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GRAPHICAL ABSTRACT 

 
IN BRIEF 
Merkle and Ghosh et al. describe insights from the 
whole genome sequences of commonly used 
human embryonic stem cell (hESC) lines.  Analyses 
of these sequences show that while hESC genomes 
had more large structural variants than humans do 
from genetic inheritance, hESCs did not have an 
observable excess of finer-scale variants. However, 
many hESC lines contained rare loss-of-function 
variants and combinations of common variants that 
may profoundly shape their biological phenotypes. 
Thus, genome sequencing data can be valuable to 
those selecting cell lines for a given biological or 
clinical application, and the sequences and analysis 
reported here should facilitate such choices.  
 
 

 
HIGHLIGHTS 

● One third of hESCs we analysed are siblings, and almost all are of European ancestry 
● Large structural variants are common in hESCs, but finer-scale variation is similar to that 

human populations 
● Many strong-effect loss-of-function mutations and cancer-associated mutations are present in 

specific hESC lines 
● We provide user-friendly resources for rational hESC line selection based on genome 

sequence 
 

ABSTRACT 
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There has not yet been a systematic analysis of hESC whole genomes at a single nucleotide 

resolution. We therefore performed whole genome sequencing (WGS) of 143 hESC lines and annotated 

their single nucleotide and structural genetic variants. We found that while a substantial fraction of hESC 

lines contained large deleterious structural variants, finer scale structural and single nucleotide variants 

(SNVs) that are ascertainable only through WGS analyses were present in hESCs genomes and human 

blood-derived genomes at similar frequencies.  However, WGS did identify SNVs associated with cancer 

or other diseases that will likely alter cellular phenotypes and may compromise the safety of hESC-

derived cellular products transplanted into humans. As a resource to enable reproducible hESC 

research and safer translation, we provide a user-friendly WGS data portal and a data-driven scheme 

for cell line maintenance and selection.  
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INTRODUCTION 

Human pluripotent stem cells (hPSCs) can self-renew indefinitely while retaining the ability to 

differentiate into many cell types  (Jones and Thomson, 2000). These properties make hPSCs a 

powerful resource for studying early human development, disease modelling, drug discovery, and 

increasingly for developing candidate cell therapies (Avior et al., 2016; Merkle and Eggan, 2013; Sandoe 

and Eggan, 2013; Trounson and DeWitt, 2016) (https://clinicaltrials.gov). However, the utility of hESCs 

and human induced pluripotent stem cells (hiPSCs) for these applications can be compromised by 

mutations that affect their differentiation potential, cellular phenotypes, or clinical safety. The nature of 

such mutations has been studied using karyotyping (Draper et al., 2004; Lund et al., 2012), fluorescent 

in situ hybridization and comparative genome hybridization arrays (Dekel-Naftali et al., 2012; Spits et 

al., 2008), and high-density single nucleotide polymorphism (SNP) DNA microarrays (Amps et al., 2011; 

Laurent et al., 2011; Lefort et al., 2008; Närvä et al., 2010).  Despite the limited spatial genomic 

resolution of these methods (typically > 100 kbp), these studies revealed recurrent, culture-acquired 

structural variants including duplications of chromosomes 1, 12, 17, 20, X, or segments thereof. While 

the selective advantage conferred by one of these recurrent duplications at Chr20q11.21 has been 

attributed to the gain of the anti-apoptotic gene BCL2L1 (Avery et al., 2013; Nguyen et al., 2014), the 

cause and functional consequences of most mutations observed in hPSCs remain poorly understood. 

Despite their considerable use in basic research and their increasing use in the development of 

cell therapies for transplantation into humans, as much as 99% of the genome of most hPSCs remains 

unexplored. Because the genome sequences of most stem cell lines are poorly ascertained, research 

groups have had little choice but to view hPSC lines as largely interchangeable and to select lines for a 

given application by convenience or by historical precedence rather than their intrinsic genetic suitability 

(Kobold et al., 2015; Löser et al., 2010). The lack of comprehensive genetic information about cell lines 

of interest is also troubling since mutations can accumulate in hPSCs over time in culture (Laurent et 

al., 2011), potentially compromising experimental reproducibility or safety.  Establishing a baseline 
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whole genome sequence for as many hESC lines as possible would allow such culture-acquired 

mutations to be more easily identified in the future (Avior et al., 2019).  

To start addressing these important issues, we (Merkle et al., 2017) and others (Kilpinen et al., 

2017) recently analysed the whole exome sequences (WES) of hPSCs.  We found many genetic 

variants that had likely been acquired in culture and discovered that approximately 5% of widely used 

cell lines had acquired mutations in the tumour suppressor gene TP53 (p53) (Merkle et al., 2017).  These 

mutations, which were confirmed by others (Amir et al., 2017; Avior et al., 2019), conferred significant 

growth advantage in culture but did not prevent differentiation to multiple cell lineages.  

 Given that exome sequencing many hESC lines could reveal important biological insights, we 

wondered what might be learned by examining their whole genomes. We therefore performed whole 

genome sequencing (WGS, >25x coverage) and complementary high-density SNP genotyping of 143 

hESC lines and report our findings here as a resource. We found that the overall burden of both SNVs 

and CNVs in hESCs resembled that of human populations, indicating that almost all variants were 

inherited and thus confirming hESCs as invaluable tools for studying human biology.  However, our 

analyses also bring to light previously unreported recurrent acquired genetic variants that point to 

selective pressures exerted during self-renewal. These included a recurrent amplicon on Chr1q32.1, a 

copy-neutral loss of heterozygosity (CN-LOH) event at Chr9q, and small deletions encompassing the 

gene EP300, whose gene product stabilizes p53. Additional studies of SNVs we identified from WGS 

data revealed likely inherited and deleterious variants in genes associated with cancer, infertility, and a 

variety of autosomal dominant diseases that will likely impact the phenotypic behaviour of individual 

stem cell lines that harbour them. In order to allow any researcher to query our data and to facilitate 

rational cell line selection for a given application, we developed a user-friendly online data portal, which 

will further the goals of experimental reproducibility and the safety of future cell therapies.  
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Figure 1. Study design and outputs. The genomic DNA of 143 human embryonic stem cell lines (hESCs) was 
analyzed by high-density SNP microarray and at the single-nucleotide level by whole genome sequencing to call 
structural variants to a resolution of ~1 kbp, rare sequence variants associated with disease, and common 
sequence variants to reveal cell line ancestry, relatedness, polygenic risk score (PRS). An integrated analysis of 
these data, which are provided as a resource to the field via an interactive data portal, yields novel insights into 
hESC biology and facilitates the rational selection of cell lines based on their genetic architecture.  
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RESULTS 

HESC line selection and whole genome sequencing 

To gain insight into stem cell biology and generate a valuable resource for the research and 

medical communities, we sequenced the whole genomes of 143 hESC lines that had been voluntarily 

deposited into the registry of hESCs approved for federally funded research that is maintained by the 

US National Institutes of Health (NIH) (http://grants.nih.gov/stem_cells/registry/current.htm) or that had 

been prepared for therapeutic applications (Fig. 1). Genomic DNA from these cell lines was sequenced 

to a mean read depth of 32.2 (SD 6.4, range 23.3 for HUES68 to 60.9 for KCL038), (Fig. S1A) resulting 

in an average of 97% of the genome being sequenced at a minimum of 10x coverage (Fig. S1B). Sample 

information is detailed in Table S1A, and sequencing and analysis methods are described in Materials 

and Methods.  

 

hESCs are predominantly European and often share sibling relationships 

Genetic background can be an important modifier of cellular phenotypes (Rouhani et al., 2014a; 

Sittig et al., 2016). We therefore first investigated the genetic ancestry of hESC lines by drawing upon 

their ancestry-informative SNPs and comparing them to the diverse human populations sequenced in 

the 1000 Genomes Project (Consortium et al., 2012, 2015).  In agreement with previous studies (Mosher 

et al., 2010), principal component analysis (PCA) revealed that 93% (133/143) of sequenced hESC lines 

clustered together with samples of European ancestry (Fig. 2A,B) and predominantly with samples of 

Central European (CEU) or British (GBR) ancestry (Table S1B,C). A smaller number of lines (9/143) 

had likely admixtures of European and other ancestries, while one was of apparent East Asian ancestry 

(CSES12). The predominantly European ancestry of stem cell genotypes was also reflected in their 

human leukocyte antigen (HLA) haplotypes (Nunes et al., 2014) (Fig. S1C, Table S2A). These  HLA 

genotypes may be useful for groups seeking to match stem cell-derived transplant and recipient HLA 

haplotypes (Aron Badin et al., 2019; Morizane et al., 2017).  
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 Since multiple hESC lines can be derived from a cohort of embryos donated by a single couple 

undergoing assisted reproduction by in vitro fertilization (IVF) (Chen et al., 2009) we wondered how 

many sequenced hESC lines might exhibit genetic relatedness to one another. Upon analysing shared 

SNP alleles (see Materials and Methods), we found that 47/143 (33%) hESC lines shared a direct sibling 

relationship with another line we had sequenced, including seven sibling trios, 12 sibling pairs, and one 

half-sibling pair (Fig. 2C,D Table S1A-C). Importantly, many of these sibling relationships were either 

unknown or unreported. For example, one sibling trio contained hESC lines from distinct providers 

