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Abstract 

Most tissue collections of neoplasms are composed of formalin-fixed and paraffin-embedded 

(FFPE) excised tumor samples, and routine diagnosis in oncology relies on histopathological 

analysis of those samples. Genomic sequencing is becoming increasingly important in the clinical 

management as well as the basic science of cancer. Unfortunately, genomic sequencing of FFPE 

samples is difficult due to the small amounts of DNA available particularly from early cancers, as 

well as degradation of that DNA. We developed a new bioinformatic algorithm to robustly 

identify somatic mutations using small amounts of DNA extracted from archival FFPE samples 

of breast ductal carcinoma in situ, a preinvasive form of breast cancer. We optimized this strategy 

using 28 pairs of technical replicates, in which the same DNA sample was sequenced twice 

independently. After optimization, the mean similarity between replicates was 88.3%, range 66.7-

100%, and we were able to detect an average of 19.9 (range 1-61) single nucleotide variants in 

each sample. We found that the accuracy of identifying SNVs severely declined when there was 

less than 40ng of DNA available. High depth resequencing also showed that insertion-deletion 

(indel) variants are an unreliable subset of mutations, using current methods. This new algorithm 

was empirically optimized and validated. It provides a significant improvement in detecting 

somatic single nucleotide variants in FFPE samples that can be used to accurately profile the 

genomes of neoplasms.  
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Introduction 

Tumors are characterized by a high genetic heterogeneity both within the same tumor type and in 

different parts of the same neoplasm (Marusyk and Polyak 2010). Genetic heterogeneity 

determines the capacity of the neoplastic cell population to adapt to new microenvironments and 

to develop resistance to therapeutic treatments (McGranahan and Swanton 2015; Andor et al. 

2016; Morris et al. 2016). We and others have hypothesized that the quantification of genetic 

heterogeneity will be generally useful for risk stratification of patients (Bedard et al. 2013; C. C. 

Maley et al. 2017). But to do so, we need accurate methods for identifying somatic genomic 

alterations in neoplasms. 

 Cancers can develop from different combinations of genetic mutations and each patient 

typically has a unique mutational profile, distributed among a mosaic of subclones (Dash et al. 

2019). This makes it difficult to develop universal biomarkers to predict cancer progression based 

on specific mutations and a single sample from a neoplasm. Alternatively, measures that 

characterize the underlying evolutionary process do not focus on specific progression 

mechanisms or the particular mutations that occur, making them more generalizable (Maley et al. 

2017). Intratumor heterogeneity is one such measure, and we have successfully used it in the past 

to predict cancer progression of pre-malignant diseases (Maley et al. 2006; Merlo et al. 2010; 

Martinez et al. 2016).  

Routine diagnosis in oncology relies on histopathological analysis of formalin-fixed and 

paraffin-embedded (FFPE) excised tumor samples. Using these samples for genetic analysis has 

numerous advantages: histopathological analyses are already available for them; specific areas 

can be selected with precision, eliminating the need to take additional samples dedicated to 

genetic analysis, and they are archived in large numbers, readily available to carry out 

retrospective studies. On the other hand, these samples have several technical limitations when 

used for genetic analyses. Histological fixation and embedding partially degrades and binds 

amino acids to the DNA, which continues to deteriorate over time (Carrick et al. 2015). 
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Deamination of cytosine residues leading to apparent C to T transitions is also a common artefact 

in FFPE derived DNA (Chen et al. 2014). These problems are exacerbated when the amount of 

available DNA is limited, because DNA artifacts are not compensated by the abundance of intact 

molecules, leading to sequencing errors (Do and Dobrovic 2015; Sah et al. 2013).  This is 

particularly relevant when studying early or pre cancerous conditions where the lesion can be 

very small. In order to study genomic intratumor heterogeneity using FFPE samples, we must 

often sequence the degraded and imperfectly purified DNA extracted from small focal areas of 

the tumor or pre cancer. Furthermore, estimates of intratumor heterogeneity, as well as other 

precision medicine efforts, are confounded by both false positives and false negatives in the 

detection of mutations. Precision medicine requires avoiding false positives and negatives which 

would potentially expose patients to the wrong therapeutic interventions. Thus, there is a need for 

robust and accurate methods for sequencing and detecting mutations in small amounts of DNA 

extracted from FFPE samples. We have developed a new bioinformatic method that reduces these 

obstacles for the estimation of genetic intratumor heterogeneity using paired FFPE samples. We 

developed this somatic-variant post-processing pipeline by empirical optimization using 28 

technical replicates—DNA samples sequenced twice independently, and validated the results 

using a different, high depth, sequencing technique. 

