability across families. Among 3,242 healthy trios and across 

68 diseases and traits, the within-family PRS standard deviation varied from 13.3% to 208.8% of 

the PRS standard deviation in the population. The within-family PRS standard deviation is 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.355602doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355602
http://creativecommons.org/licenses/by-nc-nd/4.0/


affected by multiple factors including the number of SNPs in PRS, weight values in PRS models, 

crossover frequency, and parental heterozygosity. ORIGAMI provides a computationally feasible 

approach to quantifying such variability. 

 

The level of within-family risk variability directly affects the expected offspring-parent PRS 

deviation. Leveraging the empirical PRS distribution estimated from simulated offspring, we 

proposed an ORIGAMI-informed pTDT approach. Using simulations, we showed that our 

approach substantially improves the statistical power of pTDT without inflating the type-I error. 

We applied ORIGAMI-informed pTDT to a total of 7,805 trios of ASD probands and healthy 

parents from the SSC, AGP, and SPARK cohorts. We replicated previously reported over-

transmission of ASD, SCZ, and EA PRS in ASD probands and identified significant over-

transmission of PRS for 6 novel traits. No association reached statistical significance in 3,242 

control trios which again demonstrated the well-calibrated type-I error of ORIGAMI-informed 

pTDT. We also note that pTDT results are generally consistent with genetic correlations between 

these traits and ASD [6, 13]. However, through leveraging family-based data, pTDT provides 

mechanistic insights into the shared genetics between ASD and correlated traits and produces 

results less susceptible to confounding or genetic associations mediated through family 

environment [14].  

 

We also note that application of ORIGAMI is not limited to pTDT. As a novel tool that can 

prospectively quantify the polygenic risk of unborn offspring, ORIGAMI could have broad 

applications in risk stratification and genetic counseling. Theoretically, such information may also 

be used to help identify the ideal spouse who can maximize the probabilistic genetic prospect of 

future children. However, such applications are greatly complicated by ethnical concerns. In 

addition, our current understanding of complex traits’ genetic risk is insufficient to guarantee a 

causal effect on offspring phenotypes or even a reasonable level of predictive performance [15-

17]. ORIGAMI also has some limitations. Our current implementation does not simulate sex 

chromosomes. Type of genetic variants simulated by ORIGAMI is limited to SNPs. Accuracy of 

ORIGAMI simulation also depends on phasing quality in the parental genomes. A future direction 

is to expand ORIGAMI to simulate diverse types of genetic variations, including variants on sex 

chromosomes, and to account for uncertainty in phasing. 

 

Taken together, ORIGAMI is a novel, powerful, and computationally efficient framework for 

offspring genotype simulation. We showcased its application in pTDT inference and demonstrated 

substantially improved statistical power after accounting for within-family risk variability. The 

unique features of quantifying the offspring genetic risk at the genome-wide level makes 

ORIGAMI an appealing tool in human genetics research and prospective risk inference. 
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Methods 
 

Sample information 

 

Data from the AGP cohort were accessed through dbGaP (accession: phs000267) which 

consisted of 7,880 samples, including 2,188 trios of ASD probands and healthy parents. The SSC 

and SPARK cohorts were accessed through the Simons Foundation Autism Research Initiative 

(SFARI). Details on these data can be found on the SFARI website (URLs) and have been 

previously described [6, 18, 19]. We removed samples with a genotype missing rate > 0.05 and 

removed SNPs that have a genotype call rate < 0.95, significant deviation from Hardy-Weinberg 

equilibrium (p<1e-06), or a minor allele frequency < 0.01. We also removed overlapping 

individuals across cohorts using genetic relationship coefficients estimated by GCTA [20]. We 

only included individuals with self-reported European ancestry in the analyses. After the quality 

control (QC) and filtering process, 2,188, 1,794 and 3,823 proband trios remained in the AGP, 

SSC, and SPARK cohorts, respectively. 1,432 and 1,813 control trios of healthy siblings and 

parents remained in the SSC and SPARK cohorts. We used the UCSC liftover software (URLs) 

to lift over the genome build to hg19. We used the Michigan Imputation server [21] to phase and 

impute all genotype data to the Haplotype Reference Consortium reference (version r1.1 2016). 

SNPs with imputation quality score < 0.8 and minor allele frequency < 0.01 were removed from 

the analysis. After post-imputation QC, 7,260,224 SNPs remained in the AGP. The 1Mv1, 1Mv3, 

and Omni2.5 cohorts (defined by genotyping arrays) in the SSC had 7,298,961 SNPs, 7,029,817 

SNPs, and 6,866,248 SNPs, respectively. 7,031,717 SNPs remained in the SPARK cohort. 

