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Abstract 53 

In humans and nonhuman primates, Mycobacterium tuberculosis lung infection yields a complex 54 

multicellular structure—the tuberculosis granuloma.  All granulomas are not equivalent, 55 

however, even within the same host: in some, local immune activity promotes bacterial 56 

clearance, while in others, it allows persistence or outgrowth.  Here, we used single-cell RNA-57 

sequencing to define holistically cellular responses associated with control in cynomolgus 58 

macaques.  Granulomas that facilitated bacterial killing contained significantly higher 59 

proportions of CD4+ and CD8+ T cells expressing hybrid Type1-Type17 immune responses or 60 

stem-like features and CD8-enriched T cells with specific cytotoxic functions; failure to control 61 

correlated with mast cell, plasma cell and fibroblast abundance.  Co-registering these data with 62 

serial PET-CT imaging suggests that a degree of early immune control can be achieved through 63 

cytotoxic activity, but that more robust restriction only arises after the priming of specific 64 

adaptive immune responses, defining new targets for vaccination and treatment. 65 

  66 
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Introduction 67 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health 68 

threat.  It is estimated that one quarter of the world’s population is infected with Mtb, and 10 69 

million new cases and 1.5 million deaths due to TB were reported in 2019 (WHO, 2019).  More 70 

than 90% of those infected do not progress to active disease.  Thus, protective immune 71 

responses against Mtb appear to be relatively common in humans, but have been difficult to 72 

dissect because of our inability to measure immune responses in lung tissue and to distinguish 73 

the true extent of bacterial control in people.  Understanding the cellular and molecular features 74 

associated with protective immunity, as well as those that lead to failure to control infection, is 75 

critical for the development of next-generation cures and preventions for TB.   76 

 77 

Mtb infection in humans and nonhuman primates (NHP) is characterized by the formation of 78 

granulomas predominantly in the lungs and lymph nodes (Flynn, 2010; Lin et al., 2014b; Russell 79 

et al., 2010; Ulrichs and Kaufmann, 2006).  TB lung granulomas are spatially organized 80 

structures (Figure 1A), well circumscribed from the lung parenchyma and comprised of a 81 

combination of parenchymal, stromal, and immune cells, such as macrophages, neutrophils, T 82 

cells, B cells and plasma cells (Ehlers and Schaible, 2012; Flynn, 2010; Gideon et al., 2019; Lin 83 

et al., 2006; Mattila et al., 2013; Pagan and Ramakrishnan, 2014; Phuah et al., 2012; Reece 84 

and Kaufmann, 2012; Ulrichs and Kaufmann, 2006).  A spectrum of granuloma types, 85 

organization and cellular composition have been described in both humans and NHP (Canetti, 86 

1955; Flynn, 2010; Hunter, 2011, 2016; Lin et al., 2006).   87 

 88 

The cynomolgus macaque NHP model of Mtb infection has been critical for characterizing the 89 

cellular and molecular features that underlie granuloma fate since it recapitulates the spectrum 90 

of human infection outcomes, disease and pathology (Canetti, 1955; Flynn, 2010; Lin et al., 91 

2006) and.  Human granulomas are typically available only from surgical resections in cases 92 
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where drug treatment fails and thus do not allow analysis of successful immune clearance.  93 

Most murine models, meanwhile, do not develop human-like granulomas, and mice are not 94 

particularly adept at killing Mtb bacilli in the lungs, which makes identifying features associated 95 

with immune mediated clearance difficult (Flynn et al., 2015; Flynn, 2010; Langermans et al., 96 

2001; Verreck et al., 2009; Zhan et al., 2017). 97 

 98 

Studies of Mtb infection in NHP have demonstrated that individual granulomas are dynamic 99 

(Coleman et al., 2014b; Lin et al., 2013; Lin et al., 2014b), changing with the evolving 100 

interactions between bacteria and diverse host cell types (Ehlers and Schaible, 2012; Flynn et 101 

al., 2003; Flynn, 2010; Mattila et al., 2013; Phuah et al., 2012; Ulrichs and Kaufmann, 2006).  102 

The bacterial burden in individual granulomas is highest early in infection and then decreases 103 

due to increased killing as the immune response evolves, even in animals that ultimately 104 

develop active TB (Figure S1A-B) (Cadena et al., 2016; Lin et al., 2014b; Maiello et al., 2018).  105 

Strikingly, however, individual granulomas within a single host follow independent trajectories 106 

with respect to inflammation, cellular composition, reactivation risk, and ability to kill Mtb 107 

(Coleman et al., 2014b; Gideon et al., 2015; Lenaerts et al., 2015; Lin et al., 2013; Lin et al., 108 

2014b; Malherbe et al., 2016; Martin et al., 2017).  We and others have systematically profiled 109 

cellular immune responses of individual cell types in macaque lung granulomas, including T 110 

cells (Diedrich et al., 2020; Foreman et al., 2016; Gideon et al., 2015; Lin et al., 2012; Mattila et 111 

al., 2011; Wong et al., 2018), macrophages (Mattila et al., 2013), B cells (Phuah et al., 2016; 112 

Phuah et al., 2012), and neutrophils (Gideon et al., 2019; Mattila et al., 2015), and examined the 113 

instructive roles of cytokines including IFN-γ, IL-2, TNF, IL-17 and IL-10 (Gideon et al., 2015; Lin 114 

et al., 2010; Wong et al., 2020).  These analyses have enabled key insights into how specific 115 

canonical cell types and effector molecules relate to bacterial burden; for example, they 116 

revealed that balanced production of pro- and anti-inflammatory cytokines by granuloma T cells 117 

associates with bacterial control.  However, each analysis has been relatively narrow in focus 118 
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and we have little understanding of how the collective actions of diverse cell types within 119 

individual granulomas shape outcome.   120 

 121 

The recent emergence of high-throughput single-cell genomic profiling methods affords 122 

transformative opportunities to define the cell types, phenotypic states and intercellular circuits 123 

that comprise granulomas and inform their dynamics (Prakadan et al., 2017).  Rather than 124 

forcing selection of distinct cellular subsets or features of interest a priori, single-cell RNA-Seq 125 

(scRNA-seq) can be applied to examine comprehensively the cellular constituents of complex 126 

multicellular structures and their functional attributes. Illustratively, single-cell transcriptomics 127 

has been used to identify fundamental alterations in cellular ecosystems associated with the 128 

severity and persistence of inflammation (Ordovas-Montanes et al., 2018; Smillie et al., 2019), 129 

the cellular bases of disease (Kazer et al., 2020; Montoro et al., 2018) and responses to it, and 130 

actionable features of the tumor-immune microenvironment (Hovestadt et al., 2019; Tirosh et 131 

al., 2016).  While scRNA-seq has been applied to understand peripheral immune or in vitro 132 

responses in Mtb infection (Gierahn et al., 2017; Huang et al., 2019; Nathan et al., 2020), it has 133 

yet to be leveraged to empower global analyses of cellular responses linked to bacterial control 134 

in TB lung granulomas, potentially given challenges associated with tracking, identifying, and 135 

isolating these small heterogeneous structures from NHP in a biosafety-level 3 suite.   136 

 137 

Here, to characterize the relationship between the cellular features of TB lung granulomas and 138 

bacterial burden explicitly, we applied the Seq-Well platform for massively-parallel single-cell 139 

RNA-Seq (scRNA-seq) (Gierahn et al., 2017) to generate single-cell transcriptional profiles of 140 

pulmonary Mtb granulomas at 10 weeks post infection (p.i.; Figure 1A) in cynomolgus 141 

macaques.  Individual granulomas displayed a broad range of bacterial burdens from restrictive 142 

(sterile, 0 colony forming units (CFU) – i.e., culturable live bacterial burden) to permissive (high, 143 

~80,000 CFU), enabling us to define cellular compositions and effector functions that associate 144 
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with bacterial control.  With these data, based on unbiased gene-expression analysis, we 145 

discovered several previously unappreciated functional cellular phenotypes that are temporally 146 

associated with bacterial control – including hybrid T1-T17 CD4+ and CD8+ states, cytotoxic T 147 

and NK subsets, mast, and plasma cells – and validate select observations and extend to 148 

humans via orthogonal techniques.  Collectively, our data provide a global view of the TB lung 149 

granuloma cellular microenvironments in which Mtb is either controlled or persists, suggesting 150 

several novel therapeutic and prophylactic targets for future investigation.    151 
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Results 152 

Study design and bacterial burden in granulomas 153 

We sought to comprehensively define the complex cellular ecosystems (Figure 1A) of 154 

granulomas that manifested different degrees of bacterial control in NHP.  Four cynomolgus 155 

macaques were bronchoscopically infected with a low dose of Mtb (<10 CFU; Erdman strain) 156 

and followed for 10 weeks (Figure 1B).  The 10-week timepoint represents the first time at 157 

which a significant reduction in average granuloma-level bacterial burden is observed, 158 

compared to peak burden at 4 or 6 weeks post infection (p.i.) (Figure S1A-B).  Progression of 159 

Mtb infection and granuloma formation were monitored using PET-CT scans at 4, 8, and 10 160 

weeks p.i.  For each animal, we quantified total lung FDG activity (Figure 1C) from PET-CT 161 

scans as a proxy for overall inflammation (Coleman et al., 2014b; White et al., 2017).  At 162 

necropsy, individual PET-CT identified lung granulomas were excised and dissociated to obtain 163 

a single-cell suspension (STAR* Methods).   164 

 165 

Twenty-six granulomas from the four animals were randomly selected for profiling by scRNA-166 

seq.  For each, we further quantified viable bacterial burden (CFU – i.e., culturable live bacterial 167 

burden) and cumulative (live + dead) bacterial load (chromosomal equivalents, CEQ) (Lin et al., 168 