(Genea02, Genea48, ESI017) (Fig. 2D). Upon contacting the providers we learned that these cell lines 

were derived using materials from the same IVF clinic and that the sibling trio also included a fourth line 

(ESI014) not available for distribution. Awareness of these familial relationships should help guide 

experimental design, which in some contexts may aim to avoid shared genetic background, and in other 

contexts might exploit these properties to test genotype-phenotype relationships. 
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Figure 2. Ancestry and relatedness. A) Principal component analysis illustrates the genetic ancestry of hESC 
lines (red with black outline) relative to individuals from diverse populations (three-letter codes) from the 1000 
Genomes project. HESCs with ad-mixed European or non-European ancestry are indicated by arrows. PC, 
principal component. B) Magnification of the hESC cluster from (A) shows clustering of hESC lines cluster with 
samples of Central European, British, and Southern European ancestry. C) One third of hESC lines have direct 
sibling relationships. D) Sibship pedigree of hESC lines, where squares denote male, circles denote female, and 
the dashed line denotes a half-sibling relationship.  
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Common genetic variant contribution to risk of disease phenotypes 

  Common single nucleotide polymorphisms (SNPs) can impact the suitability of cell lines for 

modelling disease or transplantation. For example, a genetic variant in the gene ABO causes the O 

blood type (Yamamoto et al., 1990), a variant in CCR5 renders cells resistant to HIV infection (Dean et 

al., 1996; Samson et al., 1996), while variants in the genes APOE (Corder EH et al., 1993) and TREM2 

(Guerreiro et al., 2013; Jonsson et al., 2013) are among the strongest known genetic contributors to 

cardiovascular disease (APOE) and Alzheimer’s Disease (AD, both APOE and TREM2). We therefore 

genotyped hESCs for these common variants and identified 22 cell lines with a “universal donor” O 

blood type, a cell line (Elf1) likely resistant to HIV infection (Ware et al., 2014), and three cell lines 

homozygous for the APOE “e4/e4” risk haplotype for cardiovascular disease and AD (Fig. 3A-C, Table 

S2B). 

  There is also accumulating evidence that the combined actions of thousands of common SNPs 

can contribute substantially to risk for developing certain conditions, often conferring as much risk as 

large-effect (Mendelian) variants (Khera et al., 2018). The quantifiable contribution these SNPs confer 

can be represented through a polygenic risk score (PRS) (Khera et al., 2019). To determine the currently 

calculable risk conferred by such variants to distinct disease phenotypes in each cell line, we computed 

PRSs for 18 distinct traits using data from well-powered genome-wide association studies (GWAS) 

adjusted for ancestry, and normalized these scores to the distributions formed by larger numbers of 

similarly-sequenced human samples (Bulik-Sullivan et al., 2015b; Ripke et al., 2014) (Fig. 3D, Table 

S2C,D, Fig. S2). For each trait, we found one or more “outlier” hESC lines with a PRS at least two 

standard deviations (SD) from the mean. For example, WA21 has a high PRS for body mass index 

(BMI), suggesting it might be predisposed to display obesity-relevant phenotypes if differentiated to 

relevant cell populations such as hypothalamic neurons (Merkle et al., 2015; Wang et al., 2015). Overall, 

112/143 (78%) cell lines were outliers for at least one trait, and each cell line had a unique PRS 

fingerprint (Fig. 3E). To identify hESCs that might make good “all-purpose control” cell lines, we ranked 

hESC lines by their combined absolute PRS across the 18 traits and identified cell lines with PRSs close 

to the population mean (Fig. 3F, Table S2E). Overall, our sequence resource will provide an opportunity 
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to wield hESC based models to study how common genetic variants affect cellular phenotypes in a more 

informed manner.  

 

 

Figure 3. Disease risk from common genetic variants. A-C) Genotyping results at SNPs indicative of A) blood 
type (rs8176719 in ABO), B) resistance to HIV infection (rs333 at CCR5) and C) risk for Alzheimer’s Disease (AD, 
rs429358 and rs7412 in APOE and rs75932628 in TREM2). ref, reference allele; alt, alternate (risk) allele. D) 
Distribution of polygenic risk scores (PRS) for control samples and hESCs after ancestry adjustment and 
normalization reveals “outlier” samples with standard deviation (SD) of 2 or more. E) Heatmap of PRS for each of 
the 18 analysed traits for cell lines that were an outlier for at least one trait. F) Combined PRS deviation from mean 
for each of the 18 analysed traits. 
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Calling structural genetic variation from WGS data 

Having established the genetic background of hESCs using common SNPs, we next analysed 

their structural variants, which can affect the expression of tens to thousands of genes and significantly 

alter cellular phenotypes (Chiang et al., 2017). In particular, aneuploidy and large CNVs often contribute 

to disease (Henrichsen et al., 2009) and copy-neutral loss of heterozygosity (CN-LOH) events are 

frequently associated with cancer and can potently alter gene expression by affecting imprinted genes 

and unmasking disease-associated recessive mutations or risk alleles (Nicholls et al., 1989). 

We reasoned that the WGS data with at least 25x mean sequencing depth of coverage we 

obtained should provide both superior spatial resolution and sensitivity for detecting small or mosaic 

CNVs in hESCs than do the data from SNP microarrays that sample only a small fraction of nucleotides 

(Amps et al., 2011; Canham et al., 2015). Indeed, we found that normalized read depth analysis of WGS 

from 121 cell lines permitted the identification of deletions as small as ~1.1 kbp and duplications as 

small as ~2.8 kbp (Fig. S3A). To complement this analysis, we identified heterozygous SNPs across the 

genome and compared the sequencing depth of both alleles in all 143 hESC lines (Alkan et al., 2011) 

to call CNVs and CN-LOH events. We next arbitrarily split structural variants into “large” (>1 Mbp) and 

“small” (<1 Mbp) categories, (Fig. S3C, Table S3A) revealing 67 distinct large structural variants 

affecting nearly a third of hESC lines (46/143, 32%, Table S3B).  

To test the accuracy and sensitivity of our approach, we compared WGS structural variant calls 

to a published SNP microarray-based study (Canham et al., 2015) that included 22 of the cell lines we 

subsequently sequenced. We found that WGS confirmed most of these variants, allowed CNV borders 

to be more accurately mapped, and revealed previously unascertained structural variants (Fig. 4A, Table 

S3C,D). To broaden this comparison, we analysed identical genomic DNA samples from 121 hESC 

lines by both WGS and high-density SNP microarrays (Infinium PsychArray, > 500,000 probes), and 

compared the resulting structural variant calls (Table S3E). Only 27 of the 67 large variants (>1 Mbp) 

observed by WGS were also called by PsychChip (Fig. 4B). Together, these results suggest that 

analysis of WGS data has substantially improved utility for calling large structural variants relative to 
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microarrays and confirms that hESCs carry an excess burden of large structural variants compared to 

somatic human cells.  

 

 
Figure 4. Structural variant calling from WGS data. A) Comparison of structural variant calls in 22 lines shared 
between this study and a previous publication. B,C) Comparison of large (B) and small (C) structural variant calls 
made by microarray or by WGS. D) Length distribution of small duplications and deletions in hESCs and controls. 
E,F) At length scales of ~1.1 kbp to 1 Mbp, the frequency of deletions (E) and duplications (F) in hESCs is 
indistinguishable from human primary cells. X-axis values of 1-3 and 3-5 refer to 1.117-2.75 kbp and 2.75-5 kbp, 
respectively. Afr. Amer., African American; Lat. Amer., Latin American. G) Observed recurrent duplications at the 
pericentromeric (grey) region of Chr20q11.21 encompassing the anti-apoptotic gene BCL2L1. H) Alignment of 
sequencing reads flanking the 3’ end of the Chr20q11.21 duplication reveals a shared (AATGG)n motif. I-K) 
Circular ideograms of fixed and mosaic duplications (J), deletions (K) and CN-LOH events (L) in 121 hESC lines 
and 500 similarly-sequenced controls. Regions with at least 4 recurrent events in hESCs are indicated by blue 
arrowheads. L) A minimally duplicated region on Chr1q32.1 harbors candidate genes (red).  
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Frequency of small structural variants in hESCs 

 Since large CNVs were relatively common in hESCs, we wondered if these stem cells might also 

carry an excess burden of small CNVs, which have not yet been comprehensively examined in any 

detail. To address this question, we filtered out genomic regions containing CNVs >1 Mbp from affected 

samples, and studied the residual whole genomes of 121 hESCs alongside 243 control whole genome 

sequences from human blood and lymphoblastoid cell line (LCL) samples (Pato et al, unpublished) for 

CNVs between 1.1 kbp and 1 Mbp. We observed 6155 unique CNVs, many of which were shared across 

cell lines, leading to an average of 999 ± 66 small CNVs per hESC sample (Table S3F,G). These 

numbers were in vast excess of what was observable from SNP microarrays (16/6155, 0.3%, Fig. 4C) 

using depth of coverage methods. However, the frequencies of these smaller deletions and duplications 

in hESCs, as assessed from WGS data, were indistinguishable at all length scales tested from those in 

similarly sequenced populations of human somatic cells (Fig. 4D-F).  