We selected a precursor of breast cancer, ductal carcinoma in situ (DCIS), to develop and 

optimize our pipeline because most of those tumors are detected in the early phase of their 

development and there is an urgent clinical need to be able to estimate the risk level of the tumor 

in this phase. Improved risk stratification in DCIS could guide improvements in management of 

the condition and therapeutic intervention. The majority of breast tumors develop in the terminal 

duct lobular unit, mainly starting among duct cells (Pandya and Moore 2011; Sims et al. 2007) 

(Fig. 1). The cancer cells proliferate within the ducts and deform their anatomical structure. 

Despite the ducts’ growth in volume their walls remain intact, confining the tumor cells in the 

lumen, separating them from nearby tissues and limiting their dissemination. In this phase, the 
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tumor is defined as ductal carcinoma in situ (DCIS). Subsequently, the cells may evolve to 

invasive disease, crossing the duct wall’s boundaries, invading the surrounding tissue and 

potentially metastasizing. DCIS tumors can remain non-invasive but there is substantial evidence 

that a subset will invade and, in some cases, metastasize. We included 7 samples from invasive 

breast tumors as representatives of the endpoint of breast cancer progression. The integration of 

genetic heterogeneity analyses in the patient clinical evaluation could provide a significant 

contribution to the estimation of DCIS patients’ risk for progressing to breast cancer. 

 

 

 

Figure 1: Breast cancer anatomy. Schematic representation of mammary gland anatomy 

and cancer development. The majority of breast tumors develop in the terminal duct lobular unit, 

80% starting among ductal cells. Initially, the duct suffers a benign hypertrophic growth of cells 

that can progress into ductal carcinoma in situ (DCIS). In this phase the neoplasm is confined 
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within the duct’s lumen and it is still clinically benign. Cancer cells can cross the duct wall’s 

boundaries, invading nearby tissues (IDC) and metastasizing.  

 

 

Results 

Ideally, the same sample of tumor DNA, when sequenced twice with the same methodology, 

should give the same results (detect the same mutations). We developed our mutation detection 

pipeline (Fig. 2), optimized it using duplicate sequencing (technical replicate) assays of the same 

samples, and validated our results using deep sequencing.  

 

 

 

Figure 2: Flowchart of the algorithm to estimate the genetic heterogeneity between two 

samples. Inputs: aligned sequences (BAM files) of the two samples (A, in red; and B, in blue) 

and their healthy tissue control (N, in green), population allele frequency data from the gnomAD 
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database (single nucleotide polymorphisms, SNPs, in purple), and user-specified configuration 

parameters (gear icon). Outputs: estimate of the genetic heterogeneity between samples A and B, 

and set of variants (level of detail user-specified). The key step of this algorithm is the generation 

of two sets of private and common variants by comparing the variants in the two samples twice, 

alternatively filtering one of the sets and using all variants from the other. The parameters that 

control this pipeline, and the values assayed in our bioinformatic optimization, are detailed in the 

Parameters box. 

 

Pipeline optimization 

We used an empirical method for optimizing the analysis algorithm through the comparison of 

technical replicates of whole exome sequences. Any variant detected only in one sample but not 

in the other is likely the result of a sequencing or data processing error. This approach allowed us 

to systematically and objectively compare alternative parameterizations of the estimation pipeline 

to single out the best overall, and to find the most generalizable parameter values using cross-

validation. 

In order to optimize our pipeline, we assigned a range of values to explore for each of the 

13 parameters that control its execution (Fig. 2) and explored every possible combination of 

them, scoring each using a statistic that integrates the central tendency and dispersion of the 

heterogeneity across the 28 technical replicates. Furthermore, we used DNA quantity (from 20 ng 

to >100 ng) in order to evaluate the efficiency of the method on different quantities of input 

DNA, in order to determine the limits of the method on small amounts of DNA (Suppl. table 1S). 

The resulting algorithm yielded a mean similarity across the 28 technical replicates of 

88.3% (range 66.7-100%) (Fig. 3), which constitutes a 5-fold improvement over using the same 

variant caller–Platypus without any post-processing of the results (Rimmer et al. 2014), 17.8%, 

range: 0.1-61.8%). We identified a mean of 19.9 (range 1-61) single nucleotide variants per 

sample (Table 1), which are distributed throughout the entire exome (Fig. 3S).  
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We also assayed an alternative implementation of our algorithm that uses Mutect2 to call 

variants, but it achieved a much lower accuracy, with a mean similarity (including indels) across 

the 28 technical replicates of only 2.4%, range 0.4-6.9%. Overall, we found 25 (14.9%) variants 

(SNVs) overlap between our main pipeline and this alternative implementation using Mutect2.  