2014b; Munoz-Elias et al., 2005) (Table S1, STAR* Methods).  Among the 26 granulomas, 169 

there was a range of granuloma-level bacterial burdens, from sterile (0 CFU/granuloma) to high 170 

burden (4.6 log10 CFU/granuloma) lesions (Figure 1D).  We analyzed the granulomas using 171 

CFU both as a continuous variable and by binning it into tertiles (Low: 0-500 CFU, n=10; Mid: 172 

500-5000 CFU, n=10; and High: >5000 CFU, n=6) which displayed significant differences in 173 

bacterial burden (low-CFU: median 1.9 log10 CFU/granuloma, mid-CFU 3.4 log10 174 

CFU/granuloma, high-CFU: 4.2 log10 CFU/granuloma; p<0.0001, Kruskal-Wallis test with Dunn’s 175 

multiple testing correction) (Figure 1E and Table S1).   176 

 177 
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We evaluated cumulative bacterial burden (chromosomal equivalents, CEQ – derived from live 178 

+ dead Mtb) to determine whether low CFU reflected reduced bacterial growth or increased 179 

bacterial killing (Cadena et al., 2018; Lin et al., 2014b; Munoz-Elias et al., 2005).  We observed 180 

no significant difference in CEQ values between granulomas with low and high CFU (p>0.99, 181 

Kruskal-Wallis test with Dunn’s multiple testing correction) (Figure 1F), indicating that 182 

granulomas supported roughly similar cumulative Mtb growth over the course of infection.  To 183 

quantify the extent of bacterial killing, we calculated the ratio of CFU to CEQ (Figure 1G; 184 

STAR* Methods).  Granulomas with the lowest bacterial burdens had significantly higher killing 185 

(-2.1 log10 CFU/CEQ per granuloma) than those with the highest bacterial burden (-0.63 log10 186 

CFU/CEQ per granuloma, p=0.0051, Kruskal-Wallis test with Dunn’s multiple testing correction; 187 

Figure 1G).   188 

 189 

Cellular composition of TB lung Granulomas 190 

To identify cellular and molecular factors associated with increased Mtb killing in an unbiased 191 

fashion, we applied a single-cell suspension from each granuloma to a Seq-Well array 192 

preloaded with barcoded mRNA capture beads under Biosafety Level 3 conditions, and 193 

processed and sequenced as previously described (STAR* Methods) (Gierahn et al., 2017).  194 

After aligning the data to the Macaca fascicularis (cynomolgus macaque) genome and 195 

performing robust quality controls and granuloma-specific technical corrections, we retained 196 

109,584 high-quality single-cell transcriptomes for downstream analysis (Figure S2; Table S2; 197 

STAR* Methods).   198 

 199 

Unsupervised investigation of these data revealed 24 distinct clusters, which we assigned to 200 

canonical cell types using a combination of manual curation and reference gene expression 201 

signatures from the Tabula Muris (Tabula Muris et al., 2018), Mouse Cell Atlas (Han et al., 202 

2018) and SaVanT database (Lopez et al., 2017) (Figure S3 A-H; STAR* Methods).  Based on 203 
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shared expression of genes associated with canonical cell types, we reduced these 24 clusters 204 

to 13 general cell type clusters (Figures 2A and S3G-H).  These encompass groups of 205 

lymphocytes, including B cells (defined by expression of MS4A1, CD79B, & BANK1), T and NK 206 

cells (T/NK; GNLY, TRAC, CD3D, & GZMH) and plasma cells (IGHG1 & JCHAIN)); myeloid 207 

cells, including conventional dendritic cells (cDCs; CLEC9A, CST3, & CPVL), plasmacytoid 208 

dendritic cells (pDCs; LILRA4 and IRF8) and macrophages (APOC1, LYZ, and APOE); mast 209 

cells (CPA3 & TPSAB1); neutrophils (CCL2, CXCL8, & CSF3R); erythroid cells (HBA1 & HBB); 210 

stromal cells, including endothelial cells (RNASE1, EPAS1, & FCN3) and fibroblasts (COL3A1, 211 

COL1A1, & DCN); Type-1 pneumocytes (AGER); and, Type-2 pneumocytes (SFTPC, SFTPB, 212 

and SFTPA1) (Figure 2A & B, Figure S3G-H and Table S3). 213 

 214 

Granuloma cellular composition is associated with bacterial burden 215 

To investigate the relationship between cell type composition and bacterial burden, we 216 

quantified the correlation between cellular frequency and CFU across all granulomas (Figure 217 

2C, Figure S3I, Table S8).  We also assessed differences in cell type proportions between 218 

granulomas with low and high bacterial burden (Figure 2D, Table S8), and relied on this 219 

analytic approach for some sub-state analyses where our granuloma numbers were too small to 220 

perform a robust correlation analysis.  The associations identified when the extent of bacterial 221 

killing was treated as a discrete variable were highly consistent with those identified when it was 222 

treated as a continuous variable (STAR* Methods).   223 

 224 

There was a negative correlation between bacterial burden and the proportion of cells from the 225 

unified T and NK cell cluster, and surprising positive correlations between bacterial burden and 226 

plasma cells, endothelial cells, mast cells, fibroblasts and type-1 pneumocytes (Figure 2C-D, 227 

Table S8A).  We did not observe a significant association between macrophage abundance and 228 
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bacterial burden.  This was true when we examined all 27,670 macrophages as a single cluster, 229 

or when we assessed each of the 9 macrophage sub-clusters identified through further analysis 230 

to resolve their substantial heterogeneity, as reported in other studies (Zilionis et al., 2019)  231 

(Figure S4 and Table S4; STAR* Methods).   232 

 233 

T and NK cells as mediators of protection 234 

Our initial analysis revealed a unified T and NK cell cluster that was, in aggregate, the only cell 235 

population negatively correlated with bacterial burden (Figure 2C-D).  Data from human and 236 

animal models (including NHPs) suggest an important role for diverse lymphocyte populations in 237 

controlling Mtb infection.  In addition to compelling evidence for the importance of conventional 238 

CD4+ and CD8+ T cells  (Chen et al., 2009; Foreman et al., 2016; Lin and Flynn, 2015; Lin et 239 

al., 2012; Mogues et al., 2001), other lymphocyte populations have been implicated in control 240 

including gamma delta (γδ) T cells (Ogongo et al., 2020; Shen et al., 2019), iNKT cells (Arora et 241 

al., 2013; Chackerian et al., 2002; Chancellor et al., 2017), donor-unrestricted T cells such as 242 

MAITs (Joosten et al., 2019), innate lymphoid cells (ILC) (Ardain et al., 2019) and cytotoxic 243 

lymphocytes including NK cells (Lin and Flynn, 2015; Portevin et al., 2012; Roy Chowdhury et 244 

al., 2018).   245 

 246 

To further assess functional diversity within the 41,622 cells that comprise T and NK cell cluster, 247 

we performed additional analysis and identified 13 subclusters (designated numerically in 248 

Figure 3A and S5 Table S6; STAR* Methods).  We annotated each subcluster of the unifed T 249 

and NK cluster based upon enrichment of distinct transcriptional features (Figure 3C), focusing 250 

on those that associate with bacterial control.  The abundance of 6 subclusters was negatively 251 

correlated with bacterial burden (Figure 3D,Table S8b); of these, 4 are relatively abundant 252 

clusters comprising  2.4-8.7% of all granuloma cells while 2 constitute less than 1% of all 253 
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granuloma cells (Table S4c).  There were no T and NK subclusters that positively correlated 254 

with bacterial burden.   255 

 256 

To further describe each subcluster and identify features that associate with bacterial control, 257 

we first examined the expression of lineage defining markers, known cytotoxic, regulatory, 258 

proliferation genes and T cell transcription factors  (Figure 3C and Figure S5D-F) and 259 

assessed TCR constant gene (TRAC, TRBC and TRDC) expression (Figure 3B).  The process 260 

of annotation revealed that most of the agnostically defined subclusters did not correspond 261 

neatly to canonical T and NK cell populations.  Where possible, we annotate subclusters based 262 

on known T cell markers and literature derived genes of interest but these are parts of broader 263 

transcriptional signatures that appear to reflect dominant cellular response states superimposed 264 

on cell lineage-associated gene expression programs.   265 

 266 

A prominent role for Type1-Type 17 T cells in bacterial control 267 

T and NK subcluster 13 was the most abundant cell type across all granulomas (8.8%) and the 268 

strongest correlate of control  (Figure 3A,D; Table S4c & S8b).  In this  subcluster, we observe 269 

enriched expression of classical Th1-associated genes including IFNG and TNF (Raphael et al., 270 

2015), as well as elevated expression of transcription factors associated with Th17 271 

differentiation (Yosef et al., 2013) including RORA (Yang et al., 2008), RORC (Ivanov et al., 272 

2006), RBPJ (Meyer Zu Horste et al., 2016) and BHLHE40 (Huynh et al., 2018; Lin et al., 2016; 273 

Lin et al., 2014a).  Although this subcluster is also enriched for additional features of Th17 cells 274 

including CCR6 (Hirota et al., 2007) and IL23R (Kobayashi et al., 2008), we do not observe 275 

expression of IL17A or IL17F (Figure 4A; Table S6).   276 

 277 

This hybrid gene expression state is consistent with previously described expression programs 278 

for Th1* or ex-Th17 cells.  Th1* cells are a subset of Th1 cells, characterized by expression of 279 
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CCR6 and CXCR3, that co-express IFN-γ and T-bet in addition to RORγt, and are postulated to 280 

play a role in antigen-specific memory (Acosta-Rodriguez et al., 2007), and in human blood, 281 

memory CD4 T cells with a Th1* expression profile were enriched in individuals with latent TB 282 

compared to uninfected controls (Burel et al., 2018).  Ex-Th17 cells, meanwhile, represent 283 

precursors to long-lived tissue-resident memory, characterized by increased expression of 284 

RBPJ, BHLHE40, IL23R and IL7R and minimal ROR-γT and IL-17 (Amezcua Vesely et al., 285 

