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ABSTRACT 

 

Tumor-specific molecular targets and alternative therapeutic strategies for triple-negative breast cancer 

(TNBC) are urgently needed. The protease cathepsin D (cath-D) is a marker of poor prognosis in TNBC 

and a tumor-specific extracellular target for antibody-based therapy. The identification of cath-D 

substrates is essential for the mechanistic understanding of its role in TNBC and future therapeutic 

developments. Using degradomic analyses by TAILS, we discovered that the matricellular protein 

SPARC is a substrate of extracellular cath-D. In vitro, cath-D induced limited proteolysis of SPARC C-

terminal extracellular Ca2+ binding domain at acidic pH, leading to the production of SPARC fragments 

(34-, 27-, 16-, 9-, and 6-kDa). Similarly, cath-D secreted by human TNBC and mouse mammary cancer 

cells cleaved fibroblast- and cancer-derived SPARC at the tumor pericellular pH. SPARC cleavage also 

occurred in vivo in TNBC and mouse mammary tumors. Among these fragments, the C-terminal 9-kDa 

SPARC fragment inhibited MDA-MB-231 TNBC cell adhesion and spreading on fibronectin, and 

stimulated their migration, endothelial transmigration and invasion more potently than full-length 

SPARC. These results highlight a novel crosstalk between proteases and matricellular proteins in the 

TNBC microenvironment through limited proteolysis of SPARC, and reveal that the 9-kDa C-terminal 

SPARC fragment is an attractive therapeutic target for TNBC. 

 

Significance: We show that cath-D-mediated limited proteolysis of SPARC promotes its pro-tumor 

activity in TNBC. Our study will pave the way for the development of strategies for targeting bioactive 

fragments from matricellular proteins in TNBC.   
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INTRODUCTION 

Breast cancer (BC) is one of the leading causes of death in women in developed countries.  Triple-

negative breast cancer (TNBC), defined by the absence of oestrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor receptor 2 (HER-2) overexpression and/or 

amplification, accounts for 15-20% of all BC cases (1). Chemotherapy is the primary systemic treatment, 

but resistance to this treatment is common (1). Thus, tumor-specific molecular targets are urgently 

needed to develop alternative therapeutic strategies for TNBC.  

Human cathepsin D (cath-D) is a ubiquitous, lysosomal, aspartic endoproteinase that is 

proteolytically active at acidic pH.  Cath-D expression levels in BC (2-4) and TNBC (5,6) correlate with 

poor prognosis. Cath-D over-production by BC and TNBC cells leads to hypersecretion of the 52-kDa 

cath-D precursor in the extracellular environment (6,7). Purified 52-kDa cath-D self-activates in acidic 

conditions, giving rise to a catalytically active 51-kDa pseudo-cath-D form that retains the 18 residues 

(27-44) of the pro-segment (8). Cath-D affects the tumor and its microenvironment by increasing 

proliferation of BC cells (7,9-12), and by stimulating mammary fibroblast outgrowth (13,14), 

angiogenesis (9,15), and metastasis formation (11). However, little is known about the molecular 

mechanisms and the substrates involved in these processes. Our recent study indicated that cath-D is a 

tumor-specific extracellular target in TNBC and its suitability for antibody-based therapy (16).Thus, the 

identification of the cath-D extracellular substrate repertoire by N-Terminal Amine Isotopic Labeling of 

Substrates (N-TAILS) degradomics (17) is important for the mechanistic understanding of its role in 

TNBC. 

In a previous work using TAILS (18), we isolated the matricellular protein SPARC (Secreted 

Protein Acidic and Rich in Cysteine), also known as osteonectin or basement membrane 40 (BM40), as 

a putative cath-D substrate. SPARC is a Ca2+-binding glycoprotein that regulates extracellular matrix 

assembly and deposition, growth factor signalling, and interactions between cells and their surrounding 

extracellular matrix (19-22). In cancer, SPARC is mainly secreted by the neighbouring stroma, but also 

by cancer cells (23-25). In different cancer types, SPARC plays an oncogenic or a tumor-suppressive 

role (26,27). For instance, in BC, SPARC has a pro-tumorigenic role and has been associated with worse 
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prognosis (24,28-33); however, other studies reported anti-tumorigenic functions (34-36). SPARC 

includes three different structural and functional modules: the N-terminal acidic domain, followed by 

the follistatin-like domain, and the C-terminal extracellular Ca2+ binding domain (21). Protein fragments 

that correspond to these SPARC domains display distinct biological functions in cell de-adhesion and 

spreading, motility, proliferation, invasion, and in matrix remodelling (21,22,37,38). This suggests that 

SPARC activity may be modulated by proteolysis, leading to the unmasking of domains with biological 

functions that are distinct from those described for the full-length (FL) protein.  

Here, we found that in the acidic tumor microenvironment of TNBC, cath-D cleaved SPARC 

exclusively in its C-terminal extracellular Ca2+ binding domain releasing five main fragments (34-, 27-

, 16-, 9-, and 6-kDa). Among these fragments, the 9-kDa C-terminal SPARC fragment (amino acids 

235-303) had greater oncogenic activity than FL SPARC, highlighting the importance of limited 

proteolysis of matricellular proteins in the TNBC microenvironment. This knowledge might pave the 

way to the development of strategies to target the bioactive fragments of matricellular proteins in cancer.   
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RESULTS 

Identification of SPARC as an extracellular protein affected by cath-D deficiency  

Using the TAILS approach, we previously analysed the secretome of immortalized Ctsd-/- MEFs 

stably transfected with empty vector (Ctsd-/-) or a human cath-D (Ctsd-/-cath-D) plasmid to determine 

cath-D effect on extracellular protein processing (18). We noticed that the SPARC peptide 

LDSELTEFPLR [156-166] was 5.2-fold less abundant in the secretome of Ctsd-/-cath-D MEFs than of 

Ctsd-/- MEFs (Fig. 1A). To determine whether SPARC is a putative cath-D substrate, we first confirmed 

that SPARC protein level was reduced in the Ctsd-/-cath-D secretome compared with the Ctsd-/- 

secretome (Fig. 1B). Transcriptome analysis of Ctsd-/- and Ctsd-/-cath-D MEFs, as previously published 

(18), showed that SPARC reduction in the Ctsd-/-cath-D secretome was not due to Sparc gene 

downregulation in the presence of cath-D (Fig. 1C). These data showed that SPARC protein level in the 

extracellular environment is reduced in the presence of cath-D. 

 

In vitro, cath-D cleaves SPARC extracellular Ca2+ binding domain at acidic pH  

We investigated whether recombinant cath-D can cleave recombinant SPARC in vitro at acidic pH. 

At pH 5.9, SPARC was hydrolysed by cath-D in a time-dependent manner (Fig. 2A). Moreover, 

experiments in which pH was gradually reduced from 6.8 to 5.5 showed progressive limited proteolysis 

of SPARC at lower pH (Fig. 2B). In these two experiments, pepstatin, an aspartic protease inhibitor, 

inhibited SPARC cleavage by cath-D (Fig. 2A-B). By amino-terminal oriented mass spectrometry of 

substrates (ATOMS) analysis, we found that SPARC was hydrolysed by the 51-kDa cath-D form 

exclusively in its extracellular Ca2+ binding domain, releasing five main SPARC fragments (34-, 27, 16, 

9-, and 6-kDa) at pH 5.9, detected by silver staining (Fig. 2C-E, Table 1). We detected SPARC cleavage 

fragments of similar size also after incubation with the fully mature 34+14-kDa cath-D form at pH 5.9 

(Fig. 2C-E, Table 1). Thus, in vitro, cath-D triggers the limited proteolysis of SPARC exclusively in its 

extracellular Ca2+ binding domain in an acidic environment. 
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SPARC and cath-D expression in TNBC  

To study the pathophysiological relevance of the SPARC/cath-D interplay in TNBC, we first 

assessed the clinical significance of SPARC and CTSD (the gene encoding cath-D) expression in a cohort 

of 255 patients with TNBC using an online survival analysis (39). High CTSD mRNA level was 

significantly associated with shorter recurrence-free survival (HR=1.65 for [1.08-2.53]; p=0.019) 

(Supplementary Fig. S1, top panel), as previously observed (16). Similarly, high SPARC mRNA level 

tended to be associated with shorter recurrence-free survival (HR=1.6 [0.91-2.79]; p=0.097) 

(Supplementary Fig. S1, bottom panel). We then examined SPARC and cath-D expression by 

immunohistochemistry (IHC) analysis in serial sections of a TNBC Tissue Micro-Array (TMA) (Fig. 

3A). Cath-D was expressed mainly in cancer cells, and to a lesser extent in macrophages, fibroblasts 

and adipocytes in the stroma (Fig. 3A, left panel). Conversely, SPARC was expressed mainly in 

fibroblasts, macrophages and endothelial cells in the tumor stroma, whereas its expression level in 

cancer cells was variable (Fig. 3A, middle and right panels). Next, we analysed SPARC and cath-D 

expression and secretion in different TNBC cell lines and in human mammary fibroblasts (HMF) (Fig. 