 

 

Figure 3: Empirical optimization of the variant post-processing algorithm. Each violin plot 

summarizes the distribution of optimization scores of 5,308,416 combinations of values of the 13 

parameters that control the pipeline for one of the 28 technical replicates (same DNA sample 

processed twice independently). The optimization score indicates the two-dimensional euclidean 

distance to the theoretical optimum value of similarity between technical replicates (1) and 

proportion of final common variants that have a population allele frequency below 0.05 (1) 

relative to the maximum possible distance. After parameter optimization the similarity between 

the technical replicates was 88.3 %, range 66.7-100% on average (x= score before optimization; 

— : score after optimization; colors indicate the amount (ng) of DNA used as template). 
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Sample Common A + B Total Similarity (%)

DCIS-017 1 0 1 100

DCIS-020-B3 13.0 3 16 81.3

DCIS-020-B6 34 7 41 82.9

DCIS-028-K12 2 0 2 100

DCIS-029-D5 22.0 5 27 81.5

DCIS-029-D8 15.0 3 18 83.3

DCIS-050 16.0 7 23 69.6

DCIS-064 34.0 7 41 82.9

DCIS-080 15.0 0 15 100

DCIS-094-B11 31 2 33 93.9

DCIS-094-B7 22.0 6 28 78.6

DCIS-122 3.0 0 3 100

DCIS-135 8.0 0 8 100

DCIS-163 3 1 4 75

DCIS-164 32 3 35 91.4

DCIS-168-C4 56 5 61 91.8

DCIS-168-C8 44.0 2 46 95.7

DCIS-171 NA NA NA NA

DCIS-178 13.0 1 14 92.9

DCIS-211 19 2 21 90.5

DCIS-213 NA NA NA NA

DCIS-222-B10 2 1 3 66.7

DCIS-222-B6 3.0 0 3 100

DCIS-225-A16 11 4 15 73.3
DCIS-225-A6 1 0 1 100
DCIS-227 9 1 10 90
DCIS-250 6.0 1 7 85.7

DCIS-267 36 5 41 87.8
Average 17.3 2.5 19.9 88.3

S.D. 14.9 2.5 16.6 10.2  

Table 1: Similarity between technical replicates and number of variants. 

The similarity between technical replicates on average is 88.3%, range 66.7-100%. Number of 

total, common and private SNVs. Common SNVs: SNVs detected in both replicas of the same 

DNA samples; Private SNVs: SNVs detected only in one of the two DNA sequences of the same 

DNA. 

 

Intratumor genetic heterogeneity estimation pipeline 

In order to estimate the genetic heterogeneity between two samples (A, B), we applied the 

concept that the presence of a high confidence variant in one sample should increase the 
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confidence of that variant in the other sample. This concept could also be applied to multi-region 

sequencing projects. We implemented this in a crossed unequal comparison scheme (Fig. 2), by 

which the set of filtered variants detected in a sample is compared against all variants estimated in 

the other sample. This comparison is then reversed, to finally integrate the result of the two 

comparisons by considering any variant found common in either comparison as common, and 

private otherwise. Thus, if a variant has been detected with high confidence in one sample and 

has also been detected in the other sample–even if with low confidence–the variant is considered 

present in both samples. However, if a variant is detected with low confidence in both samples 

the variant is discarded, preventing an artificial increase in the confidence of shared variants. 

Finally, variants that are detected with high confidence in only one sample and not detected even 

at low confidence in the other sample, are considered private. Before the integration step, the 

algorithm refines the variants removing detected germline variants, known germline variants in 

human populations, and variants with insufficient coverage in either the normal sample (all 

variants) or the other sample (private variants) (see Methods for additional details). 

 

Validation of filtering parameters 

We performed a 5-fold cross-validation study to assess the sensitivity of the optimization strategy 

to input data, and how well the algorithm generalizes to independent datasets. The optimization 

strategy is extremely robust to the input data, returning a mean evaluation score (empirical 

cumulative distribution of test score) of 0.98, range 0.95 - 1 and being equal to the optimal overall 

in 4 out of 5 folds (Suppl. fig. 1S). Additionally, this experiment shows the robustness of the 

overall optimal model across different cross-validation folds, being the model with the highest 

mean test and training score in this cross-validation analysis. The test score of the overall optimal 

model is always as good or better than the model selected based on the training score for each 

fold.  
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Sensitivity analysis of the number of technical replicates 

We saw a fast increase in the relative score, reaching a plateau with just 6 technical replicates and 

only obtaining diminishing returns when going over 10 technical replicates (Suppl. fig. 2S). With 

6 technical replicates the results are very close to the ones obtained using the whole dataset, with 

a mean empirical distribution of the optimization score of 0.97. 