2019).  Previous studies have revealed a prominent role for CD4 Th1 and Th17 cytokines in 286 

control of Mtb infection, including IFN-γ, TNF, and IL-17 (Algood et al., 2005; Green et al., 2013; 287 

Khader et al., 2007; Khader and Gopal, 2010; Lin et al., 2007; Lyadova and Panteleev, 2015; 288 

Millington et al., 2007; O'Garra et al., 2013; Scriba et al., 2017), and studies in NHP granulomas 289 

suggest an association between T1 and T17 cytokine expression and bacterial burden (Gideon 290 

et al., 2015).  In addition, in murine models, BHLHE40 is required for control of Mtb infection, as 291 

a repressor of IL-10 production (Huynh et al., 2018).   292 

 293 

While Th1* and exTH17 subsets have been described primarily as CD4 T cells, this T1-T17 294 

subcluster is characterized by the expression of both CD4 and CD8A/B transcripts (Figure 3C, 295 

Figure S5D-E).  Moreover, when we compared the gene expression patterns of CD4 and CD8 296 

expressing cells in the subcluster, we noted differential expression of biologically relevant 297 

genes.  We therefore questioned whether this subcluster might consist of subpopulations of 298 

cells representing canonical cell types.  Upon further subclustering of 9,234 T1-T17 cells, we 299 

identified 4 distinct subpopulations (Figure 4B, Table S7).  Critically, each expresses genes 300 

associated with a Th1* or  ex-Th17 state including IL23R, CCR6, and CXCR3, as well as RBPJ, 301 

BHLHE40, FURIN, RORA and COTL1.  However, each subpopulation also expresses unique 302 

transcriptional programming.  Specifically, T1-T17 subpopulation 1 is characterized by 303 

expression of CD4 and markers of activation and motility including IL7R, CD6, TXNIP, PDE4D, 304 
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ZFP36L2, ITGB1, CCR6 and CXCR3 (Figure 4C-D), and has distinct transcriptional overlap 305 

with T and NK subcluster 7 (stem-like cells, decribed below).  Although we cannot confidently 306 

assign effector functions to this subpopulation from the transcriptional data, they are reminiscent 307 

of memory cells with restrained metabolic activity and cytokine expression.  T1-T17 308 

subpopulation 2 is characterized by increased relative expression of cytotoxic effector 309 

molecules including GZMA, GZMH, GZMK, GNLY, PRF1, KLRC1 and both CD8A and CD8B  310 

(Figure 4C-D).  T1-T17 subpopulation 3, which includes cells expressing CD8A/B or CD4, is 311 

characterized by cytokine gene expression (IFNG, TNF, LTA, and LTB), markers of an inhibitory 312 

cell state (CTLA4, GADD45B and SLA) and expression of genes implicated in glycolysis and 313 

mTOR signaling (TPI1, PKM HSPA5, ENO1)  (Figure 4C-D).  T1-T17 subpopulation 4 is very 314 

low in abundance and characterized by heat shock and DNA damage associated transcripts 315 

(DNAJB1 and HSPH1) (Figure 4, Table S4D).   316 

 317 

Low-burden granulomas had increased abundance of T1-T17 subpopulation 1 (p=0.0324, 318 

Kruskal Wallis with Dunn’s multiple testing corrections), subpopulation 2 (p=0.0302) and 319 

subpopulation 4 (p=0.0152) compared to high-burden granulomas, suggesting a prominent role 320 

for both helper and cytotoxic functions of T1-T17 T cells (Figure 4E, Table S8C). However, 321 

there was a significant negative correlation only between T1-T17 subpopulations 2 and CFU 322 

(Spearman’s rho -0.4482, P=0.0216), revealing an unexpected association of cytotoxic effectors 323 

in the control of Mtb.  Surprisingly, T1-T17 subpopulation subpopulation 3 was not correlated 324 

with bacterial burden, despite expressing elevated levels of IFNG and TNF (Figure 4E, Table 325 

S8C), genes generally considered as critical to control Mtb infection (O'Garra et al., 2013; 326 

Scriba et al., 2017).   327 

 328 

Additional cytotoxic features associated with bacterial control 329 
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Additional  T/NK cell subcluster correlates of control reinforce an association between 330 

cytotoxicity and bacterial burden (Figure 3D, Table S8C).  Subcluster 4, constituting 3.8% of 331 

granuloma cells, is one of the six primary subclusters (1-6) defined broadly by cytotoxic 332 

features, such as expression of genes for granzymes (GZMA, GZMB, GZMH, GZMK and 333 

GZMM), granulysin (GNLY), or perforin (PRF1) (Figure 3C).   Three of these subclusters 334 

(subclusters 1, 3, 4) are enriched for polyfunctional cytotoxic cells, characterized by the 335 

expression of multiple cytotoxic effector genes, while subclusters 2, 5 and 6 are distinguished by 336 

a more limited number of cytotoxic features.   337 

 338 

Subcluster 4 is enriched for expression of PRF1, GZMH, GZMB, and GZMM, but not GNLY, a 339 

pattern consistent with that described for dicytotoxic CTLs (Balin et al., 2018)  In addition, it is 340 

enriched for genes implicated in motility, migration and tissue residency, including CX3CR1, 341 

TGFBR3, and S100A10, and regulators of cell state such as AHNAK, KLF3, and ZEB2 (Figure 342 

3D-E; Table S7).  Further, subcluster 4 is enriched for expression of both CD8A and CD8B, and 343 

expresses TCRA and TCRB but not TCRD (Figure 3B-C, Figure S5E-F), suggesting that it is 344 

largely composed of conventional CD8αβ T cells (Fan and Rudensky, 2016).  There are a small 345 

number of CD4-expressing cells in this subcluster which do not differ from the CD8A and CD8B-346 

expressing cells in their expression of the subcluster defining genes (Figure S5E-F).  347 

Subcluster 4 is also enriched for expression of markers that can be expressed either by 348 

cytotoxic CD8 cells or NK cells, including KLRD1, KLRF1, KLRK1 and NKG7 (Figure 3C).   349 

 350 

We sought to identify features that distinguished subcluster 4 from other subclusters that share 351 

cytotoxic features but are not associated with control.  In contrast to subcluster 4, subcluster 1 352 

(4.3% granuloma cells, Table S4C), is characterized by high expression of all three classes of 353 

cytotoxic effectors genes—GNLY,  PRF1 and GZMH, GZMA GZMB—as well as KLRD1, 354 

KLRC1, KLRC2, NKG7, and shares some features with previously described tricytoxic CD8+ 355 
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cells (Balin et al., 2018). Subcluster 1 is enriched for the expression of CD8A but not CD8B, and 356 

has the highest proportion of TCRD expressing cells (Figure 3B-C, Figure S5E-F, Table S8B).  357 

Taken together, the data suggest that subcluster 1 contains a greater proportion of highly 358 

cytotoxic innate CD8+ T cells (possibly NKT cells), γδ T cells, and natural killer cells (NK) than 359 

subcluster 4.  Subcluster 3, (0.4% of granuloma cells, Table S4C), which also does not 360 

correlate with control, appears to be more selectively enriched for NK cells as it is defined both 361 

by enrichment for cytotoxic and NK cell markers but also relatively low expression of CD3D and 362 

CD3G (Figure 3C, Table S8BB).  Subcluster 5, representing 4.7% of granuloma cells, 363 

displayes elevated expression of only a single cytotoxic marker, GZMK, which does not activate 364 

apoptotic caspases (Guo et al., 2010).  Cytotoxic subcluster 6, meanwhile, is a very low 365 

abundance cluster (<0.3%) about which we cannot draw meaningful conclusions. 366 

 367 

The most revealing comparision was between subclusters 4 and 2 (1.9% of granuloma cells).  368 

Subcluster 2 is also enriched for NK and CD8 cell lineage marker expression such as KLRC1, 369 

KLRB1, KLRG1, CD8A and TCRD but is only moderately enriched for PRF1 expression, and is 370 

not characterized by the expression of any other cytotoxic effector or cytokine genes (Figure 371 

3B-C).  Interestingly, subcluster 2 is highly enriched for expression of activation markers CD69 372 

and NR4A1 (Nur77) and for expression of EGR1, EGR2 and DUSP2, a trio of transcription 373 

factors described to distinguish peripherally tolerant CD8 T cells in a model of tumor infiltrating 374 

lymphocytes (Schietinger et al., 2012).  Strikingly, subcluster 2 is additionally defined by the 375 

expression of genes  implicated in the inhibition of NFkB signaling, NFKBIA (IkB), NFKBIZ  and 376 

TNFAIP3, but not markers suggestive of T cell exhaustion (Figure 3C).  Taken together, these 377 

data suggest that cells in subcluster 2 are undergoing TCR activation but not undertaking 378 

effector functions and may be in an expression state suggestive of peripheral tolerance.  The 379 

functional complexity of these subclusters, and the common and distinct responses they 380 

represent, supports a significant and underappreciated role for cytotoxic cells in TB granulomas 381 
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and suggests a need to further elucidate actionable avenues for plasticity for future preventions 382 

and cures.   383 

 384 

Stem-like T cell function in TB lung granulomas  385 

Subcluster 7 (8.3% of granuloma cells, Table S4C) also correlates with control and is 386 

characterized by elevated expression of markers of naïve or memory CD4 and CD8 T cells 387 

including TCF7, CCR7, IL7R, and TXNIP, as well as genes associated with activation or 388 

memory state such as CD69  and ITGB1 (Figure 3C-D).  These cells may represent a “stem-389 

like” population of T cells, which are described as an early differentiating memory phenotype, 390 

distinct from naïve T cells, that are long-lived and possess a unique ability to proliferate and 391 

self-renew (Ahmed et al., 2016; Caccamo et al., 2018; Gattinoni et al., 2011).  Similar cells have 392 

been reported in human and animal models of viral infection (Cartwright et al., 2016; Fuertes 393 