3B). Cath-D was expressed by TNBC and HMF cells (Fig. 3B, left panel), but was secreted only by 

TNBC cells (Fig. 3B, right panel). Conversely, SPARC was expressed and secreted by HMF, but only 

by two out of five TNBC cell lines, namely SUM159 and HS578T (Fig. 3B). Finally, we investigated 

SPARC and cath-D co-localization in a TNBC patient-derived xenograft (PDX B1995) (40) in which 

cath-D expression was previously demonstrated (16). Co-labelling with polyclonal anti-SPARC and 

monoclonal anti-cath-D antibodies (Fig. 3C) showed that SPARC (in red; panel a) partially co-localized 

with cath-D (in green; panel b) in the PDX B1995 microenvironment (merge; panel c). Together with 

previously published data on SPARC (24,28-32,41) and cath-D (2-4,6,7,9-11,13-15,42) in BC, our 

results strongly suggest that it is important to investigate the relationship between SPARC and cath-D 

that are both co-secreted in the TNBC microenvironment. 
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At acidic pH, cath-D secreted by TNBC and mouse mammary cancer cells cleaves fibroblast- and 

cancer-derived SPARC in its extracellular Ca2+ binding domain  

As the tumor extracellular environment is acidic (43), we then asked whether cath-D can degrade 

SPARC in the extracellular medium of TNBC cells at low pH. First, we used conditioned medium from 

cath-D-secreting TNBC MDA-MB-231 cells co-cultured with SPARC-secreting HMFs for 24h 

(Supplementary Fig. S2). SPARC was hydrolysed in a time-dependent manner in the conditioned 

medium at pH 5.5 (Fig. 4A). By western blot analysis, we detected mainly the 34-kDa and 27-kDa 

SPARC fragments, and to a lesser extent, the 16-kDa fragment (Fig. 4A). Pepstatin A inhibited SPARC 

cleavage, confirming the involvement of secreted aspartic protease proteolytic activity (Fig. 4A). 

Moreover, TAILS analysis of the secretome in conditioned medium of co-cultured MDA-MB-231/HMF 

cells at pH 5.5 showed the presence of the five main SPARC fragments (34, 27-, 16-, 9-, and 6-kDa) 

only in the absence of pepstatin A (Table 1). We then assessed SPARC hydrolysis at different pH (6.8 

to 5.5), and found that in the MDA-MB-231/HMF conditioned medium, SPARC was significantly 

degraded up to pH 6.2 (Fig. 4B), similarly to the results obtained with recombinant proteins (Fig. 2B). 

In addition, we observed SPARC limited proteolysis also in conditioned medium of TNBC HS578T 

(Fig. 4C) and TNBC SUM159 cells (Fig. 4D), which secrete both proteins, at pH 5.5. Finally, we did 

not observe SPARC cleavage at pH 5.5 in conditioned medium from HMFs co-cultured with MDA-

MB-231 cells in which CTSD was silenced by RNA interference, indicating that cath-D was responsible 

for SPARC proteolysis in acidic conditions (Fig. 4E). We confirmed cath-D direct involvement in 

SPARC processing also by using a mammary cancer cell line derived from tamoxifen-inducible CreERT2, 

Ctsdfl/fl mice (44) crossed with the transgenic MMTV-PyMT mouse model of metastatic BC (45) (Fig. 

4F). In the absence of hydroxytamoxifen (OH-Tam), both cath-D and SPARC were secreted by these 

cells, whereas cath-D expression and secretion were abrogated by incubation with OH-Tam 

(Supplementary Fig. S3). SPARC was hydrolysed in the conditioned medium from this mouse 

mammary cancer cell line at pH 5.5 only in the absence of OH-Tam when cath-D was secreted (Fig. 

4F). These findings demonstrate that cath-D secreted by TNBC and mouse mammary tumor cells 

cleaves SPARC in its extracellular Ca2+ binding domain at the acidic pH found in the tumor 

microenvironment. 
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SPARC is cleaved in vivo in TNBC and mouse mammary tumors  

To validate cath-D-dependent SPARC cleavage in vivo, we first analysed FL SPARC protein level 

and its cleaved fragments in whole cytosols of mammary tumors from MMTV-PyMT cath-D knock-out 

mice (Fig. 5A). As expected, cath-D was expressed in the cytosol of mammary tumors from MMTV-

PyMT, Ctsd+/+ mice, but not from MMTV-PyMT, Ctsd-/- mice (Fig. 5A, left panel). In two of the three 

tumors from MMTV-PyMT, Ctsd-/- mice, SPARC expression level was much higher than in the three 

tumors from MMTV-PyMT, Ctsd+/+ mice (Fig. 5A, left panel). Unexpectedly, we could not detect any 

SPARC cleavage fragment in this transgenic mouse model, certainly due to further SPARC proteolysis 

in vivo by other proteinases. Nevertheless, SPARC reduction occurred through post-translational 

mechanisms because SPARC mRNA level was not significantly different in the corresponding MMTV-

PyMT, Ctsd+/+ and MMTV-PyMT, Ctsd-/- tumors (Fig. 5A, right panel). We then evaluated the presence 

of FL SPARC and its cleaved fragments in the whole cytosols from two TNBC PDXs that express cath-

D at high and low level, respectively (Fig. 5B, top panel). We detected FL SPARC and its 34-kDa 

cleaved fragment in PDX B3977 (high cath-D expression), but only FL SPARC in PDX B1995 (low 

cath-D expression) (Fig. 5B, bottom panel). Finally, we analysed the level of FL SPARC and its cleaved 

fragments in whole cytosols from two TNBC clinical samples with different cath-D expression levels 

(Fig. 5C, top panel). The level of FL SPARC was lower in cytosol C1 (TNBC with high cath-D 

expression) than in cytosol C2 (TNBC with low cath-D expression) (Fig. 5C, bottom panel). Moreover, 

we detected the 27-kDa cleaved SPARC fragment only in cytosol C1 (high cath-D expression) (Fig. 5C, 

bottom panel). Overall, these results strongly suggest that SPARC cleavage in its extracellular Ca2+ 

binding domain may occur in vivo in mammary cancers in the presence of cath-D, although other 

proteinases may also be involved. 

 

Cath-D-induced SPARC fragments inhibit TNBC cell adhesion and spreading, and promote their 

motility, endothelial transmigration and invasion  

Previous studies reported that FL SPARC and particularly its C-terminal extracellular Ca2+ binding 

domain can modulate adhesion, spreading, motility, endothelial transmigration, and invasion of cancer 
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and stromal cells (22,23,30,46-48). Therefore, we compared the effect of the cath-D-induced SPARC 

fragments (mixture of 34+27+16+9+ 6-kDa fragments) (Supplementary Fig. S4) and of FL recombinant 

SPARC (42-kDa) in MDA-MB-231 cells. Soluble FL SPARC significantly inhibited MDA-MB-231 

cell adhesion on fibronectin in a dose-dependent manner (Supplementary Fig. S5). After incubation with 

FL SPARC (final concentration of 10 µg/ml, 240 nM), as previously described (23,46), MDA-MB-231 

cell adhesion on fibronectin was reduced by 1.3-fold compared with control (CTRL; untreated) (Fig. 

6A; P<0.001). Moreover, FL SPARC inhibition of cell adhesion was similar in Luc- and cath-D-

silenced MDA-MB-231 cells, indicating an autonomous effect of SPARC on cell adhesion 

(Supplementary Fig. S6). Incubation of MDA-MB-231 cells with cath-D-induced SPARC fragments 

(cleaved SPARC) also significantly decreased cell adhesion by 1.7-fold compared with control (CTRL) 

(Fig. 6A; P<0.001) and by 1.3-fold compared with FL SPARC (Fig. 6A; P<0.001). We also monitored 

the effects of FL and cleaved SPARC on MDA-MB-231 cell spreading on fibronectin by staining F-

actin filaments with phalloidin (Supplementary Fig. S7A). Both FL SPARC and SPARC cleaved 

fragments led to a decrease of the cell surface contact area on fibronectin through a peripheral 

rearrangement of F-actin. Specifically, bundling of actin stress fibres was disrupted and actin 

microfilaments were redistributed in a peripheral web (Supplementary Fig. S7A). This suggests a 

transition to an intermediate state of adhesiveness, previously described for FL SPARC (49), that may 

favour cell migration and invasion (50). Incubation with FL and cleaved SPARC fragments decreased 

the percentage of spread cells by 2.1-fold and 3.8-fold, respectively, compared with control 

(Supplementary Fig. S7B; P<0.001). This inhibition was significantly higher (1.8-fold) with cleaved 

SPARC than FL SPARC (Supplementary Fig. S7B; P<0.05). Then, cell motility analysis in Boyden 

chambers showed quite high basal motility of MDA-MB-231 cells, as expected for mesenchymal cells 

(e.g. 49% of cells passed through the fibronectin-coated filters) (Fig. 6B). Incubation with FL and 

cleaved SPARC increased MDA-MB-231 cell motility by 1.5-fold and 1.9-fold, respectively, compared 

with control (Fig. 6B; P<0.01 and P<0.001). Moreover, the effect of cleaved SPARC on cell motility 

was 1.3-fold higher than that of FL SPARC (Fig. 6B; P<0.05). In the endothelial transmigration assay, 

FL and cleaved SPARC fragments stimulated MDA-MB-231 migration through primary human 

umbilical vein endothelial cells (HUVECs) by 1.4-fold and 1.7-fold, respectively, compared with 
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control (Fig. 6C; P<0.01 and P<0.001). The effect of cleaved SPARC was 1.2-fold higher than that of 

FL SPARC (Fig. 6C; P<0.05). Finally, both FL and cleaved SPARC fragments increased MDA-MB-

231 cell invasion through Matrigel-coated filters in Boyden chambers by 2-fold and 3-fold, respectively, 

compared with control (Fig. 6D; P<0.001). The effect of cleaved SPARC was 1.5-fold higher than that 

of FL SPARC (Fig. 6D; P<0.001). Altogether, these results indicate that FL SPARC inhibits MDA-

MB-231 cell adhesion and spreading, and promotes MDA-MB-231 cell motility, endothelial 

transmigration, and invasion. These effects were increased by incubation with cath-D-induced SPARC 

fragments, suggesting that in the TNBC microenvironment, cath-D amplifies SPARC pro-tumor activity 

through proteolysis of its extracellular Ca2+ binding domain. 

 

The 9-kDa C-terminal SPARC fragment inhibits TNBC cell adhesion and spreading, and 

promotes their motility, endothelial transmigration, and invasion  

To identify the SPARC domain(s) involved in these functions, we produced FL SPARC and its 

various cleaved fragments in mammalian cells and purified them, as previously described (51,52) (Fig. 