Since the overall CNV burden was large, we hypothesized that it might be possible to detect a 

signature of culture-acquired variants in hESCs based on their acquisition of genomic regions not 

commonly associated with CNVs in human populations. We therefore identified the CNVs present just 

once in the combined dataset of hESCs and control samples. We found that each hESC line harboured 

on average of 21 ± 11 of these singleton CNVs, which was again indistinguishable from the frequency 

of similar events in the somatic cell control samples (Fig. S3D-F, Table S3G). Together, our findings are 

consistent with the notion that hESCs and somatic cells from many individuals carry a similar overall 

burden of small duplications and deletions.  

 
Location and potential roles of structural variants in hESCs 

To gain insight into the mechanisms that contribute to recurrent structural variants in hESCs, we 

examined the well-studied Chr20q11.21 region (Amps et al., 2011; Spits et al., 2008) and observed 

duplications in 11/143 (8%) cell lines we subjected to WGS (Fig. 4G), including one additional likely 

instance of isochromosome 20 (Fig. S3G). The Chr20q11.21 duplication extends from regions near the 

centromere that cannot be accurately mapped to variable breakpoints along the long arm of Chr20. 
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Chr20q11.21 contains the anti-apoptotic gene BLC2L1 which has been shown to confer a selective 

advantage when duplicated (Avery et al., 2013; Nguyen et al., 2014). However, it remains unclear why 

this genomic region is so much more frequently duplicated than other regions that harbour similar anti-

apoptotic genes or proto-oncogenes. To ask if the local sequence context might shed light on this issue, 

we mapped the non-centromeric Chr20q11.21 CNV breakpoints. These breakpoints were unique for 

each cell line (Fig. 4H), but all shared a common centromere-like HSAT3 (GGAAT)n motif (Fig. 4H) that 

is commonly seen on Chr20q11 (Altemose et al., 2014). These findings indicate that Chr20q11.21 might 

be prone to homology-based structural instability at a relatively high frequency, and then the selective 

advantage conferred by the additional copy of BLC2L1 drives the expansion of cell lines containing the 

duplication.  

To better understand their potential functional consequences, we next mapped all large 

structural variants to the genome (Fig. 4I-K). We found that 13/143 (9%) hESC cultures contained 

aneuploid cells, all but one of which involved chromosomal gain and were predicted to be present at a 

cellular fraction of 7-66%  (Table S3B). Six of these hESC lines showed duplication of Chr12, which has 

been shown to be recurrent in hPSC cultures (Amps et al., 2011). In addition to aneuploidy, we observed 

eight fixed large duplications and 20 more present in a fraction of cells, as well as six fixed large deletions 

and six large deletions present in only a subset of cells (Table S3B). We also found that 14/143 (10%) 

hESC lines carried CN-LOH events in a subset of cells, of which five involved the entire q arm of 

chromosome 9 (Fig. 4K). This structural variant has not previously been reported to be recurrent in 

hPSCs but since we had also previously observed it arising de novo upon gene editing (Kiskinis et al., 

2014) it is likely to represent a novel, recurrent, culture-acquired structural variant (Fig. 6B).  

We also observed the duplication of a sub-region of Chr1q in four cell lines (Fig. 4I), as has been 

previously reported (McIntire et al., 2016). Since this region has not been finely mapped to the best of 

our knowledge, we combined our data with an independent set of human induced pluripotent stem cell 

lines from the HipSci resource (Kilpinen et al., 2017) (data accession: EGAD00010001147), and found 

11 more unique cell lines with duplications over this interval. Together, these cell lines defined a 

minimally duplicated region at Chr1 ~203,408,100 - 204,572,300 (hg19 assembly), corresponding to the 
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cytogenetic location Chr1q32.1 (Fig. 4L). This region contains several candidate genes worthy of future 

investigation that may confer selective advantage when duplicated, including KDM5B, PIK3C2B, and 

MDM4 (Fig. 6B, Table S3H). 

We were surprised to observe two cell lines displaying patterns of mosaic CNV calls consistent 

with “trisomy rescue” of chromosomes 5 (Genea48) or 16 (HUES71) (Fig. S3H). These trisomies must 

have resulted from meiotic nondisjunction since they have three distinct haplotypes on segments of 

these chromosomes, as opposed to two imbalanced haplotypes that might arise from mitotic errors. 

These findings indicate that at least some structural variants we observed were present in human 

embryos at the time of hESC derivation. Trisomic cells may be “rescued” to a diploid state by losing one 

of the excess chromosomes to either restore chromosomal balance or  cause uniparental disomy, where 

both chromosomes are derived from the same parent as seen in Prader Willi Syndrome and Angelman 

Syndrome. Our findings suggest that meiotic trisomy rescue may also occur in vitro, providing an unique 

opportunity to explore the biology of a process that cannot be readily studied in primary human tissue 

or hiPSCs, highlighting the enduring relevance of hESCs for human disease modelling. Indeed, meiotic 

nondisjunction is common in oocytes from older mothers, with chromosome 16 trisomy present 

approximately 1% of human embryos, typically resulting in miscarriage. 

Finally, we wondered whether small (<1 Mbp) CNVs might wholly or partially affect genes of 

likely functional relevance for hESC biology (Table S3I,J).  We found that one cell line (WIBR2) carried 

a small heterozygous deletion encompassing TP53 that was present in just 5/234 (2%) of control 

samples. Furthermore, two unrelated cell lines (CSES6 and CSES25) carried distinct heterozygous 

deletions encompassing EP300 that were not observed in human controls (Table S3I). The EP300 gene 

product acetylates and stabilizes p53 (Gayther et al., 2000), suggesting its reduced dosage could 

contribute to reduced p53 activity. Overall, our results suggest that small culture-acquired CNVs may 

functionally impact hPSC biology. 

 
Frequency of SNVs in hESCs 
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Missense and loss-of-function (LoF) SNVs can profoundly alter cellular function by affecting both 

coding regions and functionally important non-coding regions of the genome. Although individual SNVs 

sufficient to cause human disease are rare in a given individual, in aggregate they affect over 300 million 

people worldwide (Nguengang Wakap et al., 2019). We therefore predicted that a fraction of hESCs we 

sequenced would carry SNVs that impact their utility in certain applications. To identify such variants in 

hESCs, we considered SNV calls from the autosomes and X chromosome that were supported by high 

confidence and high quality (HC-HQ) sequence data using filters similar to those used by Karczewski 

and colleagues to analyse 15,708 whole genome sequences in the gnomAD database (Karczewski et 

al., 2019) (Fig. 5A). After applying HC-HQ filters, we observed an average SNV burden per hESC line 

of 244 LoF variants and 11483 missense variants, which was indistinguishable with that observed in 

gnomAD whole genome sequences from humans of diverse ancestries (Fig. 5B). 

Given that deleterious variants are rare in the general population due to negative selective 

pressure, we restricted our analysis to variants present at an allele frequency (AF) of less than 0.001 

(0.1%) among 60,706 exomes represented in the ExAC database (Lek et al., 2016), which are non-

overlapping with the gnomAD whole genomes. To conservatively enrich for likely deleterious variants 

among these rare SNVs, we used the bioinformatic prediction tools “Combined Annotation Dependent 

Depletion” (CADD) (Kircher et al., 2014) and “Deleterious Annotation of genetic variants using Neural 

Networks”  (DANN) (Quang et al., 2015) to identify the variants predicted to be among the top 1% most 

deleterious in the human genome (CADD phred >20 and DANN >0.99). In the hESC lines we analysed, 

9,982 SNVs met these criteria (Table S4A). When we compared the burden of these predicted 

deleterious variants in hESCs to similarly-filtered whole genomes from gnomAD, we again did not 

observe an enriched burden of deleterious SNVs in hESCs (Fig. 5C). Indeed, the burden of missense 

and LoF variants per genome for hESCs was consistent with that seen in ancestry-matched (non-

Finnish European, NFE) samples. Together, these findings are consistent with the null hypothesis that, 

under the conditions tested, hESCs do not accumulate an excess burden of SNVs that is detectable 

above the sampling noise of normal inter-individual genetic variation.  
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Figure 5. The overall SNV burden in hESCs resembles that of human populations. A) Workflow for SNV 
identification and prioritization based on sequencing quality, bioinformatic prediction of deleteriousness, and ExAC 
allele frequency. HC/HQ, high-confidence/high-quality. B) Per-sample burden of missense and LoF SNVs passing 
HC/HQ filters across different human ancestries and in the analyzed hESCs. C) Per-sample burden of rare and 
predicted deleterious missense and LoF SNVs. AMR, Ad-mixed American ancestry; AFR, African ancestry; ASJ, 
Ashkenazi Jewish ancestry; EAS, East Asian ancestry; FIN, Finnish ancestry; NFE, non-Finnish European 
ancestry; OTH, other ancestry; GLOBAL, all whole genome samples in gnomAD; hESC, hESC samples in this 
study.  
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Cancer-associated SNVs and structural variants  

Genetic variants associated with cancer are of particular interest to the stem cell community 

since they might alter hESC genomic stability and growth characteristics, disrupt hESC differentiation 

and cellular phenotypes in differentiated cells, or increase the risk of cancerous growths arising from 

hESC-derived cells after transplant. We therefore asked if any of the SNVs observed in hESCs fell within 

genes having a documented “Tier 1” activity relevant to cancer as annotated in the Catalogue of Somatic 

Mutations in Cancer (COSMIC, https://cancer.sanger.ac.uk/cosmic) (Tate et al., 2019). We then asked 

which of the 382 variants meeting these criteria had been observed in human cancers in COSMIC at 

least twice (n=51) and were bioinformatically predicted to be cancer-causing by Functional Analysis 

Through Hidden Markov Models (FATHMM, http://fathmm.biocompute.org.uk/cancer.html) (Shihab et 

al., 2013). This analysis revealed 14 unique heterozygous missense variants across 10 genes in 15 

hESC lines (Table S4B, Fig. 6B), including three of five mutations in TP53 that we had previously 

identified by exome sequencing (Merkle et al., 2017). Of the remaining 11/14 SNVs we identified, several 

suggested the recurrent involvement of the p53 and DNA damage response pathways. In particular, we 

observed two cell lines (HUES44 and UM77-2) carrying variants in the cell cycle checkpoint kinase 

ataxia telangiectasia mutated (ATM), whose gene product phosphorylates p53 and other downstream 

targets in response to DNA damage (Maréchal and Zou, 2013). We also observed a likely pathogenic 

mutation in the BRCA2 gene in cell line HUES53, whose gene product associates with p53 and helps 

maintain genomic stability via the homologous recombination pathway for DNA damage repair (Roy et 

al., 2012). These findings are consistent with our earlier discovery of rare, small CNVs affecting TP53 

and EP300.  