 

Validation of somatic variants 

In order to validate the identified mutations with our new method, we analyzed the same DNA 

used for the exome sequences using targeted primers and the AmpliSeqTM technology. We 

achieved an average of 18,311 (tumor) and 14,906 (control) read coverage for each single 

nucleotide variant in the validation set. We found that insertion-deletion variants are an unreliable 

sub-set of mutations (58 indels tested: 19 (32.7%) indels fully validated, 16 (27%) indels partially 

validated, in which not all nucleotides have been confirmed). The comparison of the data 

confirmed 83.9% (with stringent parameters, S) and 81.2% (with relaxed parameters, P) single 

nucleotide variants identified by applying our pipeline to the exome sequence (Table 2). We 

found 12 (S) or 15 (P) of the unconfirmed variants belong to the same gene MUC6 characterized 

by highly repetitive sequences, thus subject to read alignment errors and known to have an 

unreliable reference sequence (Svensson et al. 2018). Excluding MUC6 (16 (S) or 17 (P) 

variants), we validated 90.1% (S) or 85.2% (P) of the remaining variants. We found that 17.6% 

(S) and 16.6 % (P) of the confirmed variants are also present in the control samples with a 

frequency >10%; thus, these could be SNPs and not somatic mutations (Table 2). However, the 

expected frequency (50%) of the two alternative alleles of a germline SNP only occurs in 7 (S) or 

16 (P) cases, if we include alleles with frequency >40% (Suppl. table 2S, Fig. 4S). Importantly, 

we found a strong negative correlation between the amount of input DNA used (20, 40, 60, 80, 

>100) for the NGS libraries and the inability to identify correctly the SNPs including all variants 

detected with a frequency >1% in the germ line DNA (Spearman correlation r = -1, p<0.01 (S and 
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R); Suppl. table 2S). Excluding MUC6 variants and DNA samples with less than 40 ng, we 

validated 94% (S) or 91% (P) of the variants, however, 7 (6%) (S) or 13 (6.3%) (P) variants were 

detected only in one of the two technical replicates. 

 

 

Table 2: Validation. 

Targeted sequencing confirmed that 83.9% (Stringent filtering pipeline) and 81.2% (Relaxed 

filtering pipeline) of single nucleotide variants identified using our algorithm. Excluding MUC6, 

subject to sequencing errors we validated 90.1% (S) or 85.2% (P) of the remaining variants. 

Excluding MUC6 and low input amounts of DNA we validated 94% (S) or 91% (P) of variants. 

We found that the 12% (S) or 11.1% (P) of the confirmed variants are also present in the control 

samples with a frequency >10%. These variants may be SNPs. 

 

Breast cancer genetic and functional divergence 

Notably, the IDC samples have a significantly higher number of variants (on average) than pure 

DCIS samples ((S) one-way ANOVA (F(2,17) = 5.228 p= 0.017, post-hoc Tukey test: pure DCIS 

vs synchronous DCIS=NS, pure DCIS vs IDC= p=0.013, synchronous DCIS vs IDC=NS; (P) 

one-way ANOVA (F(2,18) = 5.406 p= 0.014, post-hoc Tukey test: pure DCIS vs synchronous 
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DCIS=NS, pure DCIS vs IDC= p=0.011, synchronous DCIS vs IDC=NS). Moreover, our method 

allowed us to measure the genetic divergence (heterogeneity) between pairs of samples taken 

from different locations in 6 different tumors. Our preliminary analysis based on 6 patients 

resulted in (S) 77.3% ± 15.9 S.D. and (P) 78.7% ± 10.5 S.D. genetic divergence. 

The analysis of the variants allowed us to identify mutated genes that are typical of breast 

cancer such as MDM2, TP53, NCOR1, PIK3CA, PIK3CA (Suppl. table 3S). There is a marginal 

overlap of mutated genes among the 3 different tumors analyzed: pure DCIS, synchronous DCIS, 

IDC = 1% (S), 1.6% (P); pure DCIS, IDC = 2.3% (S), 3.9% (P); pure DCIS, synchronous DCIS = 

7.6% (S), 5.8% (P); synchronous DCIS, IDC = 3.2% (S), 3.5% (P). 

 

Discussion 

Cancer is a disease of clonal evolution, and intra-tumor heterogeneity is its fuel. Unfortunately, 

this heterogeneity poses a challenge for traditional sampling and prognosis, as different biopsies 

may sample different clones with variable relevance to the future behavior of the tumor. 

However, because heterogeneity itself helps to drive clonal evolution, measurements of 

heterogeneity itself may be prognostic. Our previous studies of metrics of intratumor 

heterogeneity (which we also refer to as genetic diversity), showed that one robust measure is the 

degree to which two samples from the same tumor have genetically diverged (Merlo et al. 2010). 

This measure has the useful property that the more of the genome that is sequenced, the more 

accurate it gets. We hypothesized that ductal carcinoma in situ (DCIS) with more clonal 

heterogeneity would be more likely to progress to invasion and metastasis. But before we can test 

that hypothesis, we need a reliable method to measure clonal heterogeneity in this experimental 

system.  Here we have developed, characterized, and validated a reliable method to measure 

genetic divergence from two FFPE derived DNA samples from the same tumor, solving this 

limitation.  
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The sequencing of reduced quantities of DNA extracted from FFPE samples leads to 

substantial sequencing errors that require correction in order to obtain accurate detection of 

somatic mutations. Variant calling software packages need to be optimized to reduce the impact 

of sequencing errors. This is particularly important in the study of heterogeneity, as well as 

precision medicine, as both false positive and false negative detection of mutations are important 

for clinical care decisions, and diminish the predictive power of heterogeneity as a risk marker .  