 

To validate results in a population cohort, we also simulated 100 children for each spousal couple 

(N=2,715 couples) in the HRS. The HRS is a nationally representative, longitudinal panel study 

of individuals over the age of 50 and their spouses conducted by the University of Michigan [22]. 

Imputed HRS genotype data were accessed through dbGap (phs000428). We calculated PRS of 

ASD in HRS using the same GWAS summary statistics used in three ASD cohorts. 

 

Statistical and computational details of the ORIGAMI framework 

 

ORIGAMI is a Linux-based software tool. Core functions of ORIGAMI were implemented in R. 

ORIGAMI takes phased VCF or BCF files as the input. It first uses bcftools [23] to extract 

autosomal genotypes from paternal and maternal files and then simulates crossover locations in 

the parental genomes. For each chromosome, we used a chi-square chiasma interference model 

[8] which accounts for genetic distance and interference. We set the interference number to be 3 

and used sex-specific genetic maps [24] to simulate chiasma counts in each parent: 

n ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(
𝐿

50
∗ (𝑚 + 1)) 
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where n indicates the number of chiasmata, m is the interference number, L is the maximum 

genetic distance in the chromosome. After sampling chiasma counts, we simulate the first 

chiasma position indicator 𝑛𝑓 , which is a random number taking values from 0 to m. 𝑛𝑓 = 2 

means the first chiasma is the second simulated chiasma position, so the first simulated chiasma 

position is discarded. f stands for first here. Then the final number of chiasma points is 𝑛 − 𝑛𝑓 +

1. If 𝑛𝑓 ≥ 𝑛 + 1, then there will be no interference. Otherwise, we simulate 𝑛 − 𝑛𝑓 + 1 chiasma 

position. Here, we assume that the chiasma position follows a uniform distribution 𝑈𝑛𝑖𝑓(0, 𝐿). 

Here, an interference number of 3 means that there are about 52 chiasmata for males and 80 for 

females in the whole genome on average. Each simulated chiasma position will be deleted with 

a probability of 50% since tetrads enjoying one or more crossovers in a marked interval only 

produce 50% recombinant haploid products when lacking chromatid interference [8]. Then, 

crossover events will happen at the remaining chiasma positions.  

 

For each autosome in a parental genome, ORIGAMI recombines phased haplotypes at the 

crossover positions and generates a pair of recombined chromosomes, from which we randomly 

select one to be the gamete chromosome. Finally, we create a pseudo offspring genome by 

combining two simulated gametes from both parents. Repeating the procedure, ORIGAMI 

generates a user-specified number of offspring genomes for each spousal pair, and outputs a set 

of binary PLINK [9] files for merged offspring genotypes. The current ORIGAMI implementation 

does not simulate sex chromosomes. 

 

GWAS summary statistics and PRS calculation 

 

We obtained GWAS summary statistics for 68 complex traits from the literature and public 

repositories. Details on these studies are summarized in Table S1. We computed PRSs in the 

AGP, SSC, and SPARK cohorts. SNPs with strong LD were clumped in PLINK [9]. We used the 

genotype data of European descendants in 1000 Genome Project Phase III cohort [25] as the LD 

reference and clumped summary-level data by an LD window size of 1Mb and pairwise 𝑟2 

thresholds of 0.1. In addition, we fine-tuned the optimal p-value cutoff for each PRS through 

summary statistics-based cross-validation implemented in PUMAS [10]. The optimal p-value 

cutoffs and maximal predictive 𝑅2 are reported in Table S1. All PRS computations were carried 

out using PRSice-2 under the PUMAS-tuned p-value thresholds [26]. 

 

Validating simulated offspring genotype data  

 

We performed TDT analysis for 137,021 SNPs included in all three ASD cohorts and the ASD 

PRS model. We performed TDT in the AGP, SSC and SPARK cohorts separately and meta-

analyzed the associations using METAL [11]. We also tested the association between the 

standard deviation of within-family PRS standard deviation (i.e., between-family heterogeneity) 
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and the log10-transformed number of SNPs included in the PRS models. The number of SNPs in 

a PRS will be affected by the p value cutoff fine-tuned by PUMAS.  