7A, Supplementary Table S1). We first determined which SPARC fragment(s) were involved in the 

reduction of cell adhesion by incubating MDA-MB-231 cells with equimolar amounts of FL protein and 

each fragment (Fig. 7B). As before (Fig. 6A), purified FL SPARC (42-kDa) reduced MDA-MB-231 cell 

adhesion by 1.4-fold compared with control (Fig. 7B; P<0.001). However, among the C-terminal 

SPARC fragments, only the 9-kDa fragment (amino acids 235-303) significantly decreased MDA-MB-

231 cell adhesion by 2-fold compared with control (Fig. 7B; P<0.001), and by 1.4-fold compared with 

FL SPARC (Fig. 7B; P<0.001). The 9-kDa C-terminal SPARC fragment (amino acids 235-303) 

contains the two Ca2+ binding sequences of the two EF-hand domains (Supplementary Fig. S8), that are 

involved in focal adhesion disassembly, and are crucial for SPARC-mediated inhibition of adhesion 

(46,53). The 16-kDa C-terminal SPARC fragment (amino acids 179-303) reduced cell adhesion by 1.2-

fold (not significant) (Fig. 7B; Supplementary Fig. S8), and the 6-kDa SPARC fragment (amino acids 

258-303) had no effect (Fig. 7B; Supplementary Fig. S8). Therefore, among the five cath-D-induced 

SPARC fragments (Fig. 2E), only the C-terminal 9-kDa fragment could inhibit cell adhesion and more 

potently than FL SPARC. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.22.350082doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350082


11 
 

Based on these results, we compared the effects on MDA-MB-231 cell adhesion, spreading, motility, 

endothelial transmigration and invasion of the 9-kDa C-terminal SPARC fragment, FL SPARC, and the 

mixture of cath-D cleaved SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa) (Fig. 8, Supplementary Fig. 

S9, Supplementary Fig. S10). Incubation with the 9-kDa C-terminal SPARC fragment significantly 

decreased cell adhesion (Fig. 8A, P<0.001) and spreading (Supplementary Fig. S10, P<0.001) by 2.1-

fold, and 8.4-fold, respectively, compared with control, and significantly increased cell motility by 1.6-

fold (Fig. 8B; P<0.001), endothelial transmigration by 2.1-fold (Fig. 8C; P<0.001), and cell invasion 

by 1.7-fold (Fig. 8D; P<0.001) compared with control. Moreover, the 9-kDa SPARC fragment seemed 

to induce a transition to an intermediate adhesive state highlighted by the loss of actin-containing stress 

fibres (Supplementary Fig. S10A). Conversely, we did not observe any significant difference between 

the 9-kDa C-terminal SPARC and the cath-D-induced SPARC fragments (Fig. 8 and Supplementary 

Fig. S10).  

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.22.350082doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350082


12 
 

DISCUSSION 

This study shows that cath-D secreted by TNBC cells triggers fibroblast- and cancer-derived 

SPARC cleavage at the acidic pH of the tumor microenvironment, leading to the production of the 

bioactive 9-kDa C-terminal SPARC fragment that inhibits cancer cell adhesion and spreading, and 

stimulates their migration, endothelial transmigration and invasion (Fig. 9). The TAILS analysis of the 

secretomes of conditioned medium from co-cultured TNBC cells and HMFs revealed that five main 

SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa) are released in the extracellular environment in a cath-

D-dependent manner.  Our previous TAILS study showed that cystatin C is a substrate of extracellular 

cath-D and it is completely degraded by multiple cleavage, highlighting the complexity of the proteolytic 

cascades that operate in the tumor microenvironment (18). Here, we demonstrate that cath-D triggers 

also the limited proteolysis of the matricellular protein SPARC in an acidic environment to favour 

TNBC invasion.  

Our recent study indicated that extracellular cath-D is a therapeutic target for immunotherapy and 

a biomarker in TNBC (16). Moreover, Huang et al found that cath-D was overexpressed in 71.5% of 

the 504 TNBC samples analysed and proposed a prognostic model for TNBC outcome based on node 

status, cath-D expression and Ki67 index (5). More recently, it was found that co-expression of cath-D 

and androgen receptor defines a TNBC subgroup with poorer overall survival (6). SPARC protein and 

mRNA are also overexpressed in TNBC (31,33,54), and this has been associated with poor prognosis in 

patients with TNBC (30,31,33). Here, we showed that high mRNA expression of CTSD and SPARC 

tended to be associated with shorter recurrence-free survival in a cohort of 255 patients with TNBC 

using an on line survival tool (39). Moreover, in a TNBC TMA, we found that cath-D was mainly 

expressed by cancer cells and some stromal cells, as shown previously (16). Conversely, SPARC was 

mainly expressed in mesenchymal cells, while its expression level in tumor cells was variable, as 

previously described (24,25). In cellulo, cath-D was secreted by TNBC cells and SPARC by human 

breast fibroblasts and some TNBC cell lines, as previously described (6,35,41). Importantly, cath-D and 

SPARC were co-localized in the microenvironment of TNBC PDX. Overall, these data prompted us to 

study the interplay between cath-D and SPARC in the TNBC microenvironment. 
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We then demonstrated that cath-D cleaves SPARC in vitro in an acidic environment exclusively 

in its extracellular Ca2+ binding domain, specifically releasing five main SPARC fragments (34-, 27-, 

16-, 9-, and 6-kDa). The main peptide bonds cleaved by cath-D at low pH are Phe-Phe, Leu-Tyr, Tyr-

Leu, and Phe-Tyr (55) that correspond relatively well to the cleavage sites identified in this study. 

Interestingly, other cleavage sites were also detected, such as Leu-Val, Leu-Asp/Glu or Gln-Phe, Gly-

Tyr and Ala-Pro, which confirms the preference of cath-D for cleavage sites with at least one 

hydrophobic residue in P1 or P1’. SPARC biological activity can be modulated by limited proteolysis, 

leading to the unmasking of distinct or amplified biological functions compared with those of the FL 

protein (48,56). For instance, matrix metalloproteinases (MMP-1, -2, -3, -9 and -13) cleave SPARC in 

vitro in its N-terminal acid domain and in its extracellular Ca2+ binding domain, releasing fragments 

with higher affinity for collagens that modulate cell-cell and cell-matrix extracellular interactions in the 

tumor microenvironment (57). In addition, MMP-3-mediated SPARC cleavage in vitro produces 

fragments that affect angiogenesis (58). More recently, cleavage of SPARC extracellular Ca2+ binding 

domain by MMP-8 and MMP-13 has been detected in the serum of patients with lung cancer, indicating 

their presence also in vivo (59). Similarly, the cysteine cathepsin K (cath-K) also cleaves SPARC in 

vitro and in vivo in its N-terminal acid domain, and in its extracellular Ca2+ binding domain in prostate 

cancer bone metastases, releasing a 10-kDa C-terminal fragment with unknown biological activity (60). 

It is striking that the 9-kDa SPARC fragment generated by cath-D in our study is within the 10-kDa 

SPARC fragment generated by cath-K (60). 

We then demonstrated that at acidic pH, cath-D present in conditioned medium from cath-D-

secreting MDA-MB-231 TNBC cells co-cultured with SPARC-secreting HMFs (or from HS578T and 

SUM159 TNBC cells that secrete both factors) induces limited proteolysis of SPARC, leading to the 

production of SPARC fragments with the same molecular weight (34-, 27-, and 16-kDa) detected with 

the recombinant proteins. By western blot analysis, we could not detect the 9-kDa and 6-kDa SPARC 

fragments, whereas we identified all five SPARC main fragments (34-, 27-, 16-, 9- and 6- kDa) in the 

TAILS analysis of the secretomes of MDA-MB-231/HMF co-cultures. Moreover, in breast cancers of 

transgenic mice, in TNBC PDXs and in two clinical TNBC samples that express high or low cath-D 

levels, we found that cath-D expression was inversely correlated with SPARC levels, and detected the 
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SPARC fragments of 34-kDa and 27-kDa only in samples that strongly express cath-D. Altogether, our 

data strongly suggest that cath-D cleaves SPARC in its extracellular Ca2+ binding domain in vitro, in 

the secretome of TNBC cell lines, and in vivo in TNBC. Importantly, SPARC peptides corresponding 

to the 9-kDa (236-256), 6-kDa (258-268), 16-kDa (179-191) et 27-kDa (207-218) SPARC fragments 

have been found in BC tumors by using an on line proteomic database (https://cptac-data-

portal.georgetown.edu/) (61). To date, only one study on cath-K in prostate cancer (60) validated in 

vitro, in cellulo and in vivo SPARC cleavage events by proteases in cancer. In addition, to our 

knowledge, no study has established yet a direct link between a SPARC fragment generated by a 

protease activity and its biological function in TNBC. 

SPARC plays multiple contextual functions depending on the cancer type and stage, and its precise 

role(s) in TNBC remains to be studied. FL SPARC stimulates migration and invasion of TNBC cells 

(62), and promotes MMP-2 activation in TNBC cells, thereby contributing to the proteolytic cascades 

associated with tumor invasion (41). In addition, FL SPARC stimulates tumor growth and lung 

colonization by murine TNBC 4T1 and LM3 cells implanted in syngeneic mice by promoting cell 

cycling and expansion of myeloid-derived suppressor cells (MDSCs) (32). Conversely, FL SPARC 

transfected in high-grade isogenic BC cells reduces tumor rate, and favours epithelial-to-mesenchymal 

transition and the formation of a highly immunosuppressive microenvironment composed of immune 

cells, such as MDSCs (30). However, the oncogenic roles of SPARC fragments generated by proteolysis 

in the tumor microenvironment of TNBC were not known. Here, we demonstrated that the 9-kDa C-

terminal fragment of SPARC released by cath-D has greater oncogenic activity than native SPARC, 

showing a new crosstalk between proteases and matricellular proteins in the TNBC stroma. The 9-kDa 

C-terminal fragment is located in the extracellular Ca2+ binding domain of SPARC. The crystal structure 

of this SPARC domain (Protein Data Bank DOI: 10.2210/pdb2V53/pdb) showed a canonical pair of EF-

hand calcium binding sites that are essential for stabilizing Ca2+ binding (63). We found that the 9-kDa 

C-terminal fragment of SPARC is an important regulator of MDA-MB-231 TNBC cell adhesion, 

spreading, migration, endothelial transmigration and invasion. Specifically, it inhibited cell adhesion 

and spreading, and induced redistribution of actin microfilaments at the periphery of TNBC cells 

associated with cell rounding. A previous work showed that FL SPARC inhibits endothelial cell 
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spreading and induces endothelial cell rounding by affecting the early stages of the counter-adhesive 

process through the loss of vinculin-containing focal adhesion plaques and the concomitant 

reorganization of actin-containing stress fibres (46). This might correspond to an intermediate adhesive 

state that was previously observed in endothelial cells incubated with FL SPARC (38), and in some 

cancer types, such as gliomas (64), and that promotes cell motility and invasion (50).  