Other hESCs carried likely pathogenic variants in genes relevant to proliferation and apoptosis. 

HUES42 contained a variant in the von Hippel-Lindau tumor suppressor (VHL), whose heterozygous 

loss of function leads to a dominant cancer predisposition syndrome (Kaelin, 2002). A separate hESC 

line (CT2) carried a variant in microphthalmia-associated transcription factor (MITF). MITF directly 

regulates the transcription of multiple genes, including the anti-apoptotic gene BCL2 (McGill et al., 2002) 
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whose paralog BCL2L1 likely drives the recurrent duplication of Chr20q11.21 in hPSCs (Avery et al., 

2013; Nguyen et al., 2014).   

In addition, we observed several pathogenic variants in genes associated with cell adhesion and 

signal transduction. Two cell lines (UM14-1 and CSES25) carried variants in protein tyrosine 

phosphatase receptor type T (PTPRT), a transmembrane protein that associates with members of the 

cadherin and catenin family of cell adhesion molecules (Besco et al., 2006) and dephosphorylates 

STAT3 to reduce the expression of its target gene BCL2L1 (Zhang et al., 2007). We speculate that these 

PTPRT variants may be advantageous to hPSCs by increasing BCL2L1 expression. Similarly, line 

UM121-7 carried a variant in adenomatous polyposis coli (APC), whose gene product regulates cell 

proliferation and adhesion via beta-catenin (Aoki and Taketo, 2007), suggesting this cell line might 

display aberrant responses to WNT signaling; mutations in APC are a primary driver of colon adenomas, 

and this line might therefore by inappropriate for many transplantation applications (but useful for studies 

of precancerous states). Cell line WA21 carried a pathogenic variant in the protooncogene RET, which 

encodes a receptor tyrosine kinase in which gain-of-function variants promote endocrine tumors and 

other cancer types (Mulligan et al., 1993), while cell lines CT3 and a line from UCLA carried mutations 

in the receptors for epidermal growth factor (EGF) and vascular epithelial growth factor (VEGF), 

respectively.  

Finally, we asked if the COSMIC-associated variants we identified in hESCs were included 

among the 23 genes recurrently mutated in hESCs over time in culture (Avior et al., 2019). We identified 

variants in 9 of these genes, including FAT1 (n=6), TP53 (n=4), APC (n=3), ARID1A (n=3), EGFR (n=1), 

MYH9 (n=1), PCM1 (n=1), RNF213 (n=1) and VHL (n=1). Notably, the RNF213 variant was present in 

a homozygous state in line WIBR6. It will be interesting to see in future studies whether mutations in 

these genes alter hPSC growth or survival (Table S4B).   
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Figure 6. Genes and systems affected by likely deleterious SNVs in hESCs. A) Schematic of approach used 
to identify disease-associated genetic variants in hESCs, and number of variants passing these filters. B) Analysis 
of cancer-associated variants suggests broader involvement of the p53 pathway (KEGG, red shading). Green 
boxes denote SNVs, and blue boxes denote small (dark blue) or large (light blue) structural variants. Candidate 
genes implicated by large structural variants are indicated by dashed lines. C) Numerous fertility-associated genes 
carried deleterious mutations, suggesting potential causes of sub-fertility in some of the couples who donated 
embryos for hESC derivation. D) Other SNVs affected genes associated with autosomal dominant disease 
affecting multiple body systems and cell types generated from hPSCs.  
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Fertility-associated variants 

The majority of hESCs we studied here were derived from donated embryos there were excess 

to the needs of couples seeking assisted reproduction at in vitro fertilization (IVF) clinics. We thus 

considered whether genetic variants affecting fertility would be present among the sequenced hESC 

lines. It is of practical importance to identify such cell lines, since there is considerable interest in 

differentiation of hPSCs into germ cells for studies of human meiosis and gametogenesis (Sasaki et al., 

2015; Zhou et al., 2016). To identify such infertility-associated genetic variants in hESCs, we examined 

the intersection between a list of genes associated with infertility from the literature (Mallepaly et al., 

2017; O’Flynn O’Brien et al., 2010; Venkatesh et al., 2014), and genes in which inactivating 

heterozygous mutations are under strong negative selective pressure and are therefore likely to cause 

dominant disease as identified using the loss-of-function observed/expected upper bound fraction 

(LOEUF) metric from studies of human genome variation (Karczewski et al., 2019). We conservatively 

set LOEUF to 0.33 or less, revealing variants in 12 fertility-associated genes meeting these criteria. To 

increase our confidence in the disease relevance of these variants, we further restricted our analysis to 

genes whose disruption is associated with autosomal dominantly-inherited disease in the manually-

curated Clinical Genomic Database (CGD, https://research.nhgri.nih.gov/CGD/) and identified 8 variants 

affecting 6 of the 12 previously identified genes (Fig. 6C, Table S4D). These included a variant in Wilms 

Tumor 1 (WT1), whose dysfunction is associated with abnormal sperm production and female subfertility 

(Nathan et al., 2017; Niederberger, 2014). We also identified two independent missense variants in 

Chromodomain Helicase DNA Binding Protein 7 (CHD7) whose disruption can cause Kallmann 

syndrome (hypogonadotropic hypogonadism), which is characterized by underdeveloped testes or 

ovaries due to defects in cell populations in the hypothalamus or pituitary gland that regulate sexual 

development (Jongmans et al., 2009). We further observed three variants in genes associated with 

autosomal dominant hypogonadotropic hypogonadism; two affecting SEMA3A (Hanchate et al., 2012) 

and a likely inactivating variant in FGFR1 (Dodé et al., 2003). Both SEMA3A variants are strongly 

predicted to be pathogenic by CADD and DANN (scores >30 and >0.999, respectively) as well as 
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FATHMM-XF (score >0.7) (Rogers et al., 2018), and one of these variants affected each of the 3 sibling 

lines in a trio we identified (Fig. 2D), raising the intriguing possibility that it might explain the cause of 

sub-fertility in the couple who donated their embryos to generate these hESC lines. 

We also observed two cell lines (HUES62 and KCL020) with variants in the X chromosomal 

genes DIAPH2 and AFF2, respectively. The disruption of these genes is associated with premature 

ovarian failure, as well as other conditions including mental retardation. Groups seeking to differentiate 

hESCs into oocytes may wish to avoid these cell lines. We also identified a cell line (WA26) that carried 

a homozygous deletion of the pregnancy-specific glycoprotein (PSG) gene cluster. PSG genes are still 

poorly understood but encode the most abundant fetal proteins found in the maternal bloodstream and 

likely have immunomodulatory functions important for fetal growth and survival (Lisboa et al., 2011; 

Martinez et al., 2013).  

 
Disease-associated SNVs  

 Finally, we screened for variants that might cause disease-relevant phenotypes in vitro or 

compromise the safety of hESC-based regenerative medicine. We focused on genes predicted from 

human-genetic variation data to be intolerant to loss-of-function (LOEUF <0.33, n=2000) and that had 

been annotated as associated with autosomal dominant human disease in CGD (n=324). To restrict 

ourselves to the variants in autosomal genes most likely to be pathogenic, we considered those 

bioinformatically predicted to be pathogenic by FATHMM-XF (score >0.75, n=146) (Rogers et al., 2018) 

and DANN (score >0.999, n=36). Finally, we further filtered these variants to those that were extremely 

rare in ExAC (AF <1x10-5) in order to enrich for those variants that were damaging enough to be subject 

to purifying selection. These filters revealed 11 variants whose disruption is associated with disease in 

vivo and might also affect cell types commonly generated from hPSCs in vitro (Fig. 6D, Table S4E).  We 

found that some variants affected genes required for normal development and might therefore interfere 

with the generation of specific cell types. In particular, one cell line (KCL019) carried a variant in GATA2, 

a transcription factor involved in immune cell development associated with immunodeficiency and 
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leukemia when disrupted (Collin et al., 2015). Groups seeking to generate hPSC-derived blood cells 

(Moreau et al., 2016; Sugimura et al., 2017) may wish to avoid cell lines carrying this or similar variants.  