Marraco et al., 2015) and tumors (Ando et al., 2020; Brummelman et al., 2018; Wu et al., 2019), 394 

and in humans with Chagas disease (Mateus et al., 2015).  In the tumor microenvironment, 395 

stem-like T cells have been described as expressing inhibitory receptors such as PD-1 (Siddiqui 396 

et al., 2019).  This population is thought to undergo a proliferative burst after immune checkpoint 397 

blockade.  By contrast, we do not identify enhanced expression of transcripts encoding 398 

inhibitory receptors in the stem-like subcluster (Figure 3C).  Indeed, inhibitory receptor 399 

transcripts are only expressed highly on cells in subcluster 8 (1.2 % of granuloma cells), which 400 

appear to be regulatory T cells (Tregs) based on elevated expression of canonical Treg markers 401 

(FOXP3, CTLA4, CGA, TIGIT, TNFRSF18, IL1RL1, and IKZF4) (Figure 3C).  The abundance of 402 

subcluster 8 neither positively nor negatively correlates with bacterial burden (Figure 3D, Table 403 

S8B).   404 

 405 

Additional T/NK cell subclusters that correlate with control 406 
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There were 3 additional T/NK subclusters that correlated with bacterial burden (Figure 3D, 407 

Table S8B).  Subcluster 10 was a small CD4 enriched subcluster (0.05%) defined by 408 

metallothionein genes such as MT1 and MT2 (Figure 3C-D); metallothionein-expressing T cells 409 

may play a role in negative regulation of Type 1 regulatory (Tr1) CD4+ cells (Wu et al., 2013).  410 

Subcluster 11 was relatively abundant (2.4% of granuloma cells, Table S4C) and was 411 

characterized by expression of transcripts associated with cellular proliferation (MKI67, STMN1, 412 

and TOP2A) (Figure 3C-D, Table S8B), consistent with published data that T cell proliferation 413 

occurs within NHP and human granulomas (Gideon et al., 2015; McCaffrey et al., 2020; Ohtani, 414 

2013; Phuah et al., 2016; Phuah et al., 2012; Wong et al., 2018).  Subcluster 12, representing 415 

0.6% of granuloma cells, is characterized by enrichment of genes associated with nuclear 416 

speckles and splicing factors such as PNISR and SRRM2 (Figure 3C), the latter of which has 417 

been associated with alternate splicing in Parkinson disease (Shehadeh et al., 2010) and has a 418 

critical role in organization of 3D genome (Hu et al., 2019). 419 

 420 

T/NK cell subclusters that do not correlate with granuloma infection outcome 421 

There are 2 relatively abundant subclusters of lymphocytes that have gene expression profiles 422 

consistent with known cell types but which do not correlate with control, either positively or 423 

negatively (Table  S8B).  As noted above, one is subcluster 8, which displays elevated 424 

expression of canonical Treg markers (FOXP3, CTLA4, CGA, TIGIT, TNFRSF18, IL1RL1, and 425 

IKZF4) (Niedzielska et al., 2018; Zemmour et al., 2018) (Figure 3C) and GATA3, a Th2 lineage-426 

defining transcription factor that has been observed in a subset of tissue-resident Tregs 427 

(Whibley et al., 2019).  The second is subcluster 9, which is enriched for CD4 expression and 428 

Type-I interferon inducible molecules (MX1, ISG15, IFIT3, IFI6, IFIT1, RSAD2, and MX2) 429 

(Szabo et al., 2019) and may represent activated CD4+ T cells (Figure 3C).  Despite 430 

expectations that activated CD4+ T cells are critical mediators of TB control, the abundance of 431 

this population does not correlate with control at this time point. 432 
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 433 

Relationship between timing of granuloma formation and granuloma composition 434 

In this study, the time of granuloma appearance was tracked through serial PET-CT scans 435 

(Coleman et al., 2014b; Lin et al., 2013; Martin et al., 2017).  In further examining the serial 436 

PET-CT scans for the four animals in the current study, we found that 15 of the granulomas 437 

randomly chosen for scRNA-seq were observed at 4 weeks p.i.  (i.e., “early-detected” 438 

granulomas following Mtb infection), while another 11 were only seen at 10 weeks p.i.  (i.e., 439 

“late-detected” granulomas) (Table S1).  Late-detected granulomas may be formed through 440 

dissemination (Martin et al., 2017); alternatively, some granulomas may take more time to reach 441 

the inflammatory threshold required to be identified by PET-CT scans (limit of detection >1mm), 442 

potentially because of slower bacterial growth or more efficient immune control. 443 

 444 

There was a striking difference (~40-fold) in granuloma-level bacterial burden (CFU) between 445 

early- (n=15, 3.6 log10 CFU/granuloma, IQR: 3.2-4.6) and late-detected granulomas (n=11, 2  446 

log10 CFU/granuloma, (0-2.8)) (p<0.0001) (Figure 5A) Table S10a), although median size and 447 

granuloma FDG avidity were similar among all 26 at 10 weeks p.i.  (Table S1).  Critically, while 448 

there is a trend towards lower cumulative bacterial burden in late-detected lesions, the 449 

granuloma-level CEQ values were not significantly different between early- and late-detected 450 

granulomas (p=0.0737) (Figure 5B, Table S10A), suggesting that the lower bacterial burden 451 

(CFU) in new lesions was not strictly attributable to reduced bacterial growth.  Moreover, the 452 

CFU/CEQ ratio (which is an inverse measure of bacterial killing) (Lin et al., 2014b) was ~10 fold 453 

lower in late-appearing granulomas (p=0.0107), indicating increased bacterial killing in those 454 

lesions.  Comparison of cell-type proportions revealed that early- and late-detected granulomas 455 

were also characterized by differences in cellular composition.  Many of the associations 456 

between cellular frequency and bacterial control were reflected in the differences between early 457 

and late lesions, including those with mast cells, plasma cells and the unified T/NK cell cluster, 458 
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as well as those with T/NK subclusters 13 (T1-T17) cells, 4 (cytotoxic) and 7 (stem-like T cells)  459 

(Figure 5D-E).   460 

 461 

Bacterial control in early detected granulomas is associated with cytotoxic function  462 

We sought to gain further insight into bacterial control specifically in the early appearing 463 

granulomas, which likely represent the original establishment of infection.  We contrasted the 464 

early granulomas with the highest CFU (n=6, median CFU: 17,550, 4.2log10) and lowest CFU 465 

(n=6, median CFU: 2355, 3.3log10) (p=0.002, Mann-Whitney U) (Figure 5F, Table S10).  In 466 

early-detected lesions with lower burden, there was again a significantly higher proportion of 467 

T/NK subclusters 4 (p=0.009, Mann-Whitney U) and 5 (p=0.004), 7 (stem-like T cells) (p=0.041), 468 

10 (p=0.004) and subcluster 13 (T1-T17 cells) (p=0.041) (Figure 5H).  However, this analysis 469 

also revealed previously unappreciated associations between lower bacterial burden in early 470 

granulomas and additional subclusters of T/NK cells.  These include the cytotoxic subclusters 1 471 

(p=0.041) and 2 (p=0.002) (Figure 5H, Table S10) and the T1-T17 subpopulation 3 marked by 472 

IFNG and TNF (p=0.026) (Table S5c, Table S10).  Taken together, these data suggest a 473 

prominent role for cytotoxic function and otherwise cryptic role for Type 1 cytokines, possibly 474 

from innate or early adaptive lymphocytes, in the initial control of Mtb infection.   475 

 476 

TCR repertoires of TB lung granulomas 477 

Given the strong association between the abundance of specific T cell phenotypes and control 478 

of Mtb, we wondered whether these T cells might target common antigens (i.e., share common 479 

T cell receptors; TCRs).  To investigate whether there was clonal enrichment among T cells, we 480 

reconstructed CDR3 sequences from granuloma T cells by performing targeted pulldowns of αβ 481 

TCR sequences from the granuloma whole transcriptome amplification libraries to generate 482 

secondary sequencing libraries (STAR* Methods) (Tu et al., 2019).  Initially, we examined the 483 

extent of TCR-α and TCR-β recovery and enrichment (i.e.  CDR3-α, n >10; CDR3-β sequences, 484 
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n >12; CDR-αβ, n >10) across the T and NK subclusters and observed enrichment of common 485 

CDR3 sequences in the T1-T17 and proliferating subclusters (13 and 11, respectively), as well 486 

as cytotoxic subclusters 4 and 5 (Figure S6A-D, Table S9; STAR* Methods).  Next, we 487 

examined sharing of enriched CDR3 sequences between granulomas.  While we failed to 488 

observe public TCRs between animals (Figure S6E), within an animal (e.g., monkey 4017), 489 

there was substantial sharing of TCR-α and TCR-β CDR3 sequences across lesions, including 490 

extensive sharing of CDR3 sequences between high-burden and low-burden granulomas 491 

(Figure S6E).  This suggests that TCR enrichment is not strictly dependent on bacterial burden, 492 

and that antigens seen by enriched T cell clones may be similar in restrictive and permissive 493 

granulomas. 494 

 495 

We further investigated the relationship between CDR3 sequence, T cell phenotypes and 496 

granuloma-level CFU.  We observed associations between CDR3 sequence and T/NK cell sub-497 

cluster populations within enriched CDR3 sequences (Figure S6F).  For example, we identified 498 

individual CDR3s where the majority of cells are derived from either the subcluster 13 (T1-T17) 499 

or 4 or 5 (cytotoxic).  In cases where a single affinity receptor is associated with multiple 500 

subclusters, the two transcriptional phenotypes observed are typically T1-T17 and proliferating 501 

T cells (Figure S6F).  In the animal with the broadest distribution of bacterial burdens among 502 

the randomly selected granulomas (monkey 4017), the enriched CDR3 sequences shared 503 

similar cellular phenotypes across high and low burden lesions (Figure S6G, Table S14).  504 