Both amino- and carboxyl-terminal (EF-hand) domains of SPARC bind to Ca2+ that is required 

for maintenance of its native structure (53). In the EF-hand motif, two helices (E and F) flank a loop of 

12 amino acids in which the Ca2+ ion is coordinated in a pentagonal bipyramidal arrangement (65). 

Moreover, FL SPARC binding to the extracellular matrix is Ca2+-dependent (53). Interestingly, synthetic 

small peptides (272TCDLDNDKYIALDEWAGCFG291) with sequences derived from SPARC C-

terminal extracellular Ca2+ binding domain (EF hand-2) inhibit adhesion and spreading of endothelial 

cells and fibroblasts (46,49,66). In our experimental model, it seems unlikely that only the EF hand-2 

(aa 262-294) domain is involved in inhibiting MDA-MB-231 cell adhesion to fibronectin. Indeed, the 

6-kDa SPARC fragment (amino acids 258-303) that contains only the EF hand-2 domain did not inhibit 

MDA-MB-231 cell adhesion, unlike the 9-kDa SPARC fragment (amino acids 235-303) that contains 

the residues coordinating Ca2+ in both EF-hands. This suggests that the two Ca2+-binding domains are 

involved in this effect. However, inhibition of cell adhesion by the 16-kDa SPARC fragment (amino 

acids 179-303) that also contains both EF-hand domains was less important compared with the 9-kDa 

SPARC fragment. This suggests that the additional N-terminal sequences may alter the EF-hand domain 

conformation, or may interfere with Ca2+ binding or with the interaction with fibronectin or a TNBC 

cell surface receptor. It also suggests that the three-dimensional conformation of the N-terminal 

sequences of the 16-kDa fragment is different from that of FL SPARC, which significantly inhibited 

MDA-MB-231 cell adhesion. It remains to be determined whether the 9-kDa C-terminal fragment of 

SPARC acts directly through a specific receptor, such 51 integrin, as described for FL SPARC (22), 

or by blocking adhesive interactions.  

In addition, we demonstrated that FL SPARC (and more strongly the 9-kDa C-terminal fragment) 

promoted endothelial transmigration of TNBC cells, an essential step for extravasation and metastasis, 

as previously shown in melanoma (23). It was previously reported that the C-terminal extracellular Ca2+ 
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module of SPARC, a domain implicated in binding to endothelial cells (67) and to vascular cell adhesion 

molecule 1 (VCAM1) (68), is needed to enhance endothelial transmigration of melanoma cells via 

VCAM1 signalling (23). These findings suggest a role for the 9-kDa C-terminal SPARC fragment in 

vascular permeability, extravasation and metastasis formation in vivo. 

Our current results indicate that cath-D secreted by TNBC cells is part of the proteolytic network in 

the TNBC acidic microenvironment that generates a bioactive 9-kDa C-terminal fragment of the 

matricellular protein SPARC with enhanced oncogenic activity. We dissected the molecular 

mechanisms that link SPARC limited cleavage by cath-D in TNBC microenvironment to the amplified 

oncogenic activity of a 9-kDa C-terminal fragment of SPARC, highlighting a novel paradigm of 

alteration of the extracellular milieu of TNBC by proteolysis. Overall, these results indicate that the 9-

kDa C-terminal SPARC fragment is an attractive target for cancer therapies in TNBC, and open the way 

for developing novel targeted therapies against bioactive fragments from matricellular proteins, for both 

restructuring the surrounding microenvironment and reducing tumorigenesis (69). 
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MATERIALS AND METHODS 

 

Additional Materials and Methods are in Supplementary files. 

 

Antibodies  

The rabbit polyclonal anti-SPARC (15274-1-AP) was purchased from Proteintech. The mouse 

monoclonal anti-human SPARC antibodies (clone AON-5031, sc-73472), the rabbit polyclonal anti-

human cath-D antibody (H-75, sc-10725), and the mouse monoclonal anti-human cath-D (clone C-5, 

sc-377124) were purchased from Santa Cruz Biotechnology. The mouse monoclonal anti-human cath-

D antibody (clone 49, #610801) was purchased from BD Transduction LaboratoriesTM, and the goat 

polyclonal anti-mouse cath-D (AF1029) from R&D systems. The anti-human cath-D antibodies M1G8 

and D7E3 were previously described (13). The mouse monoclonal anti-tubulin antibody (clone 236-

10501, #A11126) was from ThermoFisher Scientific, the mouse monoclonal anti-Myc tag (clone 9B11) 

from Ozyme, and the rabbit polyclonal anti- actin antibody (#A2066) from Sigma-Aldrich. The horse 

anti-mouse immunoglobulin G (IgG)-horseradish peroxidase secondary (#7076), and goat anti-rabbit 

IgG-HRP secondary antibodies (#7074S) were purchased from Cell Signaling Technology. The donkey 

anti-goat HRP conjugated (FT-1I7890) antibody was from Interchim. The Alexa Fluor 488-conjugated 

anti-rabbit IgG (#Ab150077) was purchased from Abcam, and the Cy3-conjugated anti-mouse IgG 

(#SA00009.1) from Proteintech. Hoechst 33342 (#FP-BB1340) was from Interchim FluoProbes. 

 

Cell lines, cell lysis, ELISA, and western blotting  

Immortalized cath-D-deficient MEFs were provided by C. Peters (University of Freiburg, Freiburg, 

Germany), and HUVECs by M. Villalba (IRMB, Montpellier). Immortalized cath-D-deficient MEFs 

stably transfected with empty vector (Ctsd-/-) or the cath-D expression plasmid encoding human pre-pro-

cathepsin D (Ctsd-/-cath-D) were previously described (14). HMFs were provided by J. Loncarek and J. 

Piette (CRCL Val d’Aurelle-Paul Lamarque, Montpellier, France) (14). The MDA-MB-231 cell line 

was previously described (11). The Hs578T, MDA-MB-453 and MDA-MB-468 breast cancer cell lines 

were obtained from SIRIC Montpellier Cancer. The SUM159 breast cancer cell line was obtained from 
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Asterand (Bioscience, UK). The HEK-293 cell line was kindly provided by A. Maraver (IRCM, 

Montpellier).  Cell lines were cultured in DMEM with 10% foetal calf serum (FCS, GibcoBRL) except 

the SUM159 cell line that was cultured in RPMI with 10% FCS. Primary murine breast cancer cells 

were generated from end-stage tumors of CreERT2, Ctsdfl/fl; MMTV-PyMT mice as described previously 

(70). All animal procedures were approved by the legal authorities and ethics committee at the regional 

council Freiburg (registration numbers G14/18 and G18/38) and were performed in accordance with the 

German law for animal welfare. PyMT cells were cultured in DMEM/F12 medium supplemented with 

10% FCS, 2 mM L-glutamine, and 1% Penicillin-Streptomycin at 37 °C with 5% CO2. 3 µM 4-

hydroxytamoxifen (OH-Tam, Sigma Aldrich) was added to induce Cre-mediated recombination in the 

mouse Ctsd gene resulting in a premature stop codon. Cell lysates were harvested in lysis buffer (50 

mM HEPES [pH 7.5], 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA) 

supplemented with cOmplete™ protease and phosphatase inhibitor Cocktail (Roche, Switzerland) at 

4°C for 20 min, and centrifuged at 13 000 x g at 4°C for 10 min. Protein concentration was determined 

using the DC protein assay (Bio-Rad). Cath-D was quantified in TNBC and PDX cytosols by sandwich 

ELISA, after coating with the D7E3 antibody (200 ng/well in PBS) and with the HRP-conjugated M1G8 

antibody (1/80), and using recombinant cath-D (1.25-15 ng/ml), as previously described (16). TNBC 

cytosols were previously prepared and frozen (71). For western blotting, proteins were separated on 

13.5% SDS PAGE and analysed by immunoblotting. 

 

SPARC cleavage by cath-D in vitro and in cellulo 

Recombinant 52-kDa pro-cath-D (4 µM; R&D Systems) was self-activated to 51-kDa pseudo-cath-D in 

0.1 M Na-acetate buffer (pH 3.5), 0.2 M NaCl at 37°C for 15 min, as previously described (18). 

Recombinant SPARC (1 µM; R&D Systems) was incubated with self-activated pseudo-cath-D (5 nM) 

at 37°C at different pH values in cleavage buffer [34 mM Britton-Robinson buffer in the presence of 

phosphatidylcholine (0.12 mM; Sigma-Aldrich) and cardiolipin (0.05 mM; Sigma-Aldrich) with or 

without pepstatin A (2 µM; Sigma-Aldrich]. Cleaved SPARC peptides were separated by 13.5% or 17% 

SDS PAGE and analysed by immunoblotting or silver staining (GE Healthcare Life Sciences), 

respectively. For in cellulo SPARC cleavage, 200, 000 MDA-MB-231 cells were plated with 100 000 
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HMF cells in T25 cell culture flasks. After 24 h, culture medium was changed. Conditioned medium 

from co-cultured MDA-MB-231 cells and HMF was obtained by adding DMEM without sodium 

bicarbonate buffered with 50 mM HEPES buffer (pH 7.5) and without FCS for 24h. The 24h conditioned 

medium was then incubated, with or without pepstatin A (12.5 µM), at 37°C in cleavage buffer. Then, 

proteins in medium (40 µl) were separated by 13.5% SDS-PAGE and analysed by immunoblotting. In 

other in cellulo SPARC cleavage, 200, 000 Hs578T, SUM159 or PyMT cells were incubated in DMEM 

without sodium bicarbonate buffered with 50 mM HEPES buffer (pH 7.5) and without FCS for 24h, and 

the conditioned medium was analysed as described above.  