Other variants likely affect the function of specific cell types. KCL032 carried a mutation the gene 

encoding the ryanodine receptor RYR2, which is enriched in the heart where it mediates the release of 

intracellular calcium from sarcomeres during cardiomyocyte contraction. Mutations in this gene have 

been associated with autosomal dominant cardiac arrhythmia and tachycardia (Priori and Napolitano, 

2005), suggesting that cardiomyocytes differentiated from hPSCs carrying this variant might display 

abnormal function in vitro. Furthermore, multiple cell lines carried variants that might alter neuronal 

function. WA19 carried a variant in the spastin (SPAST) gene, whose gene product interacts with and 

severs microtubules, and whose dysfunction can cause the autosomal dominant neurological disease 

spastic paraplegia characterized by axonal defects (Solowska and Baas, 2015). Similarly, cell line 

KCL038 carried a variant in FBXO38, which encodes a co-activator of KLF7, which has been associated 

with motor neuron degeneration (Sumner et al., 2013) and HUES69 carried a variant in the lysine 

methyltransferase KMT2E (MLL5), which plays a role in regulating gene expression, cell-cycle 

progression, and genomic stability as well as having been associated with epilepsy and 

neurodevelopmental defects (Zhang et al., 2017a). A fourth cell line (KCL022) carried a missense 

variant in HIVEP2, whose loss of function is associated with autosomal dominant mental retardation 

(Srivastava et al., 2016). 

We also found variants in genes involved in broader cell biological processes that might cause 

numerous phenotypes in vitro when disrupted. Cell line HUES45 carried a variant in TNFRSF1A 

(TNFR1), which encodes a receptor for tumor necrosis factor (TNF) and plays a role in cell survival, 

apoptosis, and inflammation (Ting and Bertrand, 2016). Interestingly, a second cell line (WA24) carried 

a missense variant in the MAP kinase family member MAP3K7 (MEKK1), whose gene product functions 

downstream of TNFRSF1A and MEK, and that binds to and stabilizes p53 (Chipps et al., 2015). 

Heterozygous mutations in TNFRSF1A or MAP3K7 have been associated with pathological 

inflammatory responses or defects in skeletal and craniofacial development, respectively. In vitro, these 

variants may lead to altered TNF-alpha signal transduction and apoptosis.  We also observed a cell line 
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(from UCLA) carrying a variant in COPA, whose gene product is required for normal retrograde 

membrane trafficking from the Golgi to the endoplasmic reticulum (ER). COPA disruption causes ER 

stress and is associated with autoimmune joint, lung, and kidney disease in vivo (Watkin et al., 2015) 

and may therefore cause cellular phenotypes in vitro in cells sensitive to ER stress or affect immune cell 

generation. Furthermore, cell line CHB5 carried a heterozygous missense variant in the gene encoding 

the eukaryotic translation elongation factor EEF2, which is required for normal rates of protein synthesis 

(Kaul et al., 2011). Heterozygous mutations in this gene have been associated with spinocerebellar 

ataxia, and hESCs and their progeny carrying this variant may display altered protein metabolism, with 

unclear downstream consequences. Finally, we observed a cell line harbouring a variant in the platelet 

derived growth factor receptor PDGFRB. Mutations in this gene have been linked to multiple diseases 

of abnormal growth, development, and aging (Andrae et al., 2008).  

We note that while the discovery of potentially deleterious SNVs is concerning and their potential 

effects should be carefully considered, many of the specific alleles we found lack definitive experimental 

evidence demonstrating that they are sufficient to cause disease. Conversely, our stringent bioinformatic 

selection criteria clearly exclude some functionally relevant variants. For example, filtering on LOEUF 

excluded all variants in TP53 and a D90A variant in SOD1 associated with incompletely penetrant 

amyotrophic lateral sclerosis (Al-Chalabi et al., 1998) that may be relevant to groups modelling 

neurodegenerative disease. Furthermore, our sequencing quality filters removed two of the five variants 

previously identified in TP53 since they were present at low allelic faction. We therefore provide a full 

list of likely deleterious SNVs (Table S4A) and developed a web resource to enable groups to mine 

these data and rationally select cell lines.   

 
Tools for rational hESC line selection  

The breadth of findings that can be garnered from whole genome sequencing data raised the 

question of how genomic information can best be harnessed by stem cell biologists to rationally select 

an appropriate cell line for a particular application. Which variants are likely benign, and which might 

limit the utility of a cell line in a given application? To help the community address these questions, we 
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generated three complementary resources. First, we summarize some of the most relevant results 

presented in this study, in the form of a convenient lookup table (Fig. 7A). Second, we provide an 

annotated table of the variants we identified (Tables S1-S4) and deposited the raw sequencing data into 

controlled access databases (dbGaP, EGA). Finally, we have created a user-friendly online data portal 

(https://portals.broadinstitute.org/hscgp) (Fig. 7B, Movie S1) that enables users without computational 

expertise to readily search for sequence variants of interest among sequenced hESC lines. For 

example, a search for TP53 reveals all variants in the gene that were detected in the sequenced cell 

lines, the names of those cell lines, as well as bioinformatic predictions about the likely consequences 

of these variants. Search results can be exported for further analysis. Specific cell lines can also be 

interrogated for the presence of variants of interest, and raw sequencing alignments can be visualized 

via the integrative genomics viewer IGV (Robinson et al., 2011).  
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Figure 7. Genetically-informed rational cell line selection. A) Graphical summary of the number of large fixed 
and mosaic structural variants (dark and light blue, respectively), SNVs likely associated with cancer (red), fertility 
(magenta) or other diseases (green), “outlier” PRS, and summary data for each analyzed hESC line. B) As a 
resource for the field, raw sequencing data are deposited in controlled-access databases, analyzed data are 
provided as supplementary data files associated with this study, and user-friendly data portal enables non-
specialist groups to explore and extract data of interest, down to the level of the primary sequence traces. C) 
Suggested workflow for rational hPSC line selection and monitoring of genomic integrity for research and clinical 
applications. 
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DISCUSSION 

 Techniques commonly used to evaluate the genetic integrity of hESCs, including high-density 

SNP microarrays and karyotyping by G-banding, have limited spatial resolution and limited power to 

detect mosaic events (Baker et al., 2016). Here we show that high-coverage (> 25x) WGS enables the 

robust identification of potentially relevant structural and single nucleotide variants. As the price of whole 

genome sequencing is steadily dropping and provides considerably more information on genetic 

variation than many other methods, our experience suggests that WGS may gradually become the tool 

of choice for genetic analysis of hPSCs.  

While we strove to identify the most relevant genetic variants present in hESC lines, our analyses 

were not exhaustive. We did not consider inversions, translocations, repetitive genomic regions, 

mitochondrial DNA sequences, epigenetic differences, or variants on the Y chromosome. While the 

WGS data used in this study provides an unprecedented view of stem cell genomes, its short read length 

(150 base paired-end reads) coupled with the inherent variation in sequencing read depth due to DNA 

replication (Koren et al., 2014) does have some limitations that might be mitigated in part by future 

studies using long-read sequencing technologies. For instance, our analysis was currently limited to 

variants <~50 bp or >~1.1 kbp, and our analysis structural variant mosaicism was limited to variants >~1 

Mbp. In addition, the accuracy of HLA haplotype estimation is constrained by the limited number of 

informative SNPs, and haplotypes should be verified prior to use in any downstream application (De 

Bakker et al., 2006). We therefore encourage groups to interrogate the full dataset for relevant variants 

in their cell line(s) of interest using the provided web resource (https://portals.broadinstitute.org/hscgp) 

or by re-analysis of the raw data (dgGaP, EGA). We also anticipate that groups may wish to utilise the 

data sets presented here in combination with transcriptomic data to map expression quantitative trait 

loci (eQTL) in hESCs or their differentiated progeny.  

 

Genetic background and relatedness 
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We found that all but a few of the hESC lines we sequenced were of European ancestry, 

highlighting the need to expand the diversity of stem cells lines available in order to facilitate study of 

genetic variants found in individuals of distinct ancestries. We were also surprised that 33% of 

sequenced hESC lines were siblings. While these related cell lines should not be treated as independent 

controls in biological experiments, they may be valuable for examining the impact of genetic inheritance 

on transcriptional and phenotypic outcomes. Each cell line also carried a distinct PRS profile based on 

combinations of thousands of common genetic variants. The predictive value of PRS score calculations 

will likely increase as population sequencing studies include larger numbers of more deeply-phenotyped 

individuals. Selecting lines based on their PRS may improve case-control and isogenic disease models, 

since hPSC genetic background drives transcriptional variability (Kilpinen et al., 2017; Rouhani et al., 

2014b), and incompletely penetrant phenotypes may only be detectable on a genetically predisposed 

background, as is well-known in animal models (Ayadi et al., 2012). 

 

The origin and impact of structural genetic variants  

We found that almost a third of hESC lines in this study carried large structural variants, of which 

approximately half were mosaic (Fig. 4J,K, Fig. 7A, Table S3B). Mosaic variants might arise in culture 

and confer selective advantage to affected cells, leading to the expansion and eventual fixation of the 

variant. Indeed, of the nine hESC lines carrying advantageous duplications at Chr20q11.21, six were 

mosaic and three were fixed (Fig. 4B). Alternatively, mosaicism could arise from negative selective 

pressures, since approximately half of all preimplantation human embryos carry large structural genetic 

variants (Fragouli et al., 2019) and we observed two instances of apparent trisomy rescue (Fig. S3H). 