Any study of tumor heterogeneity using comparable DNA samples needs to account for and 

minimize technical variation. We found 88.3% of the variants were detected in both duplicated 

sequences and 94% excluding the MUC6 gene and those samples with <40ng input DNA. This 

despite the fact that we included old FFPE samples and that we integrated in the analysis 

sequences with small inserts that are the main source of sequence errors. We found that keeping 

reads with small inserts in the analysis improved the quality of the results possibly because the 

DNA extracted from FFPE is fragmented and their exclusion diminishes the ability to detect 

variants. Both levels of filtering stringency tested (Stringent and Permissive) have proven 

successful. As expected, the relaxed version of the algorithm allows the detection of a higher 

number of variants in exchange for a small reduction of accuracy. It is remarkable that, when not 

using a post-processing pipeline such as the one presented here, variant callers like Platypus and 

Mutect2 generate very inaccurate results in this system, with similarities between the technical 

replicates of only 17.8% and 2.4% respectively.  

We have validated the bioinformatic algorithm by re-sequencing the regions containing the 

variants using a different sequencing technique: AmpliSeqTM. This technology allows for a deep 

re-sequencing of the regions of interest, improving our ability to identify mutations correctly. The 

comparison between the data obtained with these two techniques allowed us to validate the new 

algorithm. Among these, some are presumably SNPs and not somatic variants. However, the 

frequency of the two alternative alleles is often far from the expected frequency of 50%. This 

could be because of difficulties encountered when sequencing with AmpliSeq™ to analyze DNA 
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extracted from FFPE, or biological signals of neoplastic DNA present in the control samples. The 

fact that there is a strong statistically significant negative correlation between the amount of DNA 

used for the preparation of the libraries and the presence of SNPs detected as SNVs suggests that 

it is recommended to use DNA quantities at least 40 ng. In particular, this result indicates that the 

quality and quantity of control DNA is a key factor in the ability to correctly identify somatic 

mutations in tumors. In many instances, control DNA is not a limiting factor and higher amounts 

can be used for the preparation of the NGS libraries. Moreover, control samples could be 

collected during surgery or from blood cells, obtaining DNA from specimens that have not 

undergone the effect of fixation and DNA deterioration. Our algorithm allows us to modulate the 

stringency of SNP filtering parameters and to obtain the frequency of each potential SNP in the 

population.  

The variants detected using our algorithm were distributed over the entire exome and we 

have cataloged numerous mutations in well-known breast cancer genes. The marginal overlap 

between the genes mutated in the different tumor groups suggests a functional differentiation 

between the groups that should be investigated with a higher number of patients. Despite the 

small number of samples analyzed, we found a statistically significant difference in the number of 

mutations between the invasive ductal carcinoma samples and the DCIS samples. This result 

encourages the application of this method to a larger cohort of patients focusing on the study of 

DCIS heterogeneity to identify tumors that may be at elevated risk of progressing to invasive 

cancer. We are in the process of applying this approach to a larger cohort of patients. 

The current version of our algorithm has been developed and implemented to analyze only 

two samples per patient, which fits our needs but is too restrictive for many multi-region datasets. 

The generalization of this algorithm to use any number of samples per patient is not complicated 

but has some nuances that may need to be adjusted depending on the final purpose of the called 

SNVs. The removal of variants with insufficient coverage in other samples is the main focus of 

these decisions. For example, for a downstream analysis that does not integrate uncertainty easily, 
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the algorithm could require enough coverage in most (or all) samples, discarding variants with a 

lot of missing data, while for other applications those SNVs could be kept if they are at least 

present in another sample, assigning missing values or a measure of uncertainty to samples with 

insufficient coverage. The core step of the algorithm—comparison of filtered and unfiltered sets 

of variants—could be kept as it is. However, we also envision more stringent alternatives in 

which a variant need to be present in more than one non-filtered sample to be kept in the final set. 

The removal of germline variants and SNPs would remain, since it does not depend on the 

number of samples.  

We developed a bioinformatics pipeline to analyze pairs of DCIS samples taken from the 

same neoplasm. We identified the mutations present in each sample and we showed that this 

method is capable of identifying different levels of genetic heterogeneity. This algorithm is easily 

modifiable and can be integrated with additional parameters, allowing investigators to choose 

different levels of filtering stringency. These parameters can be re-optimized for a different 

experimental system with as few as six sets of technical replicates, and the optimized set of 

parameters is robust to changes in the input data. These characteristics make our algorithm 

readily translatable to large tissue banks of FFPE samples of any neoplasm. 