Taken together, these data do not support the hypothesis that T cell specificity defines bacterial 505 

control at the level of the granuloma. 506 

 507 

Finally, we leveraged targeted TCR reconstruction data to identify rare populations of donor-508 

unrestricted T cells (DURTs; STAR* Methods), which represent a heterogenous class of 509 
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invariant T cells, including mucosal associated invariant T (MAIT) cells, invariant natural killer T 510 

cells (iNKT cells), and CD1 restricted Germline-Encoded Mycolyl lipid reactive (GEM) T cells 511 

(Ogongo et al., 2020; Van Rhijn et al., 2015).  Among DURTs, we observe the highest 512 

frequency of T cells with the TRAV1-2/TRAJ33 MAIT-associated TCR combination (240/9,281 513 

(number of T cells with alpha recovery), 0.6% of total T cells), a population of iNKT cells 514 

(TRAV10-1/TRAJ18) TCR sequences (20/9,281, 0.05%) and GEM cells (TRAV1-2/TRAJ9) 515 

(5/9,281) (Figure S6H).  Rather than defining a distinct phenotypic subset, we found that these 516 

cells distributed across several T and NK cell subclusters.  Their low frequency precluded an 517 

accurate assessment of their relationship to granuloma-level bacterial burden. 518 

Cellular ecology of pulmonary TB granulomas 519 

To assess whether specific cell types co-reside in TB lung granulomas more than would be 520 

expected by chance, we calculated the pairwise Pearson correlation matrix between all major 521 

cell types and sub-clusters across 26 granulomas (Figure 6A; STAR* Methods).  Using 522 

hierarchical clustering of this pairwise correlation matrix, we defined 5 primary groups of cell 523 

clusters/sub-clusters whose abundances are associated across granulomas (Figure 6A, Table 524 

S11).  Of these, group 2 (“Red”), which includes mast cells, plasma cells and certain stromal 525 

populations, is significantly expanded in high-burden and early-detected lesions compared to 526 

low burden, late lesions.  Group 4 (“Teal”), which primarily consists of T cell subclusters, is 527 

significantly higher in low burden and late-detected granulomas compared to high burden and 528 

early-detected granulomas (Figure 6B, Table S12).   529 

 530 

Given the unexpected increased frequency and co-occurrence of plasma and mast cells in high 531 

burden granulomas, we looked for potential direct links between them (Figure 6).  To 532 

understand diversity in plasma cell populations, we first examined the distribution of 533 

immunoglobulin heavy chain expression among the plasma cells and detected limited IgE 534 

expression.  Instead, we observed that the vast majority of plasma cells express either IGHA or 535 
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IGHG constant chains (Figure S8), suggesting that they are the dominant antibody classes 536 

induced by Mtb in the granuloma microenvironment.   537 

 538 

As the presence and function of mast cells in Mtb lung granulomas has yet to be characterized, 539 

we sought to further validate this transcriptional finding (Figure 2C-D, Figure 6A-B).  To confirm 540 

the presence and examine the localization of mast cells in Mtb granulomas, we performed 541 

immunohistochemistry on paraffin embedded sections of NHP and human granulomas using 542 

Tryptase and C-kit/ CD117 markers by (Figure 6C-D; STAR* Methods).  This revealed that 543 

mast cells primarily localize to the outer regions of the granuloma, including the lymphocyte cuff 544 

in NHP (Figure 6C), and can be found within and around human granulomas (Figure 6D).  In 545 

our data, mast cells are characterized by expression of IL-13 (Figure 6E), which we also 546 

recently observed in a study of human nasal polyposis (Ordovas-Montanes et al., 2018) and IL-547 

4 (Figure 6E).  Moreover, we find that mast cells co-occur with fibroblasts (Figure 6A, Table 548 

S11), consistent with a wound healing response (Rodrigues et al., 2019; Wong et al., 2020; 549 

Wulff and Wilgus, 2013).  These data are consistent with a role for mast cells in peripheral 550 

fibrosis but might also suggest additional regulatory interactions with lymphocytes which will be 551 

the subject of future studies.    552 
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Discussion 553 

A classic tenet in TB is that within most infected individuals the immune response is capable of 554 

controlling but never fully eliminating infection, and only a small percentage of infected 555 

individuals develop active disease (O'Garra et al., 2013).  The cynomolgus macaque model of 556 

Mtb infection has taught us that the true picture is likely more complex.  Within every individual, 557 

there are granulomas that represent geographically circumscribed instances of sterilizing 558 

immunity, of immune standoff—control but not sterilization—and, at least in some individuals, 559 

frank immune failure (Flynn, 2006, 2010; Lin et al., 2014b; Lin et al., 2009).  This heterogeneity 560 

provides an opportunity to define cellular and molecular factors that correlate with bacterial 561 

control in the animal model that best recapitulates human infection and disease (Coleman et al., 562 

2014a) to identify potential prevention and cure strategies for TB.   563 

 564 

To enable unbiased investigation of which factors within a granuloma might facilitate bacterial 565 

control, we performed high-throughput single-cell transcriptional profiling of 26 granulomas 566 

spanning a wide range of bacterial burdens in cynomolgus macaques, while simultaneously 567 

tracking granuloma development by PET CT imaging and executing detailed microbiologic 568 

quantification.  Our data represent the first unbiased single-cell investigation of factors 569 

associated dynamically with natural control of Mtb in granulomas.  Here, we focused on 570 

granulomas at 10 weeks p.i., a key inflection point in Mtb infection where innate and adaptive 571 

immune responses are in place.  In previous work, we demonstrated that in lesions formed upon 572 

infection, viable bacterial burdens are highest at ~4 weeks p.i. and that by ~10 weeks p.i., 573 

bacterial burden decreases in many granulomas, with a subset having fully sterilized (Lin et al., 574 

2014b) (Figure S1).  As we can distinguish low bacterial burdens that occur through 575 

sterilization, rather than late or very slow bacterial growth, by measuring cumulative bacterial 576 

burden using a genome counting approach (CEQ), our imaging and microbiologic tools provide 577 
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a robust means of assessing lesional dynamics.  This, in turn, allows us to capture features that 578 

associate with, and may be causally involved in, bacterial clearance (low CFU/CEQ).   579 

 580 

Our single-cell analysis of granulomas at this pivotal 10 week p.i. time point revealed cellular 581 

factors correlated with both immune successes and failures.  Consistent with previous 582 

observations, our findings reinforce a critical role for T cells in the control of Mtb infection.  583 

Nevertheless, given the substantial increase in resolution, our data paint a more nuanced 584 

picture, highlighting several subclusters and subpopulations within the larger unified T/NK cell 585 

cluster, including Type1-Type 17 hybrid subpopulations, cytotoxic cell subclusters, and stem-like 586 

memory T cells, that may play a critical role in bacterial control at the local granuloma level.  587 

What became clear through these analyses is that functional phenotypes, rather than canonical 588 

lymphocyte cell types, defined the subclusters and were associated with bacterial control, 589 

sometimes in a temporal fashion.  Moreover, our data reveal several features associated with 590 

loss of bacterial control – most notably an increase in both mast and plasma cells in high burden 591 

lesions.   592 

 593 

Although both CD4 and CD8 T cells have been implicated in control of Mtb infection, the 594 

cytotoxic function of lymphocytes in Mtb infection has been relatively understudied, with 595 

emphasis placed instead macrophage activating cytokines, such as IFN-γ and TNF.  However, 596 

subclustering the T/NK cluster revealed six subclusters that are defined by cytotoxic gene 597 

expression, each with a different flavor.  This is the first study to describe the complexity of 598 

cytotoxic cells in granulomas in the context of bacterial burden.  These subclusters did not align 599 

cleanly with canonical markers of cellular identity that would define them as classical CD8αβ or 600 

CD4 T cells, NK, NK T cells, or γδ T cells, but instead appear to be variable mixtures of cell 601 

types with common transcriptional programming.  Of these, cytotoxic cluster 4, which is 602 
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enriched in CD8αβ T cells and defined by expression of several granzymes and perforin but 603 

only low levels of granulysin, is associated with control of Mtb in granulomas and likely 604 

represents cytotoxic effector T cells that target infected cells for apoptosis.  Although the other 605 

cytotoxic subsets do not correlate with overall control of Mtb in granulomas, temporal analysis of 606 

granulomas via PET CT scanning allowed us to identify the early granulomas that form upon 607 

infection.  In those granulomas, control of early Mtb infection was associated not only with 608 

cytotoxic subcluster 4 but also cytotoxic subclusters 1, 2, and 5.  These include innate-like 609 

CD8+ subsets (NKT, NK, and γδ T cells) with tri-cytotoxic potential (perforin, granzymes, and 610 

granulysin) (subcluster 1), granzyme K expressing T cells (subcluster 5) and an interesting 611 

population with characteristics of peripheral tolerant T cells (subcluster 2).  Subclustering the 612 

T1/17 cluster also revealed a cytotoxic T cell subpopulation that was associated with lower 613 

bacterial burdens.  Together these data point to important and previously underestimated roles 614 

for cytotoxic innate and adaptive lymphocytes in temporal control of Mtb in granulomas, and 615 

support further study of cytotoxic cells as a potential target for vaccination. 616 

 617 

The T1-T17 subcluster of the T and NK cell cluster, characterized by transcriptional patterns 618 

associated with both Type 1 and Type 17 T cells, was most strongly associated with overall 619 

bacterial control.  While a number of studies have implicated lymphocytes with CD4 Th1 and 620 

Th17 functionality in the control of Mtb infection (Darrah et al., 2020; Gideon et al., 2015; 621 

Lyadova and Panteleev, 2015; Mpande et al., 2018), our scRNA-seq analysis reveals functional 622 

characteristics of cells associated with control that do not neatly follow expected T cell 623 

ontogenies defined by surface marker staining; rather, cells within express both Type 1 and 624 