Fixed variants might have arisen in culture and reached fixation or might be inherited as seen in the 

sibling cell lines KCL032 and KCL033 that carried identical large duplications on Chr5 (Table S3B).  

Our studies confirmed the recurrence of duplications on Chr1, Chr12, and Chr20q11.21 (Fig. 

4J). We found that Chr20q11.21 duplication breakpoints contain a common centromere-like HSAT3 

motif, suggesting that this chromosomal region is predisposed to microhomology-based copy number 

changes (Fig. 4H,I). We also found that four hESC and 11 hiPSC lines carried a minimally duplicated 
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~1.2 Mbp region on Chr1q32.1 containing several genes that might confer selective advantage, either 

alone or in concert (Fig. 4M). These genes include MDM4 which is frequently overexpressed in cancer 

and whose gene product directly binds to and inhibits p53 (Fig. 6B) (Francoz et al., 2006), the PI3 kinase 

PIK3C2B which is frequently duplicated in malignant breast cancer and regulates cell proliferation and 

DNA damage response (Zhang et al., 2017b). 

We also discovered a novel, recurrent CN-LOH event on Chr9q (Fig. 4L) that would alter the 

expression levels of imprinted or differentially methylated genes. Indeed, Chr9q LOH is seen in most 

bladder cancer cases (Hirao et al., 2005), and sometimes also observed in non-cancerous esophageal 

mucosa samples (Yizhak et al., 2019) and in tissue adjacent to head and neck squamous cell carcinoma 

(Jakubek et al., 2020), suggesting a role cancer formation. Together these studies suggest Chr9q may 

contain genes expressed in an allelically unbalanced manner that affect cell growth or survivalFor 

example, BRINP1, also known as DBCCR1 and DBC1 (deleted in bladder cancer 1) located at 

Chr9q33.1 is frequently deleted or hypermethylated in cancer (Izumi et al., 2005) (Fig. 6B), as is the 

microRNA miR-181a2/181b2 at Chr9q33.3 (Fig. 6E) which suppresses cell cycle progression likely by 

targeting the PI3K/AKT/MTOR pathway (Mei et al., 2017). Future transcriptional and epigenetic profiling 

studies of hPSCs may reveal specific genetic variants associated with the recurrence of this variant. 

 
Disease-associated SNVs and suggestions for rational hESC selection 

We sought to identify sequence variants likely to affect the function of hESCs or their derivatives 

using combination of gene-level and variant-level filters based on manually-curated databases and 

bioinformatic prediction algorithms (Fig. 6B-D). This approach avoids potential selection bias but we 

note that databases are not comprehensive and prediction algorithms are imperfect, and it is also difficult 

to predict which phenotypes will result from specific genotypes. Indeed, there are no hard rules 

governing which mutations might disqualify a cell line for a given purpose and polyploid cells have been 

knowingly transplanted into humans without apparent ill effects (Nelson et al., 2002). While we feel that 

most groups would agree that a cell line carrying a TP53 mutation conferring a lifetime cancer risk of 

nearly 100% (Malkin, 1993) should not be transplanted into patients if a suitable alternative exists, other 
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variants should be considered on a case-by-case basis depending on research needs. In contrast, 

damaging variants associated with fertility or other disease (Fig. 6B-C, Table S4) will likely be of interest 

and perhaps even value to groups studying gametogenesis or modelling specific diseases in vitro.   

To facilitate the rational selection of hPSC lines based on genetic criteria, we therefore suggest 

a scheme (Fig. 7C) that can be adapted to achieve the appropriate balance of risk and benefit for a 

particular application. We illustrate decision points that many groups working with hPSCs will likely 

encounter (Fig. 7C). First, we reason that most groups will prefer to work with cell lines having minimal 

restrictions on the freedom to use or share the lines and their derivatives, and whose genomic structure 

has been extensively characterized. Second, since aneuploidy or rare, large structural variants would 

affect the expression of many genes with unpredictable consequences, we suggest avoiding such lines 

for both research and clinical use, although it might be possible “rescue” lines with mosaic variants by 

sub-cloning or by requesting an earlier passage line from the provider that may lack the variant. Third, 

most groups would avoid cell lines carrying cancer- and disease-associated variants whose predicted 

effect size exceeds pre-established criteria, which will vary by application. Notably, some groups may 

wish to take advantage of genetic disease predisposition rather than using this as a criterion for 

excluding cell lines.  Fourth, the PRS for a trait of interest, ancestry, and relatedness of the cell line may 

reveal cell lines are most likely to display desired traits.  

 

Recommendations for monitoring hPSC genomes 

We found that both structural and sequence variants likely to compromise hPSC function are 

widespread, and some were likely acquired in culture. This fact highlights a pressing need to reduce the 

selective pressures that apparently exist in commonly used culture conditions. A clear pattern among 

many of these mutations was their effects upon TP53, EP300, and other genes involved in response to 

DNA damage.  These findings underscore the importance of regularly monitoring the genomic integrity 

of cultured hPSCs. The criteria for monitoring genomic integrity might be more stringent for clinical 

applications, but we recommend that groups performing basic research could streamline tissue culture 

workflows and achieve more reproducible results by following the steps outlined in Figure 7C. Briefly, 
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since hPCSs acquire genetic variants over time in culture, we suggest selecting and subcloning a deeply 

characterized cell line with suitable genetic properties, confirming the absence of undesired genetic 

variants, and then expanding one subclone to generate a large “master bank” of frozen vials of known 

genetic status. After confirming that potentially deleterious mutations did not arise during cell line 

expansion, “working stock” vials could be periodically drawn from the bank and then discarded within 5 

passages after thawing to minimize genetic drift and reduce the need for regular sequencing. If lines 

need to be cultured for longer periods, we recommend that they be routinely sequenced every 5-10 

passages to test for the emergence of potentially deleterious mutations and to safeguard against 

accidental cell line cross-contamination (Horbach and Halffman, 2017). We also suggest performing 

genomic analysis after gene editing and other manipulations that force cells through clonal bottlenecks.  

Together, our analysis demonstrates that the overall numbers of small CNVs and SNVs identified 

in hESCs are indistinguishable from those seen in somatic cells from a similarly scaled population of 

donors, validating hESCs as a powerful tool to study human development and disease and as a useful 

source of clinically important cell populations. Despite this global similarity, we uncovered a wealth of 

genetic variants unique to each cell line, including large structural variants and potentially deleterious 

SNVs in disease-associated genes that might compromise the utility of certain lines for certain 

applications. We anticipate that the data provided here will become increasingly valuable as our 

understanding of genotype-phenotype relationships steadily improves. By providing a searchable online 

data portal enabling individuals with any levels of computational expertise to make use of the resource 

we report here, we hope that the reproducibility of research findings from hESC studies and their ultimate 

use in clinical applications will be improved.  
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MATERIALS AND METHODS 
 
Whole genome sequencing and genotyping 

hESCs were acquired and cultured as previously described (Merkle et al., 2017). Briefly, cell 

pellets of approximately 1-5 million cells digested overnight at 50C in 500 μl lysis buffer containing 100 

μg/ml proteinase K (Roche), 10 mM Tris pH 8.0, 200 mM NaCl, 5% w/v SDS, 10 mM EDTA, followed 

by Phenol:Chloroform precipitation, ethanol washes, and resuspension in 10 mM Tris buffer (pH 8.0). 

Genomic DNA was then transferred to the Genomics Platform at the Broad Institute of MIT and Harvard 

for Illumina Nextera library preparation and sequencing on the Illumina HiSeqX platform with paired-end 

150 base reads. Sequencing reads were aligned to the hg19 reference genome using the BWA MEM 

alignment program. Genotypes from WGS data were computed using best practices from GATK 

software (McKenna et al., 2010) version 3.1. Data from each cell line was independently processed with 

the HaplotypeCaller walker and further aggregated with the CombineGVCFs and GenotypeGVCFs 

walkers. Genotyped sites were filtered using the ApplyRecalibration walker. 

 

Determination of ancestry, genetic relatedness, and HLA haplotype diversity 

Genotypes from the cell lines at sites in common with sites genotyped in the 1000 Genomes 

Project Phase 1 (Consortium et al., 2012) and with a minor allele frequency (MA) of at least 1% were 

selected for relatedness and ancestry analysis. For relatedness analysis, selected sites were pruned 

using PLINK software (Chang et al., 2015) (“--indep 50 5 2” command option) and estimates for amount 

of IBD1 and IBD2 regions were computed (“--genome gz” command option). Sample pairs were 

considered directly related (parent-child or full sibling) when estimates were between 35% and 70%.  

For ancestry analysis, selected sites were extracted from the dataset, merged with 1000 

Genomes Project genotypes, and pruned using PLINK2 software (“--indep 50 5 2” command option). 

Principal component analysis was then performed for this combined dataset by computing the pairwise 

relationship matrix across all subjects (using the plink command “--make-grm-bin”), and computing the 

principal components using GCTA software (Yang et al., 2011). Global ancestral components for 
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European, African, Native American, and Asian ancestry were estimated from the first three principal 

components using a linear model trained by assigning full European, African, and Asian ancestry to the 

appropriate 1000 Genomes population samples, and assigning estimated ancestry proportions to Latino 

samples using available published estimates (Consortium et al., 2012; Maples et al., 2013).Human 

Leukocyte Antigen (HLA) genotype was ascertained by genotyping hESCs for SNPs associated with 

HLA haplotypes in the CEU ethnic group (De Bakker et al., 2006). 