 

Identification of cath-D-generated fragments by ATOMS 

Recombinant SPARC (4 µM, 6 µg) was incubated with self-activated 51-kDa or mature 34+14-kDa 

cath-D (200 nM) in 100 mM Na-acetate buffer (pH 5.9)/0.2 M NaCl with or without pepstatin A (200 

µM; Sigma-Aldrich) in the presence of phosphatidylcholine (0.12 mM; Sigma-Aldrich) and cardiolipin 

(0.05 mM; Sigma-Aldrich) at 37°C for 15 min. SPARC cleavage was analysed by 13.5% SDS PAGE 

and silver staining (GE Healthcare Life Sciences). The corresponding samples with/without pepstatin A 

(5 µg) were then processed for iTRAQ-ATOMS, as previously described (72). Briefly, samples were 

denatured in 2.5 M guanidine hydrochloride and 0.25 M HEPES pH 8.0 at 65 °C for 15 min, reduced 

with 1 mM TCEP at 65 °C for 45 min, and alkylated with iodoacetamide at room temperature in the 

dark for 30 min. After iTRAQ labelling in DMSO, the two samples with/without pepstatin A were mixed 

and precipitated with eight volumes of freezer-cold acetone and one volume of freezer-cold methanol. 

The pellet was washed extensively with cold methanol, dried and resuspended in 5 µl of 50 mM NaOH. 

The pH was adjusted to 8 with 1.8 M HEPES pH 8.0, and the sample was digested at 37 °C with 

sequencing-grade trypsin (Promega; 1:50 protease:protein w/w ratio) or at 25°C with Glu-C (Promega; 

1:20 protease:protein w/w ratio) overnight. After desalting on a C18 column (Pierce), the sample was 

analysed by LC-MS/MS on a Q-Exactive HF mass spectrometer operated with the Xcalibur software 

(version 4.0) and equipped with a RSLC Ultimate 3000 nanoLC system (Thermo Scientific), as 

previously described (73). Data files were analysed with Proteome Discover 1.4 using the MASCOT 

(2.2 version) algorithm against the human protein database (SwissProt release 2017-01, 40500 entries 
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including reverse decoy database). Precursor mass tolerance was set at 10 ppm and fragment mass 

tolerance was set at 0.02 Da, and up to 2 missed cleavages were allowed. Oxidation (M), Deamidation 

(NQ), acetylation (Protein N-terminus), and iTRAQ 8Plex (N-term, K) were set as variable 

modifications, and carbamidomethylation (C) as fixed modification. Peptides and proteins were filtered 

using Percolator and a false discovery rate (FDR) of 1%. Peptides with N-terminal iTRAQ labelling 

were manually validated. Quantification was performed with the Reporter Ions Quantifier node. The 

peak integration was set to the Most Confidence Centroid with 20 ppm Integration Mass Tolerance on 

the reporter ions. The cath-D without pepstatin A/cath-D with pepstatin A ratios were calculated and 

ratios showing at least a two-fold change are conserved in Table 1 except for peptides corresponding to 

the mature N-Terminus.  

 

Secretome preparation  

Secretomes from Ctsd-/- and Ctsd-/-cath-D cells were prepared as previously described (18). Briefly, cells 

were washed extensively with phenol red-free, serum-free medium to remove serum proteins and grown 

overnight in phenol red-free, serum-free medium. Conditioned medium was immediately incubated with 

protease inhibitors (1 mM EDTA, protease inhibitor cocktail (Complete; Roche Applied Science)), 

clarified by centrifugation (500 g for 5 min; 8,000 g for 30 min) and filtered (0.45 µM). Proteins present 

in conditioned medium in 50 mM HEPES (pH 7.5) were then concentrated to 2 mg/ml through Amicon 

filters (3 kDa cut-off, Millipore). To prepare secretomes from MDA-MB-231/HMF co-cultures, cells 

(ratio 1:5, respectively) were plated in 150 mm Petri dishes in DMEM with 10% FCS. At a 90% 

confluence, MDA-MB-231/HMF cells were washed extensively as described above. The 24h-

conditioned medium in 50 mM HEPES (pH 7.5) was then concentrated to 0.2 mg/ml through Amicon 

filters (3 kDa cut-off, Millipore), and incubated in cleavage buffer with or without pepstatin A (12.5 

µM) at pH 5.5 and at 37° for 60 min. Samples were concentrated by TCA/acetone precipitation (73). 

 

Mass spectrometry analysis of protein N-termini in cell culture samples (TAILS) 

Enrichment of N-terminal peptides by TAILS (42) by isotopic labelling of proteins with iTRAQ reagents 

(17) was previously described for Ctsd-/- and Ctsd-/-cath-D (18). Briefly, peptides were pre-fractionated 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.22.350082doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350082


21 
 

by strong cation exchange chromatography and analysed by LC-MS/MS (QSTAR XL, Applied 

Biosystems). Peptides were identified at the 95% confidence level from the human 

UniProtKB/Swissprot protein database using two search engines, MASCOT v2.3 (Matrix Science) and 

X!TANDEM (74), in conjunction with PeptideProphet as implemented in the Trans Proteomic Pipeline 

v4.3. Search parameters were: Semi-ArgC peptides with up to two missed cleavages, 0.4 Da precursor 

ion mass tolerance, 0.4 Da fragment ion mass tolerance, carboxyamidomethylation of cysteine residues, 

and iTRAQ labelling of lysine e-amines as fixed modifications, and peptide N-terminal iTRAQ 

labelling, peptide N-terminal acetylation and Met oxidation as variable modifications. Results from both 

searches were combined using an in-house software script (75). Peptides needed to have an Arg residue 

at their C-terminus and an iTRAQ reporter ion intensity of >30 in at least one of the compared channels. 

N-terminal peptides with significant changes between conditions were identified by calculating the log2 

of the intensity ratios, correcting the mean of all ratios, and applying a 3-fold change cut-off (mean-

corrected log2>1.58 or <-1.58). The abundance of N-terminal peptides was visualized using the 

raincloud plot R tool (76).  

For co-cultured MDA-MB-231/HMF cells, TMT labels (126, 127N, 127C, 128N; TMT 10-plex kit 

90110 from Thermo Scientific)  dissolved in DMSO were added in a 1:5 (total protein/ TMT label) mass 

ratio to one of the four samples (60 µg of total protein per condition) for 60 min. Labelling reactions 

were stopped with 5% hydroxylamine (Sigma) for 30 min, and the four samples were mixed and 

precipitated with cold methanol/acetone (8:1) (v/v). After two washes with cold methanol, the pellet 

was resuspended in 100mM HEPES at pH 8 at a final protein concentration of 2 mg/ml and digested 

with trypsin (trypsin/total protein (1:100); Trypsin V511A, Promega) overnight. N-terminal peptide 

enrichment was performed on the digested sample by removing the internal tryptic peptides with a 1:5 

mass excess of dialyzed HPG-ALD polymer, desalted with a C18 spin column (Thermo Fisher 

Scientific). The eluate fraction was freeze-dried, resuspended in 0.1% FA and analysed by LC-MS/MS 

on a Q-Exactive HF mass spectrometer, as described above for ATOMS experiments except that the 

SwissProt 2019-12 Homo sapiens database release was used and that iTRAQ 8-plex was replaced by 

TMT 10-plex in the list of variable modifications. The ratios without pepstatin A/with pepstatin A were 

calculated for the two time points (0 min and 60 min) and ratios at 60 min were normalized to the ratios 
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at 0 min. Only peptides with N-terminal TMT labelling and ratios showing at least a two-fold change 

are indicated in Table 1. 

 

Study approval 

For TMA, TNBC samples were provided by the biological resource centre (Biobank number BB-0033-

00059) after approval by the Montpellier Cancer Institute Institutional Review Board, following the 

Ethics and Legal national French regulations for patient information and consent. For TNBC cytosols, 

patient samples were processed according to the French Public Health Code (law n°2004-800, articles 

L. 1243-4 and R. 1243-61). The biological resources centre has been authorized (authorization number: 

AC-2008-700; Val d’Aurelle, ICM, Montpellier) to deliver human samples for scientific research. All 

patients were informed before surgery that their surgical specimens might be used for research purposes. 

The study approval for PDXs was previously published (40). 

 

Construction of tissue microarrays  

Tumor tissue blocks with enough material at gross inspection were selected from the Biological 

Resource Centre. After haematoxylin-eosin-safranin (HES) staining, the presence of tumor tissue in 

sections was evaluated by a pathologist. Two representative tumor areas, to be used for the construction 

of the TMAs, were identified on each slide. A manual arraying instrument (Manual Tissue Arrayer 1, 

Beecher Instruments, Sun Prairie, WI, USA) was used to extract two malignant cores (1 mm in diameter) 

from the two selected areas. When possible, normal breast epithelium was also sampled as internal 

control. After arraying completion, 4 μm sections were cut from the TMA blocks. One section was 

stained with HES and the others were used for IHC. 