Type 17 genes and are a mixture of CD4 and CD8 expressing T cells.  While the T1-T17 625 

subcluster was defined by expression of several transcription factors and surface receptors 626 

consistent with Th17 cell differentiation, there was a paucity of expression of either IL17A or 627 
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IL17F.  Although this could be due to failed detection or a difference between transcription and 628 

translation, we previously reported that lymphocytes expressing T1 or T17 cytokines were at 629 

relatively low frequencies in granulomas (Gideon et al., 2015).  Notably, the T1-T17 subcluster 630 

shares many features with previously characterized T cell subsets including Th1* and ex-Th17 631 

cells which do not express IL-17 (Acosta-Rodriguez et al., 2007; Basdeo et al., 2017).  These 632 

subsets, observed previously among CD4 T cells, represent precursors to long lived tissue 633 

memory and have been shown to play a crucial protective role in autoimmunity, bacterial control 634 

and memory immune responses to pathogens (Amezcua Vesely et al., 2019; Liang et al., 2015; 635 

van Hamburg and Tas, 2018; Wacleche et al., 2016).  Collectively, this suggests that the T1-636 

T17 population represents a spectrum of tissue-resident effector and effector-memory T cells 637 

that arise in response to Mtb infection, and should be considered as targets to be exploited for 638 

vaccine development. 639 

 640 

The T1-T17 subcluster consists of both CD4 and CD8A/B expressing cells with shared 641 

functional programming but contains subpopulations with unique features.  The CD4-enriched 642 

subpopulation expresses some of the cluster defining genes associated with the stem-like T cell 643 

subcluster, but does not have obvious effector functions.  Although exact phenotype of this 644 

subpopulation is not yet clear, there is a trend toward association with lower bacterial burden 645 

and could represent a T cell population restrained in effector functions and metabolic activity, 646 

preventing excessive activation which could lead to detrimental inflammation or exhaustion.  647 

The CD8 T1-T17 subpopulation that associated with control was characterized by expression of 648 

cytotoxic effector molecules.  Interestingly, most of the IFNG and TNF expression from the T1-649 

T17 cluster came from a CD4 and CD8 subpopulation that did not associate with overall 650 

bacterial control except in early-detected granulomas.  However, cytotoxic clusters 1, 2, 4 and 5 651 

also show some expression of IFNG and TNF, and cytotoxic cluster 4 is associated with overall 652 

bacterial control.  The relatively limited association between expression of these 653 
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proinflammatory cytokines and bacterial control may reflect the temporal dynamics that 654 

distinguish lesions that have already achieved control versus those in which there is ongoing 655 

bacterial growth.  In previous flow cytometry-based studies of NHP granulomas, expression of 656 

IFN-γ did not correlate with bacterial burden, and other T1/T17 cytokines including TNF, IL-2 657 

and IL-17 only correlated with lower bacterial burden in conjunction with anti-inflammatory 658 

cytokines such as IL-10 expressed in the same granuloma.   659 

 660 

Our data also revealed an interesting CD4 and CD8 expressing T cell cluster associated with 661 

control of bacterial burden that resembles stem-like T cells.  We hypothesize that these cells 662 

may be a source of T cell renewal in granulomas, and may differentiate into the various 663 

functional subsets we observe within them.  This hypothesis is supported by TCR sharing 664 

between the stem-like T cells and the T1/17 or other subclusters in a limited number of 665 

granulomas; more extensive TCR coverage will help to solidify this relationship in future studies.  666 

Another possibility is that the stem-like T cells represent memory T cells that are not specific for 667 

Mtb antigens, but migrate to the granuloma due to inflammatory signals, including chemokines.  668 

Indeed, flow cytometry based studies support that a majority of T cells in granulomas do not 669 

respond to Mtb antigens by making cytokines nor are they exhausted (Gideon et al., 2015; 670 

Sakai et al., 2016; Wong et al., 2018).  The stem-like T cells warrant additional study, as they 671 

associate with control of Mtb in granulomas and could be explored as a potential vaccine target.   672 

 673 

Importantly, to our knowledge, this study is the first to link longitundinal PET-CT imaging and 674 

single-cell sequencing data in the context of infectious disease, and this provides novel insights 675 

into the temporal evolution of immunologic control in Mtb infection.  Interestingly, our imaging 676 

and microbiologic analyses revealed a significant relationship between the time at which 677 

granulomas are first observed on PET-CT and bacterial burden.  Granulomas that are observed 678 

only on the 10-week scans had consistently lower bacterial burdens, despite having 679 
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approximately similar cumulative (CEQ) bacterial burdens.  These data indicate that late-680 

detected granulomas are not just captured at an earlier stage in their development as a result of 681 

dissemination or slower initial growth, but actually demonstrate greater bacterial killing.  682 

Focusing on the early-detected, or originally established, granulomas revealed that initial control 683 

of infection is significantly associated with cytotoxic functions (both innate and adaptative) as 684 

well as T1-T17 subpopulation 3 expressing IFNG/TNF.  These findings solidfy the importance of 685 

considering cytotoxic function, not just cytokine function, in vaccine strategies that can prevent 686 

Mtb infection.   687 

 688 

The T1-T17 subcluster was expanded primarily in late-detected relative to early-detected 689 

lesions and strongly associated with control of Mtb.  We hypothesize that these granulomas 690 

arise in the context of a more established adaptive immune response and thus harbor a more 691 

bactericidal immune ecosystem.  Such a model is consistent with recent observations that 692 

granulomas established in immune primed environments are better at killing Mtb than those 693 

established in a naïve lung – e.g., existing Mtb infection (Cadena et al., 2018) or IV-BCG or 694 

intrabronchial BCG vaccination, where Th1/17 expression patterns were observed to correlate 695 

with protection (Darrah et al., 2020; Dijkman et al., 2019).  Here, we extend these findings by 696 

looking at primary infection within an unmanipulated system, linking imaging with scRNA-seq to 697 

identify the different paths granulomas may take based on when they arise, and the cells 698 

associated with these distinct outcomes.  By examining the ecosystem of granulomas over time 699 

our data suggest that most T1/T17 cells emerge later in the infection and lead to increased 700 

killing of Mtb.  Thus, targeting induction of these cells via vaccination could improve early control 701 

of infection.   702 

 703 

The immune correlates of failure to control are even more unexpected.  Although it has been 704 

hypothesized that immune exhaustion may contribute to failed bacterial control (Behar et al., 705 
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2014; Jayaraman et al., 2016; Khan et al., 2017), we do not find associations between classical 706 

T cell exhaustion molecules and bacterial burden, which supports previous observations in NHP 707 

granulomas (Gideon et al., 2015; Sakai et al., 2016; Wong et al., 2018).  Instead, lesions with 708 

high bacterial burdens are characterized by significantly higher proportions of plasma and mast 709 

cells than those with lower burdens.  Notably, while these plasma cells do not appear to be 710 

expressing IgE (in contrast to IGHA and IGHG), the mast cells express IL-13 and IL-4, 711 

suggesting a possible link between the pair (Takeuchi et al., 2015).  The expression of IGHA 712 

and IGHG and presence of plasma cells in granulomas support the notion that antibodies may 713 

play a prominent role in Mtb infection, perhaps with different effects as a function of antibody 714 

quality (Achkar et al., 2015; Jacobs et al., 2016; Lu et al., 2016).  Immunohistochemistry 715 

confirms the presence of mast cells in TB granulomas in both NHP and humans, where they 716 

appear located in and around the lymphocyte cuff, suggesting potential regulatory interactions 717 

with T and NK cells or with the macrophages present within this region.  IL-13 and IL-4 or 718 

expression of IL-4Rα (the receptor for these cytokines) have been reported to modulate CD8 T 719 

cell function, including inhibition of cytotoxic activity, supporting the potential for mast cells to 720 

regulate the T cell responses in granulomas(Kienzle et al., 2005; Wijesundara et al., 2013).  721 

While mast cells have been described in granulomatous conditions, such as TB lymphadenitis 722 

(Taweevisit and Poumsuk, 2007), leprosy skin lesions (Bagwan et al., 2004), and liver 723 

granulomas (Celasun et al., 1992), and may orchestrate immune cross talk in TB (Garcia-724 

Rodriguez et al., 2017), this is the first description of direct correlation with Mtb bacterial burden 725 

in individual TB granulomas.  While more detailed studies on the roles of mast cells in TB are 726 

indicated, this observation provides exciting new avenues to explore the immune architecture of 727 

failed immunity in TB lung granulomas, and suggests new intervention strategies.  In 728 

conjunction with elevated mast and plasma cell frequencies, we also observed higher 729 

proportions of fibroblasts in high burden lesions.  This may reflect attempts at wound healing 730 