 

Polygenic risk score (PRS) computations 

To compute PRSs, we used summary statistics from studies performed on individuals 

predominantly of European ancestry. For each phenotype with available summary statistics, we 

computed the score for all available markers with association p-values in the original study (Bulik-

Sullivan et al., 2015a) (less than 0.5 (e.g. 1,218,732 for BMI). PRS were computed with established 

methodologies (Purcell et al., 2009) and PLINK software (Chang et al., 2015) using genotypes from 

WGS data. To control for potential methodological biases, we also calculated PRSs using high-coverage 

WGS data from unrelated human samples including 383 schizophrenia (SCZ) cases and 489 SCZ 

controls (ripke 2014) and adjusted raw PRSs by regressing the first 12 principal component values to 

correct for slight biases introduced in the computation of the summary statistics. Principal components 

beyond the first 12 did not show significant correlation with raw PRS. Raw PRS values were normalized 

such that the distribution of PRS scores from SCZ control subjects had zero mean and unitary standard 

deviation (SD).  

 

CNV calling from read depth variation in WGS data 

Copy number variants were ascertained and genotyped using Genome STRiP (Handsaker et 

al., 2015) version 2.0 (r2.00.1587) (http://www.broadinstitute.org/software/genomestrip/), using the 

CNVDiscoveryPipeline with default settings. This software examines average depth of coverage (DOC) 

genome-wide to identify chromosomes and genomic regions whose normalized DOC deviated from the 

expected copy number of 2 for autosomes, and 2 or 1 for the X and Y chromosomes. After initial CNV 
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calling, quality was assessed using signal intensity data from Omni 2.5 Microarrays run on the 500 

individuals from a control cohort. Using the IRS method (Handsaker et al., 2015) we established 

separate length thresholds for deletions (length threshold = 1117) and duplications (length threshold = 

2750) that achieved a false discovery rate under 3% for both categories of CNV (Figure S3A). By 

comparing the number of CNVs called in the cell lines to CNVs called in the control cohort, stratified by 

CNV type, length and ancestry, we estimate that the false discovery rate in the cell lines should be 

comparable to the estimated false discovery rate of 3% in the control cohort. 

To increase CNV calling power and to enhance quality control, CNV analysis was performed on 

a combined cohort of 130 sequenced hESC lines and a control cohort consisting of 243 human samples 

from primary blood or lymphoblastoid cell lines (LCL) that had undergone WGS on the same platform 

(Illumina HiSeqX) and to similar depth as the hESC lines (Pato et al., 2013). We then separated CNVs 

into small (1117 bp - 1 Mbp) and large (> 1 Mbp) categories since large variants were uncommon among 

similarly-sequenced human samples and therefore more likely to be culture-acquired and potentially 

deleterious, and manually confirmed all large CNV calls from hESCs and human control samples. 

 

Detection of large fixed and mosaic structural variants 

To detect large-scale copy number alterations (> 1 Mbp) by sequencing depth of coverage 

(DOC), we scanned the genome for segments where one sample had was enriched or depleted in depth 

of sequencing coverage compared to the other cell line samples. We divided the genome into non-

overlapping 100 kbp bins of uniquely-alignable sequence (based on 101bp k-mers) and computed the 

normalized depth of coverage using Genome STRiP (Handsaker et al., 2015). For each contiguous 

range of bins, a Z-score was computed for each sample over the genomic interval as: 

 

Z(S,I) = abs(coverage(S,I) – median(I)) / MAD(I) 

 

where coverage(S,I) is the normalized depth of coverage for sample S over the interval, median(I) is the 
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median coverage over all samples and MAD is the median-absolute-deviation. We performed a heuristic 

search to identify candidate CNV intervals with a Z-score > 3 that were local maxima for sample S. We 

required that candidate CNV intervals have sharp boundaries, such that the depth of coverage for 

sample S in the next adjacent bin (on both ends of the interval) was more than halfway from the coverage 

for S inside the interval to the median coverage of the adjacent bin outside the interval. The final set of 

large CNVs reported were selected to span at least 10 bins (minimum length 1 Mbp) and have a Z-score 

> 5. The boundaries of each CNV were manually reviewed and adjusted as needed near centromeres 

or telomeres or to merge adjacent calls. Contiguous but compound variants were considered as one 

unique event. 

To determine if CNVs detected in hESCs were present in all sequenced cells or in a subset of them, we 

calculated the likelihood that the divergence from an integer copy number could have arisen by chance. 

We set the P value threshold for detecting mosaicism at 1 x 10-3 since human blood samples had only 

2/243 (< 1%) samples with smaller P values (Fig. S3B), and otherwise classified CNVs as fixed.  CNV 

calls made from sequencing depth of coverage analysis were supported by allelic coverage at 

heterozygous sites. This was measured at all heterozygous SNPs observed at least five times across 

the whole dataset and falling outside of regions exhibiting excessive heterozygosity in the 1000 

Genomes project dataset, as these regions might be more prone to mis-mapping. Each remaining 

heterozygous allele was then phased using Eagle (Loh et al., 2016). Phased genotypes and allelic 

coverages were then analyzed for allelic imbalances with MoChA (https://github.com/freeseek/mocha). 

Highly confident calls (LOD>20) of large structural variations (> 1 Mbp) were reported (Table S3). To 

distinguish acquired CN-LOH events from fixed runs of homozygosity arising from inbreeding or complex 

chromosomal rearrangement, we considered only events that were mosaic and extended to the 

telomere, consistent with CN-LOH formation in culture by a single mitotic crossover event.  

 

Comparison of structural variant calls by SNP array and WGS 

All structural variant calls made by SNP array in a published dataset (Canham et al., 2015) were 

compared to those made in this study that were 500 kbp or larger. Calls made by SNP array had been 
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mapped to the hg38 reference genome, so variant calls were converted to hg19 coordinates to enable 

comparison to WGS data. We considered the 20 variants detected by Canham and colleagues 

regardless of their size, and found that 15 of them were confirmed by WGS data. Manual inspection of 

the five calls made by SNP array only showed that three did not meet our criteria for real CNVs, and 

two were likely explained by the divergent culture histories of cell lines that were sequenced at different 

passages.   

 

Detection of small CNVs and the genes they affect 

Regions containing large fixed or mosaic CNVs were excluded from small-scale CNV analysis 

in affected samples to reduce the potential “fragmentation” of large CNVs into smaller calls. Singleton 

events were defined as being present only once in any of the other hESC lines, human samples, or in 

previously described databases such as the 1000 Genomes Project (Auton et al., 2015; Consortium et 

al., 2012). 

To ask whether hESCs might be enriched for specific smaller CNVs, we examined the genome-

wide distribution of CNVs < 1 Mbp in hESCs and removed all but one cell line from the sib-ships we 

identified to control for CNVs shared between first-degree relatives. We measured the frequency of each 

CNV found in the hESCs in two control cohorts: 212 human samples of European ancestry and 250 

human samples of Latino or African American ancestry. We identified events that were present in at 

least 5 hESC lines but that were absent from the European control samples and found in less than 10% 

of the other control samples. This analysis identified the known region on Chr20q11.21 as well as four 

other potentially differentiated CNVs. Manual review of these four additional regions revealed that they 

are all in small regions of extreme GC-content with excessive sequencing coverage and not likely to be 

real CNVs.  

For each cell line, genes overlapping with 5997 CNVs were identified and annotated using the 

GeneOverlap module in GenomeStrip 2.0 and GENCODE. The region of overlap (coding vs. exonic vs. 

intronic) and the type of CNV (deletion or duplication) were also recorded. 2185 CNVs contained at least 
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some part of an annotated gene (Table S3). Limiting CNV overlaps to coding regions and UTRs reduced 

these numbers to 357 deleted (CN < 2) and 321 duplicated (CN > 2) genes, respectively.  

 

Identification of loss of function (LoF) and missense SNVs in hESCs 

To ensure reliable assignment of variant function and to confidently identify potentially high 

impact variants, genotypes were called jointly in all hESC lines and genotype data were annotated using 

Variant Effect Predictor (VEP version 85) in Hail (https://hail.is) with the Loss-of-function Transcript 

Effect Estimator plugin (LOFTEE, https://github.com/konradjk/loftee) (McLaren et al., 2016). Candidate 

variants called by VEP were advanced for further analysis and false positive calls were removed from 

the VEP variant call set by applying similar filters used by gnomAD to identify “high confidence and high 

quality” (HC-HQ) variant calls (Karczewski et al., 2019). Specifically, we split multiallelic sites and 

discarded all calls without a “PASS” filter tag as determined by the Variant Quality Score Recalibration 

tool (GATK). We also excluded variants sites where not a single sample had high genotyping quality as 

defined by (Depth of Coverage >= 10, Genotype Quality >= 20 and Minor allele fraction >= 0.2). Variants 

in low complexity regions and segmental duplications were filtered out and only variants that met the 

gnomAD “PASS”  filter criteria or were missing were retained. These filtering steps resulted in a total of 

15.5M high quality variants corresponding to approximately 70% of all variants in the data.  