 

TMA immunohistochemistry  

For SPARC and cath-D immunostaining, serial tumor sections from a TNBC TMA were incubated with 

0.2 µg/ml anti-human SPARC mouse monoclonal antibody (clone AON-5031) for 30 min or with 0.4 

µg/ml anti-human cath-D mouse monoclonal antibody (clone C-5) for 20 min after heat-induced antigen 

retrieval with the PTLink pre-treatment (Dako) and the High pH Buffer (Dako) and endogenous 
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peroxidase quenching with Flex Peroxidase Block (Dako). After two rinses in EnVisionTM Flex Wash 

buffer (Dako), sections were incubated with a HRP-labelled polymer coupled to a secondary anti-mouse 

antibody (Flex® system, Dako) for 20 min, followed by incubation with 3,3’-diaminobenzidine as 

chromogen. Sections were counterstained with Flex Hematoxylin (Dako) and mounted after 

dehydration. Sections were analysed independently by two experienced pathologists, both blinded to the 

tumor characteristics and patient outcomes at the time of scoring. SPARC signal was scored as low 

(<50%), or high (>50%), and cath-D signal was scored as absent, low, medium (<50%), high, or very 

high (>50%) in cancer and stromal cells. 

 

Fluorescence microscopy  

Paraffin-embedded PDX1995 tissue sections were deparaffined, rehydrated, rinsed, and saturated in 

PBS with 5% FCS at 4°C overnight. Sections were co-incubated with 1.2 µg/ml anti-SPARC rabbit 

polyclonal antibody (Proteintech) and 0.4 µg/ml anti-cath-D mouse monoclonal antibody (clone C-5) 

followed by co-incubation with AlexaFluor 488-conjugated anti-rabbit IgG (1/400) and a Cy3-

conjugated anti-mouse IgG (1/500). Nuclei were stained with 0.5 µg/ml Hoechst 33342. Sections were 

then imaged with a 63X Plan-Apochromat objective on z stacks with a Zeiss Axio Imager light 

microscope equipped with Apotome to eliminate out-of-focus fluorescence. For co-staining of 

SPARC/cath-D, series of three optical sections (0.25 µm thick) were collected and projected onto a 

single plane. 

 

siRNA transfection  

The siRNA duplex (21 nucleotides) against human cath-D siRNA (ID 4180) was purchased from 

Ambion (Austin, TX), and the firefly luciferase (Luc) siRNA (target sequence 

AACGUACGCGGAAUACUUCGA) was synthesized by MWG Biotech S.A (77). MDA-MB-231 cells 

in 6-well plates were transiently transfected with 4 µg human cath-D or Luc siRNA using Lipofectamine 

2000 (Invitrogen). At 48h post-transfection, 200 000 siRNA-transfected MDA-MB-231 cells were 

plated with 100 000 HMFs in T25 cell culture flasks for co-culture experiments. 
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RT-qPCR 

For gene expression analysis, fresh tumor tissues were homogenized in an Ultra-Turrax. RNA was 

isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and 1 µg of total RNA was reverse 

transcribed using the iScript™ cDNA Synthesis Kit (Bio-Rad, Feldkirchen, Germany). Real-time PCR 

was performed using Platinum SYBR Green qPCR Super Mix-UDG (Life Technologies, Darmstadt, 

Germany) on a CFX96 real-time PCR machine (Bio-Rad) with the following primers: SPARC forward: 

5’-GCTGTGTTGGAAACGGAGTTG-3’; SPARC reverse: 5’-CTTGCCATGTGGGTTCTGACT-3’; 

ACTB (-actin) forward: 5’-ACCCAGGCATTGCTGACAGG-3’, ACTB reverse: 5’-

GGACAGTGAGGCCAGGATGG-3’. SPARC expression data were normalized to ACTB expression. 

 

Expression and purification of recombinant proteins 

The cDNA encoding human SPARC (303 amino acids according to the GenBank reference NP_003109) 

and its truncated fragments were PCR-amplified using the pcDNA3.1-SPARC plasmid as template (78), 

cloned into pGEM®-T Easy Vector (Promega), and then into the pSec-Tag2/hygroA vector (Thermo 

Fisher Scientific) by Not I digestion. Orientation and sequence were verified (Supplementary Table S1). 

Human embryonic kidney 293 (HEK-293T) cells were stably transfected with the vectors using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions, and were selected with 

400 µg/ml hygromycin B GoldTM (Invivogen). The recombinant His-tagged proteins were purified from 

cell lysates on a nickel-chelating column (Ni-nitrilotriacetic acid agarose; His-select high flow nickel 

affinity gel; Sigma-Aldrich), as described previously (52). The isolated recombinant proteins were 

analysed by western blotting using anti-mouse Myc (clone 9B11) and anti-SPARC (clone AON-5031) 

antibodies and quantified using the Image J densitometric software (National Institutes of Health). To 

immunodeplete purified SPARC or its fragments, protein supernatants were incubated with an anti-Myc 

antibody (clone 9B11) overnight and protein G-Sepharose at 4°C for 4h, and supernatants were analysed 

by immunoblotting to validate SPARC depletion. SPARC-immunodepleted supernatants were used as 

internal controls in the biological assays. 
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Cell adhesion, migration, endothelial transmigration and invasion assays  

Adhesion of MDA-MB-231 cells was assessed as described (52). Briefly, 96-well plates were coated 

with fibronectin (10 µg/ml; sc-29011; Santa Cruz Biotechnology) at 4°C overnight, and saturated with 

1% BSA in PBS. MDA-MB-231 cells were detached with HyQTase (HyClone), washed in DMEM 

without FCS, and 1.5 105 cells were pre-incubated or not with SPARC or its cleaved fragments at room 

temperature for 10 min. Cells (5 104 cells) were plated and left in serum-free medium at 37°C for 30 

min. Non-adherent cells were removed by floatation on a dense Percoll solution containing 3.33% NaCl 

(1.10 g/l), and adherent cells were fixed (10% [vol/vol] glutaraldehyde) using the buoyancy method 

(79). Cells were stained with 0.1% crystal violet, and absorbance was measured at 570 nm. For migration 

assays, 8-µm pore Transwell inserts in 24-well plates (polyvinyl pyrrolidone-free polycarbonate filter) 

(Corning Inc., Corning, NY, USA) were coated with 10 µg/ml fibronectin (500 ng) at 4°C for 24h. For 

invasion assays, 8-µm pore Transwell inserts were coated with Matrigel (100 µg, Corning). MDA-MB-

231 cells (2 105 cells) were pre-incubated or not with SPARC or its cleaved fragments at room 

temperature for 10 min, and then plated (5 104 cells/well) in FCS-free DMEM on the coated insert in 

the upper chamber. For transmigration assay, 105 HUVECs were plated in the upper chamber of a 

gelatine-coated Transwell insert and grown in complete endothelial medium to confluence, as previously 

described (23). The endothelial monolayer was then incubated with human TNF (10 ng/ml; 

PeproTech) for 16h. MDA-MB-231 cells (3 105 cells), pre-incubated or not with SPARC or its cleaved 

fragments at room temperature for 10 min, were then plated (105 cells/well) in FCS-free DMEM on top 

of the endothelial monolayer. In these different assays, DMEM supplemented with 10% FCS was used 

as chemoattractant in the bottom chamber. After 16h, non-migrating/non-invading/non-transmigrating 

cells on the apical side of each insert were scraped off with a cotton swab, and migration, invasion and 

transmigration were analysed with two methods: (1) migrating/invading/transmigrating cells were fixed 

in methanol, stained with 0.1% crystal violet for 30 min, rinsed in water, and imaged with an optical  

microscopy. Two images of the pre-set field per insert were captured (x100); (2) 

migrating/invading/transmigrating cells were incubated with 3-(4,5-dimethylthiazol-2-yl)-2,5-
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diphenyltetrazolium bromide (MTT; 5 mg/ml, 1/10 volume; Sigma-Aldrich) added to the culture 

medium at 37°C for 4h. Then, the culture medium/MTT solution was removed and centrifuged at 10 

000 rpm for 5 min. After centrifugation, cell pellets were suspended in DMSO. Concomitantly, 300 µl 

of DMSO was added to each well and thoroughly mixed for 5 min. The optical density values of stained 

cells (cell pellet and corresponding well) were measured using a microplate reader at 570 nm.  
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Fig. 1. SPARC analysis in Ctsd-/-MEFs transfected with human cath-D

(A) TAILS-based identification of protein N-termini affected by Ctsd deficiency. Comparison of the

amounts of protein N termini in the secretomes of cath-D-deficient MEFs transfected with a plasmid encoding

human cath-D (Ctsd-/-cath-D) or empty vector (Ctsd-/-). The distribution of 700 quantified N-terminal peptides

was visualized as a raincloud plot that includes the distribution of individual N-terminal peptide ratios, a

boxplot, and the probability distribution. Dashed lines indicate the 3-fold change in abundance (log2 <-1.58 or

>1.58) chosen as cut-off for N-termini considered as severely affected by cath-D expression. The arrow

indicates the SPARC peptide LDSELTEFPLR [156-166].

(B) Effect of Ctsd deficiency on SPARC protein level. Secretomes (30 µg) of Ctsd-/- and Ctsd-/-cath-D MEFs

were separated on 13.5% SDS-PAGE followed by immunoblotting with anti-cath-D (clone 49, #610801) and

anti-SPARC (clone AON-5031) antibodies.

(C) Effect of Ctsd deficiency on Sparc mRNA level by transcriptomic analysis. The boxplots show the

distribution of the expression values for all mRNAs (in log2 of ratio) in Ctsd-/-cath-D and Ctsd-/MEFs for two

independent experiments. Arrows indicate Sparc expression values (0.91 and 0.87 on a linear scale,

corresponding to -0.14 and -0.19 in the log2 scale). In these two experiments, Sparc mRNA showed a minimal

deviation from the threshold (fold change of 2 or 1/2; i.e. log2(R)+1 or -1) commonly used to consider a gene as

up- or down-regulated, and indicated by the dashed lines.
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Fig. 2. Cleavage of human SPARC in its extracellular Ca2+ binding domain by human cath-D at acidic pH

(A) Time-course of cath-D-induced SPARC cleavage. Recombinant human FL SPARC was incubated with

auto-activated cath-D in cleavage buffer at pH 5.9 with or without pepstatin A (Pepst.) at 37°C for the indicated
times. SPARC cleavage was analysed by 13.5% SDS-PAGE and immunoblotting with an anti-SPARC

monoclonal antibody (clone AON-5031).