 

Methods  

Patients clinical data and biological samples. 

This study was approved by the Institutional Review Board (IRB) of Duke University Medical 

Center, and a waiver of consent was obtained, according to the approved protocol. Formalin-fixed 

paraffin embedded (FFPE) breast tissue blocks were retrieved from Duke Pathology archives. All 

cases underwent pathology review (AH) for tissue diagnosis and case eligibility. 

A total of 22 separate patients are included in this study (Table 3). All DNA was 

extracted from archival formalin fixed paraffin embedded thin sections stained with hematoxylin. 
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For tumors, the study pathologist identified areas of DCIS or invasive cancer that were 

macrodissected to enrich for tumor epithelial cells. Control DNA was extracted from either 

distant benign areas of the breast or a benign lymph node using the same procedure employed for 

the tumor containing areas. These benign areas were confirmed to be devoid of tumor by the 

study pathologist. A total of 28 breast tumor DNA samples included six patients where two tumor 

samples located at least 8 mm apart were macrodissected and extracted separately. 

Breast tumors were classified using the World Health Organization (WHO) criteria (Tan 

et al. 2020). Following pathology review, pure DCIS (DCIS not associated with invasion; n=15 

tumors, from 11 patients), synchronous DCIS (DCIS identified concurrently with invasive cancer; 

n=6 tumors, from 6 patients) and invasive =ductal carcinoma (IDC; n=7 tumors, from 5 patients), 

were included in this study (Table 3). IDCs and DCIS were graded according to the Nottingham 

grading system (Elston and Ellis 2002) or recommendations from the Consensus conference on 

DCIS classification (“Consensus Conference on the Classification of Ductal Carcinoma in Situ” 

1997), respectively.  

 

Patient ID Age Race Date Tumor type Histopathological  classification ER PR HER2 DCIS Size (mm) DCIS nuclear grade Invasive present

DCIS-017 66 B 2013 DCIS cribriform, solid - + NA 21 3 No

DCIS-020-B3 67 W 2014 DCIS cribriform, solid, micrpapillary, comedo + + NA 40 2 No

DCIS-020-B6 67 W 2014 DCIS cribriform, solid, micrpapillary, comedo + + NA 40 2 No

DCIS-029-D5 34 W 2012 DCIS comedo + + NA 83 3 No

DCIS-029-D8 34 W 2012 DCIS comedo + + NA 83 3 No

DCIS-050 52 W 2010 Synchronous DCIS cribriform, solid + + - 10 2 Yes

DCIS-064 50 OTHER 2015 Synchronous DCIS comedo + + + 75 3 No

DCIS-080 49 W 2013 Synchronous DCIS solid, comedo + + - 21 3 Yes

DCIS-094-B11 68 W 2013 IDC cribriform, solid, miropapillary - - - NA 3 Yes

DCIS-094-B7 68 W 2013 IDC cribriform - - - NA 3 Yes

DCIS-122 47 W 2002 DCIS cribriform, solid, comedo NA NA NA 95 3 No

DCIS-135 48 B 2013 DCIS cribiform, solid + + NA 13 2 No

DCIS-163 53 W 2013 Synchronous DCIS cribriform, solid, comedo + + - 54 3 Yes

DCIS-164 65 B 2015 IDC micropapilly, comedo + + - NA 3 Yes

DCIS-168-C4 63 W 2016 IDC cribiform, solid + + - NA 2 Yes

DCIS-168-C8 63 W 2016 IDC cribiform, solid + + - NA 2 Yes

DCIS-171 66 B 2000 Synchronous DCIS solid - + - 15 3 Yes

DCIS-178 56 W 2011 Synchronous DCIS comedo, solid, micropapillary, papillary - - - NA 3 Yes

DCIS-211 43 H 2011 DCIS cribriform, solid, comedo + + NA 24 3 No

DCIS-213 68 W 2009 DCIS cribriform, micrpapillary, comedo + + NA 16 3 No

DCIS-222-B10 41 A 2013 DCIS cribiform, papillary + + NA 40 2 No

DCIS-222-B6 41 A 2013 DCIS cribiform, papillary + + NA 40 2 No

DCIS-225-A16 62 B 2011 DCIS cribiform, solid + + NA 30 2 No

DCIS-225-A6 62 B 2011 DCIS cribiform, solid + + NA 30 3 No

DCIS-227 75 B 2012 DCIS cribiform, solid, comedo + + NA 63 3 No

DCIS-250 56 W 1999 IDC cribiform, comedo + - NA NA 3 Yes

DCIS-267 66 W 2017 IDC solid + + - 13 3 Yes

DCIS-28-K12 42 A 2014 DCIS comedo, micropapillary - - NA 124 3 No  

Table 3: Patients clinical data. 
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Clinical data of the 22 patients included in the study. The histopathological analysis showed that 

11 patients are DCIS while 6 are synchronous DCIS and 5 have invasive features (IDC). We 

selected FFPE samples of different ages (1999-2017). ER: estrogen receptors, PR: progesterone 

receptors, HER2: human epidermal growth factor receptor 2 expression is qualitatively estimated 

(positive (+), negative (-), non-present (NP)) using histochemistry stains. 