(i.e., a canonical type-2 response) in the face of higher bacterial burden, as suggested by other 731 
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studies (Wong et al., 2020) and uncovers potentially therapeutically relevant intercellular 732 

interactions (Rubinchik and Levi-Schaffer, 1994) for future follow up.   733 

 734 

It is important to recognize the limitations in our data.  Our TCR sequencing data reveal 735 

significant sharing of TCR sequences between granulomas within, but not across, animals.  T 736 

cells appear to be responding to similar antigens across granulomas, irrespective of bacterial 737 

burden, suggesting that the abundance and composition of T cell phenotypes, rather than 738 

antigen specificity, is a critical determinant of granuloma-level bacterial control.  However, our 739 

recovery of CDR3 sequences was relatively low, which limits our ability at this time to go beyond 740 

analysis of enriched clones.   741 

 742 

Moreover, the granuloma is an inherently heterogenous environment and includes necrotic 743 

debris, requiring robust technical correction and quality control; this results in an analysis of only 744 

high-quality cells.  Since only a fraction of cells from each granuloma are analyzed, proportions 745 

may not reflect the true composition of cells within a granuloma and may be skewed toward 746 

lymphocytes highlighting the importance of orthogonal validations.  Given cell and granuloma 747 

numbers, rare populations, including DURTs, were more difficult to analyze in detail.  We 748 

focused primarily on cell types, subclusters, and subpopulations that were correlated with 749 

bacterial burden in granulomas.  While macrophages are clearly an important component of the 750 

immune response in TB granulomas, the heterogeneity of the myeloid populations requires 751 

further in depth evaluation with additional samples and time points to appreciate which functions 752 

and cell types are associated with control or failure.  Relatedly, the granuloma landscape 753 

investigated here is from a single, albeit pivotal, time point.  It is likely that expression of certain 754 

genes that occur early in infection and then are downregulated as infection progresses will be 755 

missed, as will some populations critical to guiding overall lesional outcome.  More generally, 756 

matched analyses of earlier and later time points post-infection along with analysis of lung 757 
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tissue and granulomas from vaccinated or reinfected and protected animals will provide a more 758 

complete picture of the temporal control of Mtb in granulomas.   759 

 760 

In summary, our study affords unprecedented, unbiased views of the cellular and molecular 761 

features associated with control of Mtb in primary lung granulomas.  Beyond recapitulating 762 

canonical correlates, our analysis defines nuanced actionable innate and adaptive functional 763 

cell states including novel data on cytotoxic subsets, stem-like T cells and T1/17 CD4 and CD8 764 

T cells, uncovers a permissive role for cells consistent with type-2 responses (mast and plasma 765 

cells) and sheds light on essential dynamics among host-pathogen interactions (Iwasaki and 766 

Medzhitov, 2015).  Collectively, our data substantiate a model where Mtb burden within early 767 

forming lesions is dictated by the interplay among restrictive, inflammatory innate-like responses 768 

and permissive, protective type-2 (wound healing) responses seeking to balance bacterial 769 

control with the maintenance of essential tissue functionality, respectively.  In those lesions 770 

forming late, this balance can be tipped by an onslaught of adaptive T1-T17 and cytotoxic 771 

responses which are capable of controlling local disease, given sufficient access.  Such a 772 

framework is consistent with previous observations of natural (Cadena et al., 2018) or induced 773 

(Darrah et al., 2020) control, and nominates several discrete putative axes of intra- and 774 

intercellular signaling that may prove therapeutically or prophylactically valuable, as well as 775 

intellectual links to other inflammatory and infectious diseases that affect epithelial barrier 776 

tissues. 777 

  778 
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Figures  legends: 798 

 799 

Figure 1. Study design, experimental set up, characteristics of animals over the course of 800 

Mtb infection and granuloma bacterial burden. 801 

A. Architecture of macaque TB lung granuloma, where lymphocytes and macrophages are 802 

present in distinct regions. Immunohistochemistry and confocal microscopy were 803 

performed on a granuloma from an animal at 11 weeks post-Mtb infection to visualize 804 

localization of CD11c+ macrophages (cyan), CD3+ T cells (yellow), and CD20+ B cells 805 

(magenta). 806 

B. Study design: Cynomolgus macaques (n=4) were infected with a low-dose inoculum of 807 

Mtb (Erdman strain) and serial PET-CT scans were performed at 4, 8, and 10 weeks 808 

post-infection with the final scan used as a map for lesion identification at necropsy. 809 

Individual granulomas were excised and homogenized. CFU and CEQ assays were 810 

performed on all granulomas (top right) and 26 individual granulomas across 4 animals 811 

were randomly selected at necropsy for Seq-Well assays (bottom right).    812 

C. Total lung FDG activity (in log scale) measured by PET scans of each animal at 4, 8 and 813 

10-weeks post-Mtb infection showing trajectories of lung inflammation.  814 

D. Distribution of CFU per granuloma sampled for Seq-Well assay for each animal. Each 815 

dot is an individual granuloma. 816 

E. CFU log10 per granuloma (total live bacteria) organized by tertiles. Each dot is a 817 

granuloma. Colors correspond to CFU tertile ranges in E-G: Green: 0-500 CFU, Yellow: 818 

500-5000 CFU, and Red: >5000 CFU. Box plot showing median, IQR and range. Kruskal 819 

Wallis test with Dunn’s multiple testing correction for panels E-G.  820 

F. CEQ log10 per granuloma (Chromosomal equivalents, CEQ, live + dead Mtb) organized 821 

by tertiles. Colors correspond to CFU tertile ranges.  822 

G. Ratio between CFU (viable bacteria) and CEQ (total bacterial burden) i.e., relative 823 

bacterial survival. Lower ratio (negative values) corresponds to increased killing and 824 

higher ratio corresponds to increased Mtb survival.  825 

 826 

Figure 2. Analysis of single-cell sequencing of tuberculosis lung granulomas. 827 

A. UMAP plot of 109,584 cells from 26 granulomas colored by identities of 13 generic cell 828 

types.  829 
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B. Expression levels of cluster defining genes enriched across 13 generic cell types. Color 830 

intensity corresponds to the level of gene expression, while the size of dots represents 831 

the percent of cells with non-zero expression in each cluster.  832 

C. Significant correlations between proportion of T/NK cells, mast cells, plasma cells and 833 

fibroblasts with bacterial burden of individual granulomas (CFU per granuloma) using 834 

non-parametric Spearman’s rho correlation test.  835 

D. Relationship between granuloma proportional composition of cell type clusters and CFU 836 

in tertiles. Statistics: Kruskal Wallis test with Dunn’s multiple testing correction. Adjusted 837 

p value for cell type composition comparing low and high tertiles is presented in boxes. 838 

Box plot showing median, IQR and range; each dot represents a granuloma.  839 

Spearman’s Rho and p values are shown in boxes at the top for corresponding cell type 840 

clusters. 841 

 842 

Figure 3: Diversity in the unified T and NK cell cluster and relationship to granuloma-843 

level bacterial burden. 844 

A. Subclustering 41,222 cells in the unified T/NK cell cluster, colored by subclusters. 845 

Subclusters are numbered based the expression patterns. 846 

B. Frequency of expression of TCR genes TRAC, TRBC1 or TRBC2 (yellow) and TRDC 847 

(green) across 13 T/NK cell subclusters.  848 

C. Expression levels of T/NK cell cluster-defining genes. Color intensity corresponds to the 849 

level of gene expression and the size of dots represents the percent of cells with non-850 

zero expression in each cluster. Y-axis identifies subclusters. 851 

D. Correlations between proportion of T/NK cells and subclusters (1-13) with bacterial 852 

burden of individual granulomas (CFU per granuloma) using non-parametric Spearman’s 853 

rho correlation test. Subclusters with significant negative correlation values are 854 

highlighted in blue.  855 

 856 

Figure 4: Phenotypic Diversity in T1-T17 cells.  857 

A. T1-T17 subcluster overlaid on unified T/NK cell cluster (left) and colored by normalized 858 

expression values for T1-T17 subcluster-defining genes (bold outlined boxes) and non-859 

enriched canonical Type1 and Type 17 genes (right).  860 

B. Subclustering of 9,234 T1-T17 cells resulting in 4 phenotypic sub-populations. 861 
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C. Cluster defining genes for T1-T17 subpopulation 1, 2, 3 and 4. Color intensity corresponds 862 

to the level of gene expression and the size of dots represents the percent of cells with non-863 

zero expression in each cluster. 864 

D. Subclustering of T1-T17 cells colored by normalized gene expression values for selected 865 

subcluster (top row) and sub-population defining genes.  866 

E. Left: Relationship between the T1-T17 sub-populations and granuloma bacterial burden in 867 

tertiles. Statistics: Kruskal Wallis test with Dunn’s multiple testing correction. Adjusted p 868 

value for cell type composition comparing low and high CFU tertiles is in boxes. Box plot 869 

showing median, IQR and range; each dot represents a granuloma. Right: Correlations 870 

between proportion T1-T17 subcluster and subpopulation 1-3 with bacterial burden of 871 

individual granulomas (CFU per granuloma) using non-parametric Spearman’s rho 872 

correlation test.  873 

 874 

Figure 5. Association of cell type proportions with timing of granuloma formation  875 

A-C. CFU log10 values(A), CEQ log10 values (B) and relative bacterial survival (CFU/CEQ)(C) for 876 

granulomas grouped by time of initial observation by PET-CT imaging. Early detection 877 

(yellow): those identified at 4 weeks p.i.; Late detection (green): those identified at 10 878 

week p.i..  879 

D,E. Canonical cell type clusters (D) and  T/NK subclusters (E) that are significantly different      880 

between early and late detection granulomas. See Table S10 for full data. 881 

F. Early (4 week) detection granulomas comparing lowest CFU (n=6) and highest CFU (n=6)   882 

granulomas.  883 

G, H. Relationship between the abundance of canonical cell types (G) and T/NK subclusters (H) 884 

with bacterial burdens among low CFU and high CFU early-detected granulomas. Each 885 

dot represents a granuloma. Box plot shows median, IQR and range. Statistics: non-886 

parametric Mann Whitney U test. See Table S10 for full data 887 

 888 

Figure 6: Cellular ecosystem in TB lung granulomas 889 

A. Pairwise Pearson correlation values proportions of canonical cell types and T/NK and 890 

macrophage subclusters across 26 granulomas. Hierarchical clustering of correlation 891 

coefficients identified 5 groups (indicated by color) of cell types with correlated 892 

abundance in granulomas. 893 

B. Relationship between the distribution of correlated cell-types between high and low CFU 894 

granulomas (left), and across all 26 granulomas ordered from lowest CFU (left) to 895 
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highest CFU (right). Colored boxes indicate granuloma CFU range by green boxes (low), 896 

orange boxes (mid) and maroon boxes (high); which granulomas came from which 897 

animal by salmon boxes (3817), yellow boxes (3917), Navy blue boxes (4017) and 4217 898 

boxes (light blue) and time of detection is indicated by yellow boxes (10 weeks) and 899 

green boxes (4 weeks). 900 

C. Detection of mast cells in a 10-week NHP granuloma using immunohistochemistry, 901 

staining for tryptase (green) and c-kit (CD117)(red).  902 

D. Detection of mast cells in a human lung granuloma. Hematoxylin and eosin stain and 903 

immunohistochemistry with multinucleated giant cells (stars, (top left) and c-kit (CD117) 904 

staining (indicated by arrows, top and bottom right). 905 

E. Left: UMAP plot of 109,584 cells from 26 granulomas colored by identities of 13 generic 906 

cell types. Right: expression levels of IL-13 and IL-4 genes overlaid on UMAP plot of 907 