(B) pH dependence of cath-D-induced SPARC cleavage. Recombinant human FL SPARC was incubated

with auto-activated cath-D in cleavage buffer with or without pepstatin A (Pepst.) at the indicated pH at 37°C
overnight. SPARC cleavage was analysed as in (A).

(C) Detection of the cath-D-induced SPARC fragments by silver staining. Recombinant SPARC was

incubated with recombinant auto-activated pseudo-cath-D (51-kDa) or fully-mature cath-D (34+14-kDa) at pH

5.9 for the indicated times. SPARC cleavage was analysed by 17% SDS-PAGE and silver staining.

(D) Cleavage sites by cath-D in SPARC extracellular Ca2+ binding domain. The entire C-terminal

extracellular Ca2+ binding domain of human SPARC (amino acids 154-303) is shown. SPARC cleaved peptides

generated in the extracellular Ca2+ binding domain by auto-activated pseudo-cath-D (51-kDa) and fully-mature

(34+14-kDa) cath-D at pH 5.9 were resolved by iTRAQ-ATOMS. Arrows, cleavage sites.

(E) Schematic representation of the SPARC fragments generated by cath-D according to (C) and (D).
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Fig. 3. Expression and co-localization of SPARC and cath-D in TNBC
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Fig. 3. Expression and co-localization of SPARC and cath-D in TNBC

(A) SPARC and cath-D in a TNBC TMA. Representative images of SPARC and cath-D expression analysed

in a TNBC TMA (n=147 samples) using anti SPARC (clone AON-5031) and anti-cath-D (clone C-5)

monoclonal antibodies. Scale bars, 50 µm (top panels) and 20 µm (bottom panels; higher magnifications of the

boxed regions).

(B) SPARC and cath-D expression and secretion in TNBC cell lines and breast fibroblasts. Whole cell

extracts (10 µg proteins) (left panel) and 24-hour conditioned media in the absence of FCS (40 µl) (right panel)

were separated by 13.5% SDS-PAGE and analysed by immunoblotting with anti-cath-D antibodies for cellular

(clone 49, #610801) and secreted cath-D (H-75), respectively, and anti-SPARC (clone AON-5031) antibodies.

b-actin, loading control.

(C) Co-localization of SPARC and cath-D in TNBC PDX. PDX 1995 tumor sections were co-incubated with

an anti SPARC polyclonal antibody (Proteintech) (red; panel a) and an anti-cath-D monoclonal antibody (C-5)

(green; panel b). Nuclei were stained with 0.5 µg/ml Hoechst 33342 (blue). Panel c (left): SPARC, cath-D and

Hoechst 33342 merge. Panel c (middle): higher magnification of the box on the left. Panel c (right): higher

magnifications (Z projections of 3 x 0.25 µm slices). Arrows indicate SPARC and cath-D co-localization. Scale

bar, 10 µm.
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mouse breast cancer cells at acidic pH 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.22.350082doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350082


Fig. 4. Limited proteolysis of fibroblast- and cancer-derived SPARC by cath-D secreted by TNBC and

mouse breast cancer cells at acidic pH

(A) Time-course of SPARC degradation in the MDA-MB-231/HMF co-culture MDA-MB-231 TNBC cells

and HMFs were co-cultured in FCS-free DMEM without sodium bicarbonate and phenol red and buffered with

50 mM HEPES [pH 7] at 37°C for 24h. The 24h conditioned medium from co-cultured MDA-MB-231/HMFs
was incubated at 37°C in cleavage buffer with or without pepstatin A (Pepst.) at pH 5.5 for the indicated times.
SPARC cleavage in conditioned medium was analysed by 13.5% SDS-PAGE and immunoblotting with an anti-

SPARC polyclonal antibody (Proteintech). O/N, overnight.

(B) Influence of the milieu acidity on SPARC degradation in the MDA-MB-231/HMF co-culture. MDA-

MB-231 TNBC cells and HMFs were co-cultured as in (A). The 24-hour conditioned medium from co-cultured

MDA-MB-231/HMFs was incubated at 37°C in cleavage buffer with or without pepstatin A at the indicated pH
overnight. SPARC cleavage was analysed as described in (A).

(C and D) Time-course of SPARC cleavage in conditioned medium. HS578T TNBC cells (C) and SUM159

TNBC cells (D) were cultured in FCS-free DMEM without sodium bicarbonate and phenol red and buffered

with 50 mM HEPES [pH 7] at 37°C for 24h.The 24h conditioned medium was incubated at 37°C in cleavage
buffer with or without pepstatin A at pH 5.5 for the indicated times. SPARC cleavage was analysed as described

in (A).

(E) SPARC cleavage by cath-D secreted by MDA-MB-231 cells. MDA-MB-231 cells were transfected with

Luc or cath-D siRNAs. At 48h post-transfection, siRNA-transfected MDA-MB-231 cells were co-cultured with

HMFs as described in (A). Then, the 24-hour conditioned media from co-cultured siRNA-transfected MDA-

MB-231/HMFs were incubated at 37°C in cleavage buffer with or without pepstatin A at pH 5.5 for 120 min.
Cath-D secretion by siRNA-transfected MDA-MB-231 cells was analysed with an anti-cath-D antibody (H-75).

SPARC cleavage was analysed as described in (A).

(F) SPARC cleavage by cath-D secreted by inducible Ctsd knock-out MMTV-PyMT mammary tumor

cells. Inducible Ctsd knock-out MMTV-PyMT breast cancer cells were incubated or not with 4-

hydroxytamoxifen (OH-Tam; 3 µM) for 4 days to induce Ctsd knock-out. Then, cells were cultured in FCS-free

DMEM without sodium bicarbonate and phenol red and buffered with 50 mM HEPES [pH 7] at 37°C for 24h.
This 24h conditioned medium conditioned medium was incubated at 37°C in cleavage buffer with or without
pepstatin A at pH 5.5 for 120 min or O/N. Cath-D secretion was analysed with an anti-cath-D antibody

(AF1029). SPARC cleavage was analysed as described in (A).
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Fig. 5. Detection of FL SPARC and its cleaved fragments in mammary tumors

(A) SPARC expression in mammary tumors from MMTV-PyMT Ctsd knock-out mice. Left panel, whole

cytosols (40 µg) of mammary tumors from MMTV-PyMTCtsd+/+ (N°1-3) and MMTV-PyMTCtsd-/- (Ctsd knock-
down in the mammary gland) (N°4-6) mice were analysed by 13.5% SDS-PAGE and immunoblotting with an
anti-mouse cath-D monoclonal (clone 49, #610801) and anti-SPARC monoclonal antibody (AON-5031). b-

actin, loading control. Right panel, total RNA was extracted from mammary tumors from MMTV-PyMTCtsd+/+

(N°1-3) and MMTV-PyMTCtsd-/- (N°4-6) mice. Sparc expression was analysed by RT-qPCR. P=0.1 (Student’s t-
test).

(B and C) SPARC expression in TNBC PDXs and TNBC biopsies. Top panels, cath-D expression was

determined in whole cytosols from two TNBC PDXs (B) and two TNBC biopsies (C) by sandwich ELISA with

the immobilized anti-human cath-D D7E3 antibody and the anti-human cath-D M1G8 antibody coupled to HRP.

Bottom panels, whole cytosols (40 µg) from these PDXs (B) and TNBC biopsies (C) were analysed by 13.5%

SDS-PAGE and immunoblotting with anti-cath-D (H-75) and anti-SPARC (Proteintech) polyclonal antibodies.

b-actin (B) and tubulin (C), loading controls.
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Fig. 6.  Effects of FL SPARC and cath-D-induced cleaved SPARC fragments on adhesion, migration, 

transmigration and invasion of TNBC cells
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Fig. 6. Effects of FL SPARC and cath-D-induced cleaved SPARC fragments on adhesion, migration,

transmigration and invasion of TNBC cells

(A) Cell adhesion. MDA-MB-231 cells were let to adhere for 30 min on a fibronectin matrix in the absence or

presence of recombinant FL SPARC (SPARC), or recombinant cath-D-induced cleaved SPARC fragments

(cleaved SPARC) at the final concentration of 240 nM. Left panels, representative images of adherent cells.

Right panel, adherent cells were stained with crystal violet, and adhesion was quantified at 570 nm. CTRL, PBS

in cleavage buffer. Data are the mean ± SD (n=3); ***, p<0.001, ANOVA and Bonferroni’s post hoc test.

Similar results were obtained in four independent experiments.

(B) Cell migration. MDA-MB-231 cells were let to migrate for 16h on a fibronectin matrix in the absence or

presence of recombinant FL SPARC, or cleaved SPARC at a final concentration of 240 nM. Left panels,

representative images of migrating cells. Right panel, migrating cells were quantified by MTT staining and

absorbance was read at 570 nm. CTRL, PBS in cleavage buffer. Data are the mean ± SD (n=3); *, p<0.05; **,
p<0.01; ***, p<0.001, ANOVA and Bonferroni’s post hoc test. Similar results were obtained in three

independent experiments.

(C) Endothelial transmigration. MDA-MB-231 cells were let to transmigrate for 16h through a HUVEC

monolayer in the absence or presence of recombinant FL SPARC, or cleaved SPARC at a final concentration of

240 nM. Left panels, representative images of transmigrating cells. Right panel, transmigrating cells were

stained with MTT and quantified at 570 nm. CTRL, PBS in cleavage buffer. Data are the mean ± SD (n=3); *,
p<0.05, **, p<0.01, ***, p<0.001, ANOVA and Bonferroni’s post hoc test. Similar results were obtained in two

independent experiments.