       

DNA extraction 

The DCIS component of all cases as well as IDC from synchronous DCIS cases were 

macrodissected separately, following hematoxylin staining, of between 10 and 25 five-micron-

thick histological sections. The first and last slides were stained with hematoxylin-eosin (H&E) 

staining, and reviewed by a pathologist to confirm the presence of >=70% of neoplastic cells. 

DNA was extracted using the FFPE GeneRead DNA Kit which incorporates enzymatic 

cleavage of DNA at uracil residues via uracil DNA glycosylase reducing the problem of cytosine 

deamination (Qiagen, cat n. 180134) according to manufacturers’ instructions. DNA 

quantification was performed using a Qubit™ 1X dsDNA HS Assay Kits (ThermoFisher, cat. n. 

Q33230), and DNA quality assessed with an Agilent 2100 Bioanalyzer. 

 

DNA sequencing 

We sequenced different quantities of genomic DNA (20, 40, 60, 80, 100, >100 ng) to estimate the 

effects of DNA quantity on the estimation of intratumor genomic heterogeneity. All technical 

replicates were separated into two aliquots from the same tube of DNA sample before all 

subsequent steps. Each aliquot was sheared to a mean fragment length of 250 bp using the 

Covaris LE200 instrument, and Illumina sequencing libraries were generated as dual-indexed, 

with unique bar-code identifiers, using the Accel-NGS 2S PCR-Free library kit (Swift 

Biosciences, cat. n. 20096). We pooled groups of 96 equimolar libraries (100 ng/library) for 

hybrid capture using two target panels, the human exome and a panel containing all exons of the 
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83 genes in the breast cancer gene panel (BRC83, suppl. table 4S). To capture BRC83 we used 

biotinylated “ultramer” oligonucleotides synthesized by Integrated DNA Technologies 

(Coralville, Iowa), and to capture the human exome we used IDT’s xGen Exome Research Panel 

v1.0. After hybridization, capture pools were quantitated via qPCR (KAPA Biosystems kit). We 

sequenced the final product using an Illumina HiSeq 2500 1T instrument multiplexing nine tumor 

samples per lane. 

After binning the sample data according to its index identifier, we aligned it to the 

Genome Reference Consortium Human Build 37 using the BWA-MEM (Li, 2013) algorithm, and 

marked sequencing duplicates with Picard’s MarkDuplicates. The resulting BAM files are the 

input data for our pipeline for intratumor genetic heterogeneity calculation. We discarded samples 

with less than 40% of the target covered at 40X (Suppl. table 1S). This sequencing protocol was 

performed at the McDonnell Genome Institute at Washington University School of Medicine in 

St. Louis. 

 

Intratumor genetic heterogeneity estimation pipeline 

We implemented our heterogeneity estimation pipeline (Fig. 2) in a series of Perl scripts, tailored 

to be run at Arizona State University’s research computing high performance computing clusters. 

Variants are first called using Platypus 0.8.1 (Rimmer et al. 2014) against the Genome Reference 

Consortium Human Build 37 reference genome using the default settings except for the 

parameters regulated during pipeline optimization (Fig. 2): The inclusion of reads with small 

inserts (--filterReadPairsWithSmallInserts), and the minimum number of reads supporting a 

variant to consider it for calling (--minReads). Before downstream analyses, our pipeline splits 

multiallelic sites into biallelic sites, and clusters of variants into individual SNVs. The variant 

filtering step uses SnpSift 4.2 (Ruden et al. 2012) (Phred Quality: QUAL, Coverage: 

GEN[*].NR[*], Forward and Reverse variant reads: NF & NR, Variant reads: GEN[*].NV[*]). 

The depth estimation step, which estimates the coverage of the position of a variant in the other 
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samples (and the proportion of reads supporting that specific allele) is carried out by first 

generating a bed file integrating deletions, insertions, and SNVs using BEDOPS (Neph et al. 

2012), and then using it as intervals input for GATK 3.5.0’s UnifiedGenotyper, executed to 

output data for all sites (--output_mode EMIT_ALL_SITES, -glm BOTH). The position filtering 

step is carried out in the inhouse pipeline with these results. This step differs slightly in the 

comparison between tumor samples and the comparison against the normal. In the first case, a 

variant is discarded if any of the conditions is not met, while in the second both the allele 

frequency and the number of variants need not be met for them to trigger the discard of a variant 

while the coverage filter acts independently. Importantly, while the steps of variant removal are 

generally applied to all sets of variants (e.g., removal of germline variants, candidate SNPs, and 

positions with lack of support in the normal), the removal of variants based on insufficient 

coverage in the other tumor samples only applies to private variants. 