Since VEP annotates individual transcripts, only variants on canonical transcripts as defined by 

Gencode/Ensembl were included in downstream analyses. Variants were binned into synonymous, 

missense and lofs using the following criteria: 

LoFs: "frameshift_variant", "splice_acceptor_variant", "splice_donor_variant", "stop_gained"  

Missense: "inframe_deletion", "inframe_insertion", "missense_variant", "start_lost", "stop_lost", 

"protein_altering_variant" 

Synonymous: "synonymous_variant", "stop_retained_variant", "incomplete_terminal_codon_variant" 

To exclude common variants and to limit our analyses to biologically variant categories, the 

remaining calls were restricted to missense and lof variants with an allele frequency less than 0.001 in 

ExAC (Lek et al., 2016) that were bioinformatically predicted to be deleterious by both CADD (CADD-
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phred >20) (Kircher et al., 2014) and DANN (>0.99) (Quang et al., 2015). ClinVar 

(ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37) and COSMIC coding mutations 

(https://cancer.sanger.ac.uk/cosmic/download) were used to further refine the call set to disease 

relevant variants. 

 

SNV characterization and prioritization 

We used a series of gene-level and variant-level filters to identify SNVs of particular interest to 

human disease, as described in the main manuscript text. These filters are derived from publicly-

available databases and bioinformatic prediction algorithms and represented in the columns of Table 

S4 and detailed below.  

 
VARIANT DETAILS: 
gene, HUGO gene nomenclature committee (HGNC) official human gene symbol;  
transcript, Ensembl transcript identifier; 
locus, genomic coordinates from hg19 reference, and base of the reference and alternate allele; 
chr, human chromosome on which the variant is located; 
pos, chromosomal position of the variant in hg19 coordinates; 
ref, reference base at this chromosomal position; 
alt, alternate base at this chromosomal position; 
duplicated_locus, TRUE if the site is multiallelic and has been split.  
rsid, reference SNP identifier from dbSNP (https://www.ncbi.nlm.nih.gov/snp/);  
worst_csq, worst consequence predicted by VEP 
consequence, consequence predicted by VEP 
hgvsp, Ensembl identifier of the affected protein and most likely amino acid change;  
hgvsc, Ensembl identifier of the affected transcript and coding change; 
homs, file name(s) of hESC line(s) in which the variant was identified in a homozygous state; 
hom_count, number of homozygous variant among the 143 analyzed hESC lines; 
hets, file name(s) of hESC line(s) in which the variant was identified in a heterozygous state; 
het_count, number of heterozygous variant among the 143 analyzed hESC lines; 
AC, total number of variant alleles genotyped among the 143 analyzed hESC lines; 
AN, total number of alleles at that genomic location genotyped among the 143 analyzed hESC lines; 
AF, ratio of variant to total alleles in hESCs; 
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VARIANT-LEVEL FILTERS:  
gnomad_global_AC, number of times this variant was present in 15,708 whole genome sequences 
currently represented in the gnomAD (https://gnomad.broadinstitute.org/) database (Karczewski et al., 
2019);  
gnomad_global_AF, ratio of variant to total alleles among the 15,708 whole genome sequences in 
gnomAD; 
exome_global_AC, number of times this variant was present in the ExAC database in 60,706 exomes 
that are non-overlapping with the whole genomes represented in gnomAD (Lek et al., 2016); 
exome_global_AF, ratio of variant to total alleles at this genomic location in ExAC;  
cadd_raw, raw score from the Combined Annotation Dependent Depletion (CADD) predictor of variant 
deleteriousness (Kircher et al., 2014); 
cadd_phred, scaled phred-like CADD score where the bottom 90% of deleterious variants have a score 
of 0-10, the next 9% have scores of 10-20, and so on;  
dann, score of variant deleteriousness from the Deleterious Annotation of genetic variants using Neural 
Networks (DANN) with scores ranging from 0 to 1 for neutral to most deleterious (Quang et al., 2015); 
fathmm_xf_cod_score, score of likely coding variant pathogenicity from the Functional Analysis 
Through Hidden Markov Models (FATHMM-XF) predictor (Rogers et al., 2018) 
fathmm_xf_nc_score, FATHMM prediction for non-coding (e.g. splice donor) variants; 
fathmm_warn, variant annotation from FATHMM at default sensitivity and specificity thresholds; 
fathmm_cancer, FATHMM prediction of cancer-associated coding variants 
(http://fathmm.biocompute.org.uk/cancer.html) with annotations at default sensitivity and specificity 
thresholds (Shihab et al., 2013) 
cosmic_id, Catalogue Of Somatic Mutations in Cancer (COSMIC) numerical internal database identifier 
(http://cancer.sanger.ac.uk/census/) (Tate et al., 2019);  
cosmic_count, number of times the specific variant was reported in COSMIC, where multiple entries 
denote multiple splice isoforms;  
cosmic_cds, base changes for each of the major splice isoforms of the protein in COSMIC,  
cosmic_aa, amino acid changes for each of the major splice isoforms of the protein in COSMIC, 
 
GENE-LEVEL FILTERS: 
clin_def, clinical syndrome(s) associated with defects in the affected gene as reported in the manually-
curated ClinVar database (www.ncbi.nlm.nih.gov/clinvar/) (Landrum et al., 2014);  
clin_sig, likely clinical significance of the variant based on manual curation of the strength of supporting 
data in the literature;  
clin_vc, variant type;  
clin_db, links to databases describing clinical syndrome(s) in greater detail;  
MIM, identifier for the clinical syndrome(s) associated with defects the affected gene as reported in the 
manually-curated Online Mendelian Inheritance in Man database (http://www.omim.org/downloads) 
(OMIM, 2019) 
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Genomic.Location, genomic location of the gene associated with the clinical syndrome(s) described in 
OMIM;  
Haploinsufficiency.Description, annotation of the gene as dosage-sensitive in the manually-curated 
ClinGen database (http://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/) (Rehm et al., 2015) 
Loss.phenotype.OMIM.ID, OMIM entries for genes in which gene loss of function is associated with a 
clinical phenotype; 
Dosage, annotation of haploinsufficiency among the 59 genes designated by the American College of 
Medical Genetics (ACMG) manual (https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/acmg.shtml),  
Fertility_Related, genes described in the literature to be related to fertility (O’Flynn O’Brien et al., 2010; 
Venkatesh et al., 2014); 
Imprinted, inclusion of the gene in a manually-curated list of imprinted human genes 
(http://www.geneimprint.com/site/genes-by-species); 
X-linked dominant, OMIM disease genes that show X-linked dominant inheritance according to (Berg 
et al., 2013)  
Tumor Suppressors, inclusion of the gene in a curated list of tumor suppressors 
(https://bioinfo.uth.edu/TSGene/) (Zhao et al., 2016);  
COSMIC_tier, inclusion of the gene as a COSMIC Tier 1 gene that has an established association to 
cancer (http://cancer.sanger.ac.uk/census/);  
P53_Pathway, inclusion of the gene in the KEGG p53 pathway (https://www.genome.jp/dbget-
bin/www_bget?pathway+hsa04115) (Kanehisa et al., 2017, 2019) 

Growth restricting, Top 50 growth restricting genes in hESCs identified by (Yilmaz et al., 2018)  

CONDITION, clinical syndrome associated with the gene in the Clinical Genomic Database (CGD, 
https://research.nhgri.nih.gov/CGD/);  
INHERITANCE, reported inheritance of the clinical syndrome associated with the gene in CGD;  
COMMENTS, comments associated with the clinical syndrome associated with the gene in CGD;  
INTERVENTION.RATIONALE, clinical intervention rationale for the clinical syndrome associated with 
the gene in CGD; 
REFERENCS, references associated with the clinical syndrome associated with the gene in CGD; 
Autosomal Dominant, OMIM disease genes that show dominant inheritance according to (Berg et al., 
2013)  
obs_mis, observed number of missense variants in this gene in gnomAD (Karczewski et al., 2019); 
exp_mis, expected number of missense variants in this gene in gnomAD; 
mis_z, ExAC score of gene constraint to missense variants where positive scores indicated increased 
constraint (Lek et al., 2016); 
oe_mis_lower, 90% confidence interval for the lower bound of observed to expected missense variants 
in this gene in gnomAD; 
oe_mis_upper, 90% confidence interval for the upper bound of observed to expected missense variants 
in this gene in gnomAD; 
obs_lof, observed number of loss-of-function variants in a gene in gnomAD; 
exp_lof, expected number of loss-of-function variants in a gene in gnomAD; 
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pLI, probability of loss intolerance from a LoF mutation from the ExAC database based on expected 
versus observed LoF mutations; 
oe_lof, mean fraction of observed to expected loss-of-function variants in a given gene; 
oe_lof_lower, 90% confidence interval for the lower bound of observed to expected loss-of-function 
variants in this gene in gnomAD; 
oe_lof_upper, 90% confidence interval for the upper bound of observed to expected loss-of-function 
variants (LOEUF) in this gene in gnomAD;  
constraint_flag, Flags assigned to constrained genes as defined in gnomad v2.1 (see 
https://gnomad.broadinstitute.org/faq) 
gene_type, Type of constrained gene as per gnomad v2.1 (see https://gnomad.broadinstitute.org/faq) 
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