(D) Cell invasion. MDA-MB-231 cells were let to invade for 16h on a Matrigel matrix in the absence or

presence of recombinant FL SPARC, or cleaved SPARC at a final concentration of 240 nM. Left panels,

representative images of invading cells. Right panel, invading cells were stained with MTT and quantified at 570

nm. CTRL, PBS in cleavage buffer. Data are the mean ± SD (n=3); ***, p<0.001, ANOVA and Bonferroni’s
post hoc test. Similar results were obtained in three independent experiments.
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Fig. 7. Effect of FL SPARC and cath-D-induced cleaved SPARC fragments on TNBC cell adhesion
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Fig. 7. Effect of FL SPARC and cath-D-induced cleaved SPARC fragments on TNBC cell adhesion

(A) Production of Myc/His tagged FL SPARC, and Myc/His tagged 34-, 27-, 16-, 9-, and 6-kDa SPARC

fragments. Left panel, equimolar concentrations (240 nM each) of purified Myc/His tagged FL SPARC and

SPARC fragments were analysed by SDS-PAGE (17%) and immunoblotting with an anti-Myc antibody (clone

9B11). Right panel, schematic representation of the purified Myc/His tagged SPARC fragments. AC, acidic

domain; FL, follistatin-like domain; EC, Ca2+-extracellular binding domain.

(B) Cell adhesion. MDA-MB-231 cells were let to adhere for 30 min on a fibronectin matrix in the presence of

purified Myc/His tagged FL SPARC, or individual Myc/His tagged SPARC fragments (34-, 27-, 16-, 9-, and 6-

kDa) at an equimolar final concentration (240 nM each). Upper panels, representative images of adherent cells

stained with crystal violet after incubation with the indicated SPARC variants. Lower panel, cell adhesion was

quantified as described in Fig. 6A and expressed as percentage relative to the value in control (SPARC-

immunodepleted control for each SPARC fragment). Data are the mean ± SD of three independent experiments;
***, p<0.001, ANOVA and Bonferroni’s post hoc test.
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Fig. 8. Effects of the 9-kDa C-terminal SPARC fragment on TNBC cell adhesion, migration,

transmigration and invasion
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Fig. 8. Effects of the 9-kDa C-terminal SPARC fragment on TNBC cell adhesion, migration,

transmigration and invasion

(A) Cell adhesion. MDA-MB-231 cells were let to adhere for 30 min on a fibronectin matrix in the presence of

recombinant FL SPARC, recombinant cleaved SPARC fragments (cleaved SPARC), or purified 9-kDa C-

terminal SPARC fragment at a final concentration of 240 nM. Left panels, representative images of adherent

cells stained with crystal violet. Right panel, adhesion was quantified as described in Fig. 6A. Data are the mean

± SD (n=3); ***, p<0.001, ANOVA and Bonferroni’s post hoc test. CTRL, PBS in cleavage buffer and SPARC-
immunodepleted supernatant from the 9-kDa SPARC fragment purification. Similar results were obtained in

three independent experiments.

(B) Cell migration. MDA-MB-231 cells were let to migrate for 16h on a fibronectin matrix in the absence or

presence of FL SPARC, cleaved SPARC fragments, or the 9-kDa C-terminal SPARC fragment at a final

concentration of 240 nM. Left panels, representative images of migrating cells stained with crystal violet. Right

panel, migration was quantified as described in Fig. 6B. Data are the mean ± SD (n=3); ***, p<0.001, ANOVA
and Bonferroni’s post hoc test. CTRL, PBS in cleavage buffer and SPARC immunodepleted supernatant from

the 9-kDa SPARC fragment purification. Similar results were obtained in two independent experiments.

(C) Endothelial transmigration. MDA-MB-231 cells were let to transmigrate for 16h through a HUVEC

monolayer in the absence or presence of FL SPARC, cleaved SPARC fragments, or the 9-kDa C-terminal

SPARC fragment at a final concentration of 240 nM. Left panels, representative images of transmigrating cells.

Right panel, transmigrating cells were stained with MTT and quantified by absorbance at 570 nm. Data are the

mean ± SD (n=3); *, p<0.05, **, p<0.01, ***, p<0.001, ANOVA and Bonferroni’s post hoc test. CTRL, PBS in
cleavage buffer and SPARC-immunodepleted supernatant from the 9-kDa SPARC fragment purification.

Similar results were obtained in two independent experiments.

(D) Cell invasion. MDA-MB-231 cells were let to invade for 16h on a Matrigel matrix in the absence or

presence of FL SPARC, cleaved SPARC fragments, or the 9-kDa C-terminal SPARC fragment at a final

concentration of 240 nM. Left panels, representative images of invading cells stained with crystal violet. Right

panel, invading cells were quantified by absorbance at 570 nm. Data are the mean ± SD (n=3); *, p<0.05, **,
p<0.01, ***, p<0.001, ANOVA and Bonferroni’s post hoc test. CTRL, PBS in cleavage buffer and SPARC

immunodepleted supernatant from the 9-kDa SPARC fragment purification. Similar results were obtained in two

independent experiments.
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Fig. 9. Model of the 9-kDa C-terminal SPARC, released by cath-D cleavage, pro-tumor effect on TNBC

cells TNBC-secreted cath-D triggers limited proteolysis of SPARC at the acidic pH of the tumor

microenvironment

Among the SPARC fragments cleaved by cath-D, the 9-kDa C-terminal SPARC fragment inhibits TNBC cell

adhesion and spreading. This might lead to an intermediate adhesive state, and stimulate TNBC cell migration,

endothelial transmigration and invasion.
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ATOMS 
(in vitro cleavages of recombinant 

SPARC by recombinant cath-D) 

TAILS 
(SPARC 

cleavages from 
conditioned 

media of 
cocultures) 

 
 

 
SPARC peptides 

 
 
 

SPARC 
fragments* 

 
 
 

Enzyme used for 
sample digestion 

 
(Pseudo-cathD + 

SPARC 
- pepst. 

/Pseudo-cath-D 
+ SPARC +pepst) 
ratio (number of 

peptide 
identifications) 

 
(Mature cath-D + 

SPARC 
-pepst. 

/Mature cath-D + 
SPARC + pepst.) 
ratio (number of 

peptide 
identifications) 

 

 
(CM -pepst./CM 

+pepst.) ratio 
(number of 

peptide 
identifications) 

 

LDSELTEFPLR [156-166]  Trypsin   0.4 (6) 

DWLKNVLVTLYER [169-181]   Trypsin   0.5 (3) 

VTLYERDEDNNLLTEK [176-191] 

16-kDa 

Trypsin 12.1 (5) 14.3 (5)  

YERDEDNNLLTEK [179-191]   Trypsin 13.7 (16) 11.8 (16)  

YERDEDNNLLTEKQK [179-193]  Trypsin 21.1 (15) 16.8 (15)  

EAGDHPVELLAR [207-218]      27-kDa Trypsin 11.3 (6) 19.3 (6) 3.4 (2) 

PVHWQFGQLDQHPIDGYLSHTELAPLR [230-
256]   

9-kDa 

Trypsin   5.6 (8) 

WQFGQLDQHPIDGYLSHTELAPLR [233-256]  Trypsin   3.1 (3) 

FGQLDQHPIDGYLSHTELAPLR [235-256]  Trypsin 10.6 (5) 5.9 (5)  

GQLDQHPIDGYLSHTELAPLR [236-256]  Trypsin 2 (16) 2.3 (16) 12.4 (15) 

QLDQHPIDGYLSHTELAPLR [237-256]  Trypsin 3.5 (5) 2.2 (5) 15.1 (5) 

DQHPIDGYLSHTELAPLR [239-256]  Trypsin 8.4 (18) 8.1 (18) 7.6 (18) 

YLSHTELAPLR [246-256]  Trypsin 18.8 (8) 5.7 (8) 4.4 (4) 

LSHTELAPLR [247-256]  Trypsin   2.4 (1) 

SHTELAPLR [248-256]  Trypsin 2.7 (5) 1.6 (5)  

PLIPMEHCTTR [258-268] 
6- and 34-

kDa 
Trypsin 22.5 (15) 4.3 (15) 5.9 (3) 

APQQEALPDE [18-27]  Glu-C  0.98 (2)  

APQQEALPDETE [18-29]  Glu-C  0.88 (13)  

APQQEALPDETEVVE [18-32]  Glu-C  1.12 (6)  

APQQEALPDETEVVEE [18-33]  Glu-C  1.1 (140)  

APQQEALPDETEVVEETVAE [18-37]  Glu-C  1.14 (18)  

VTLYERDEDNNLLTE [176-190]  
16.4-kDa 

Glu-C  14.3 (12)  

YERDEDNNLLTE [179-190]  Glu-C  13.1 (43)  

FGQLDQHPIDGYLSHTE [235-251]  
9-kDa 

Glu-C  9.2 (3)  

GQLDQHPIDGYLSHTE [236-251]  Glu-C  10.4 (12)  

DQHPIDGYLSHTE [239-251]  Glu-C  4.7 (6)  

Ratio ; <0.5 or >2 for trypsin ; Ratio ; <0.5 or >2 in bold for Glu-C; CM, conditioned medium ; pepst., pepstatin 

A ; *, according to silver staining. 

 

Table 1. Sequences of the SPARC fragments identified by ATOMS and TAILS 

High-confidence peptides with N-terminal iTRAQ labelling from the FL SPARC protein (Uniprot 

accession number P09486) identified by iTRAQ-ATOMS after in vitro cleavage of recombinant SPARC 

by recombinant cath-D, or by TAILS in the conditioned medium of co-cultured MDA-MB-231/HMFs. 

Peptides defining cleavage sites with iTRAQ ratios >2 or <0.5 for ATOMS or TAILS are shown. CM, 

conditioned medium; pepst., pepstatin A; *, according to the silver staining. 
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