 

ORIGAMI-informed pTDT 

 

In the standard pTDT approach [3], PRS deviation in the 𝑖𝑡ℎ trio is calculated as  

𝑑𝑖 =
𝑃𝑅𝑆𝑐𝑖

−
1
2 (𝑃𝑅𝑆𝑝𝑖

+ 𝑃𝑅𝑆𝑚𝑖
)

𝑆𝐷𝑚𝑖𝑑−𝑝𝑎𝑟𝑒𝑛𝑡
 

Here, 𝑃𝑅𝑆𝑐𝑖
, 𝑃𝑅𝑆𝑝𝑖

, and 𝑃𝑅𝑆𝑚𝑖
 denote the child, paternal, and maternal PRSs in the 𝑖𝑡ℎ trio, 

respectively. 𝑆𝐷𝑚𝑖𝑑−𝑝𝑎𝑟𝑒𝑛𝑡  denotes the standard deviation of mid-parental PRS values (i.e., 

(𝑃𝑅𝑆𝑝𝑖
+ 𝑃𝑅𝑆𝑚𝑖

)/2) across trios. This approach implicitly assumes the variance of offspring PRS 

to be same across families, thus dividing the same standard deviation estimate to standardize the 

test statistic. To evaluate the difference between pTDT deviation and 0, the pTDT test statistics 

is calculated as  

𝑡𝑝𝑇𝐷𝑇 =
𝑚𝑒𝑎𝑛(𝑑𝑖)

𝑆𝐷(𝑑𝑖)/√𝑛
 

Under this assumption, the pTDT test statistics follows a t distribution under the null hypothesis 

(i.e., transmission equilibrium of PRS). However, we demonstrated that the variance of offspring 

PRS could vary greatly in different families, which violates the assumption in t test and reduces 

statistical power of pTDT.  

 

The ORIGAMI-informed pTDT replaces the denominator with the estimated standard deviation of 

offspring PRS in each family:  

�̃�𝑖 =
𝑃𝑅𝑆𝑐𝑖

−
1
2 (𝑃𝑅𝑆𝑝𝑖

+ 𝑃𝑅𝑆𝑚𝑖
)

𝑆𝐷𝑖
 

where 𝑆𝐷𝑖  denotes the standard deviation of offspring PRS of the 𝑖𝑡ℎ family. Importantly, we 

allow different families to have distinct variance values in the offspring PRS distribution. The 

empirical standard deviation of simulated children’s PRS in the 𝑖𝑡ℎ family provides an estimate 

of 𝑆𝐷𝑖 . Under this relaxed assumption, we can calculate the ORIGAMI-informed pTDT test 

statistics as  

𝑧𝑝𝑇𝐷𝑇 =
𝑚𝑒𝑎𝑛(�̃�𝑖)

1/√𝑛
 

Under the null, the ORIGAMI-informed pTDT test statistic follows a standard normal distribution 

asymptotically. 

 

Simulation settings 
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We simulated PRS data from 1000 families. We randomly sampled 1000 data points from a 

normal distribution as the standard deviation of PRS these families.  

𝑠𝑖 ~ 𝑁(𝜇, 𝜎2), 𝑖 = 1, … ,1000 

Here we set 𝜇 = 0.65 and 𝜎 = 0.3 based on the among-sibling variability of 67 PRSs in our 

analyses. Parental PRSs were randomly sampled from the standard normal distribution 𝑁(0,1). 

For type-I error evaluation, we generated 50, 100, 500, and 1000 "healthy” offspring PRS values 

for each family under transmission equilibrium from N(𝑚𝑖 , 𝑠𝑖
2 ), where 𝑚𝑖  is the average of 

parental PRS in the ith family. To assess statistical power, we generated 50, 100, 500, and 1000 

"proband” PRS values for each family under transmission disequilibrium. More specifically, we 

sampled offspring PRSs from N(𝑚𝑖 + δ, 𝑠𝑖
2) for the ith family. Here, 𝑠𝑖 still follows 𝑁(0.65, (0.3)2) 

as described above. δ is the effect size of transmission disequilibrium which ranged from 10−5 

to 0.1 .  We empirically estimated the standard deviation 𝑠𝑖  for each family using simulated 

offspring data and calculated pTDT deviation. We used t distribution and standard normal 

distribution as the null for standard and ORIGAMI-informed pTDT, respectively. We repeated the 

process 1000 times and quantified type-I error rate and statistical power as the proportion of 

repeats that reached statistical significance at a given threshold. 

 

URLs 

 

AGP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000267.v5.p2); 

SSC (https://www.sfari.org/resource/simons-simplex-collection/); 

SPARK (https://www.sfari.org/resource/spark/); 

PLINK (https://zzz.bwh.harvard.edu/plink/) 

PUMAS (https://github.com/qlu-lab/PUMAS) 

Simcross (https://github.com/kbroman/simcross) 

PRSice-2 (https://www.prsice.info/) 

Liftover (https://genome.ucsc.edu/cgi-bin/hgLiftOver) 

 

Code availability 

 

The ORIGAMI software is publicly available at https://github.com/qlu-lab/ORIGAMI 
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