109,584 cells. 908 

 909 

Supplemental figures: 910 

Figure S1: CFU per granuloma decreases over time.  911 

 912 

A. Each column depicts the CFU for all granulomas of an individual macaque (N=88 913 

macaques), ranging from 4 weeks to 17 weeks post-infection. Each dot represents a 914 

granuloma.  Lines are at means (per animal) and different colors represent weeks post-915 

infection.   916 

B. CFU per granuloma decreases significantly starting at 10-11 weeks post-infection.  Each 917 

dot represents the mean CFU per granuloma of an individual animal, with the x-axis 918 

indicating weeks post-infection at which necropsy was performed.  Lines are at 919 

medians.  Differences between time points were tested using Kruskal-Wallis test with 920 

Dunn’s multiple comparison adjustment.  (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 921 

0.0001.) 922 

 923 

Figure S2: Sequencing, alignment and QC pipeline (see STAR* methods) 924 

A, D, I. Array-specific processing pipeline.  925 

B. Array specific Louvain clustering (Resolution = 1.25).  926 

C. Cluster-defining gene expression was determined within each array.  927 

E. Overview of Cluster-Specific Summary Score.  928 
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F. Estimation of soup-thresholds for correction of ambient RNA contamination. Left: 929 

Relationship between soup-thresholds (x-axis) the number of soup defining genes 930 

detected for each array (y-axis). Right: Relationship between soup-thresholds (x-axis) 931 

and the cumulative proportion of soup-defining gene expression (y-axis). 932 

G. Hierarchical clustering results used to identify and remove clusters defined by 933 

ambient contamination from each array.  934 

H. t-SNE plot showing removal of clusters characterized as ambient RNA.  935 

J. Estimation of array-specific contamination rates using SoupX.  936 

K. Identification and removal of array-specific doublets.  937 

 938 

Figure S3: Identification of Canonical Cell Types.  939 

A. Waterfall plot showing stability of cell-type clusters at multiple clustering resolutions. 940 

Boxed row (resolution=1.00) selected for downstream analysis. 941 

B, C Distribution of lung cell-type signatures obtained from the Tabula muris (B) and Mouse 942 

cell (C) atlas.  943 

D. UMAP plot of 109,584 cells colored by Louvain clusters (resolution = 1.00).  944 

F. Waterfall plot showing the stability of sub-clustering analysis of 3,123 cells with a 945 

proliferating gene signature.  946 

G. Distribution of canonical cell type signatures across subclusters of proliferating cells.  947 

H. UMAP plot of 109,584 cells colored by 13 canonical cell type clusters.  948 

I. Expression levels of cluster-defining genes overlaid on UMAP plot in panel G. 949 

J. Correlations between bacterial burden and abundance of each canonical cell type 950 

cluster. Correlation was calculated using non-parametric Spearman’s rho test.  951 

 952 

Figure S4. Macrophage heterogeneity in Mtb granulomas.  953 

A. Waterfall plot showing the stability of macrophage sub-clusters. Boxed row 954 

(resolution=0.55) selected for downstream analysis. 955 

B. UMAP plot of 27,670 macrophage cluster colored by phenotypes.  956 

C. Cluster-defining genes across macrophage subclusters.  957 

D. Macrophage subcluster-defining genes overlaid on macrophage plot in panel B. 958 

E. Boxplots showing bacterial burden in tertiles and composition of macrophage sub-959 

populations. Box plot showing median, IQR and range; each dot represents a 960 

granuloma. Kruskal Wallis test with Dunn’s multiple testing correction. The only 961 

significant value is for Macrophage subcluster 3 between low and high CFU tertiles 962 
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p=0.0004). Spearman’s Rho and p values are shown in boxes at the top for 963 

corresponding macrophage subclusters. 964 

 965 

Figure S5. Sub-clustering and phenotypic identification of T/NK cell populations 966 

 967 

A. Waterfall plot showing the stability of T/NK cell sub-clustering. Boxed row 968 

(resolution=0.55) selected for downstream analysis. 969 

B. UMAP plot of 44,766 T/NK cells with a sub-cluster of 3,544 T/NK cells defined by 970 

residual contamination highlighted (blue).  971 

C. Waterfall plot showing the stability of T/NK cell sub-clustering following removal of 972 

contaminated T cell sub-cluster.  Boxed row (resolution=0.75) selected for downstream 973 

analysis. 974 

D. T/NK subclustering UMAP overlaid with normalized gene expression for CD4, CD8A, 975 

and CD8B (top). Expression of these genes across 13 sub-clusters (bottom) where color 976 

intensity corresponds to level of gene expression and size of dots represents the percent 977 

of cells with non-zero expression in each cluster.  978 

E. Frequency of expression of CD4 (blue), CD8A and/ CD8B (green), CD4 and CD8A/B 979 

(orange) or no expression of CD4/CD8A/B (yellow) across 13 T/NK cell subclusters.  980 

F. UMAP plots overlaid with normalized expression levels for selected T/NK cell subcluster-981 

defining genes. 982 

 983 

Figure S6: TCR repertoires in granulomas 984 

A. UMAP plots of 41,222 T/NK cells colored by recovery of TCR CDR3 sequences  985 

B. Fraction of each T/NK sub-cluster with recovery of TCR CDR3 sequences  986 

C. Enrichment of TCR-alpha (Alpha-CDR3 >= 10 cells, left), TCR-beta (Beta-CDR3 >= 12 987 

cells, middle), and both TCR-alpha and TCR-beta (Alpha-Beta-CDR3 >= 12 cells, right) 988 

in the unified T/NK cluster.  989 

D. Fraction of each T/NK sub-cluster enriched for TCR-alpha (red), TCR-beta (blue), and 990 

TCR-alpha and TCR-beta (green) sequences.  991 

E. Sharing of enriched TCR sequences across all granulomas. Colors above heatmaps 992 

correspond to animal and CFU tertiles. Individual heatmaps are shown for TCR-alpha 993 

(Alpha-CDR3 >= 10 cells, left), TCR-beta (Beta-CDR3 >= 12 cells, middle), and TCR-994 

Alpha/Beta (Alpha-Beta CDR3 >= 10 cells, right).  995 
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F. Distribution of T/NK cell subclusters within enriched alpha-beta TCR clones across all 996 

animals.  997 

G. Distribution of T/NK cell subclusters within enriched alpha-beta TCR clones between 998 

high and low burden lesions within Animal 4017.  999 

H. UMAP plots of 41,222 T/NK cells colored by detection of TRAJ TRAV TCR sequences 1000 

(MAIT: genes , iNKT (genes), and GEM (genes).  1001 

 1002 

Figure S7 Late detection granulomas have lower CFU than early detection granulomas.   1003 

A. CFU per granuloma is shown for early detection (blue) and late detection (red) within 1004 

each animal.  Box plots lines represent the median, IQR and range Each dot represents 1005 

a granuloma.   1006 

B. CFU is significantly lower in new granulomas within animals.  Each dot (and line) 1007 

represents the median CFU per granuloma of each animal.  Statistics: paired t-test . 1008 

 1009 

Figure S8. Expression of selected functional transcripts. 1010 

A. Expression levels of select functional genes overlaid on UMAP plot of 109,584 cells.  1011 

B. UMAP plot of 109,584 cells from 26 granulomas colored by identities of 13 generic cell 1012 

types.  1013 

 1014 

 1015 

 1016 

 1017 

  1018 
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Supplemental Table legends: 1019 

Table S1: Granuloma CFU, CEQ , CFU/CEQ; PET-CT: SUV-R, Size and Time of detection  1020 

Table S2a: Seq-Well array loading densities and doublet rate 1021 

Table S2b: Technical correction data: SoupX  1022 

Table S2c: Doublet removal Metadata 1023 

Table S2d: Cell level metadata 1024 

Tablet S3: Canonical cell type enrichment gene list: 13 cell type clusters 1025 

Table S4: Cells type composition: percentage of assigned granuloma cells. A) canonical cell 1026 

type clusters, b)macrophage subclusters, c) T/NK subclusters and d) T1T17 subpopulation 1027 

Tablet S5:Macrophage subcluster enrichment:9 subclusters 1028 

Table S6: T/NK subclustering: enrichment gene list :13 T/NK subclusters 1029 

Table S7:Type1-Type-17 subpopulation enrichment 1030 

Table S8: Correlation (Spearman’s rho) with bacterial burden and difference between in 1031 

percentage of cells between low and high CFU tertiles (Kruskal-Wallis Test with Dunn’s 1032 

multiple testing correction): A) canonical cell type clusters, b) T/NK subclusters and C) T1T17 1033 

subpopulation 1034 

Table S9: TCR repertoires 1035 

Table S10: Difference in cellular abundance and association with bacterial burden. (a) Early 1036 

detection and late detection granulomas, (b)Early detection granulomas 1037 

Table S11: Cellular ecology 1038 

Table S12: Association of cell group abundance with bacterial burden : (1) All: CFU low vs 1039 

high, (2) Early detection: CFU: lowest vs highest  and timing of granuloma detection (Early vs 1040 

late).  1041 
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