Population allele frequency estimates are obtained from the gnomAD 2.1.1 genomic 

database (Karczewski et al. 2020), which spans 15,708 whole-genome sequences, and filtering 

using this information is carried out within our pipeline. All variant comparisons within our 

pipeline are genotype specific. 

We also implemented an alternative version of this pipeline identifying somatic 

mutations using Mutect2 (McKenna et al. 2010) version 4.0.5.0 for comparison purposes against 

a developing version of our pipeline, both lacking the population allele frequency step (Fig. 2), 

and using slightly different parameter values, which were optimal at that stage of development 

(Suppl. table 5S). To use this variant caller, first we generated a panel of normals using all control 

tissue samples and the CreateSomaticPanelOfNormals GATK command. Then, we called variants 

on all paired tumor files using the panel of normals, IDT’s xGen Exome Research Panel v1.0, and 

the AllowAllReadsReadFilter. We filtered the resulting variants with an equivalent re-

implementation of our post-processing pipeline that uses Bcftools isec to perform comparisons 

between sets of variants and ran FilterMutectCalls to obtain the final calls.  
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Optimization of the intratumor genetic heterogeneity pipeline 

We assigned a range of values to explore for each of the 13 parameters that control the genetic 

heterogeneity estimation pipeline (Fig. 2) and explored every possible combination of them with 

the data from all 28 technical replicates, assessing a total of 5,308,416 parameter combinations. 

We calculated the score of a condition (set of parameter values) as the minimum value of the 90% 

confidence interval of the mean (p=0.9) of the scores of that condition across the 28 technical 

replicates. We used this statistic to integrate central tendency and dispersion in the same measure. 

The score of each technical replicate was calculated as the two-dimensional euclidean distance to 

the theoretical optimum value of similarity between technical replicates (1) and proportion of 

final common variants that have a population allele frequency below 0.05 (1) relative to the 

maximum possible distance. This score ranging from 0 to 1, allowed us to co-optimize the 

similarity between technical replicates and the sets of variants with the least chance of being 

dominated by germline variants not detected in the normal and detected as somatic common 

variants. We performed a 5-fold cross-validation study stratified by amount of DNA, in which 

patients were partitioned randomly into 5 subsets, with at least 1 patient from each DNA category 

20, 40, 60, 80, ≥100 ng. In each of the 5 interactions, one of the subsets (testing set) was held out 

of the parameter optimization and then evaluated based on the optimal parameter values obtained 

from the training set. We implemented the optimization and cross-validation steps in R (Team 

and Others 2013), using the LSR (Navarro 2015), and cowplot (Wilke, n.d.) packages. 

 

Sensitivity analysis on the number of technical replicates 

We subsampled our dataset to create smaller technical replicate datasets of k={2,...,28} sizes. For 

each k, we generated all combinations of size k with our 28 technical replicates, and took a 

random sample of 104 of them (or all if ≤104) without replacement. We optimized the pipeline 

using each of these resampled subsets and reported the empirical cumulative probability of its 
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optimization score using all samples. This statistic indicates how this resulting pipeline compares 

with the overall optimal pipeline in the complete dataset. 

 

Validation of somatic variants  

In order to validate the robustness of the method we used both the optimized stringent (S) 

parameter values and a permissive (P) version of the algorithm (minimum number of forward and 

reverse reads supporting the variant=10 instead of 15). The permissive version allowed us to 

increase the number of the variants selected. We randomly selected for validation a subset of 

single nucleotide variants (S=168 out of 517, P=308 out of 1047) and insertion-deletion 

mutations (S= 22 out of 265, P=57 out of 512) sequencing DNA amplicons containing the 

variants detected with our bioinformatic algorithm by targeted re-sequencing using AmpliSeqTM 

technology (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s 

specification. The AmpliSeqTM technology allows for a deep re-sequencing of the regions of 

interest, improving our ability to identify mutations correctly. We re-sequenced both tumor and 

control samples. Alternative alleles were validated if their frequency was ≥1%. 

 

Variants annotation and functional analysis 

We annotated the variants using Annovar 20140714 (Wang, Li, and Hakonarson 2010), Ensembl 

(Yates et al. 2020) and we investigated their function using DAVID (Huang, Sherman, and 

Lempicki 2009a, [b] 2009).  

 

Software availability 

All software developed to carry out this study is distributed under the GPLv3 license. The 

implementation of the intratumor heterogeneity estimation pipeline—ITHE, can be found at 

https://github.com/adamallo/ITHE, scripts to carry out the cross-validation study and data 

analysis can be found at https://github.com/adamallo/ITHE_analyses, and the alternative 
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implementation of our intratumor genetic heterogeneity pipeline using Mutect2 to call variants 

can be found at https://github.com/icwells/mutect2Parallel. 
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