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Abstract

The discovery and development of novel pharmaceuticals is an area of active research
mainly due to the large investments required and long payback times. As of 2016, the
development of a novel drug candidate required up to $ USD 2.6 billion in investment
for only 10% rate of approval by the FDA. To help decreasing the costs associated with
the process, a number of in silico approaches have been developed with relatively low
success due to limited predicting performance. Here, we introduced a machine
learning-based algorithm as an alternative for a more accurate search of new
pharmacological candidates, which takes advantage of Recurrent Neural Networks
(RNN) for active molecule prediction within large databases. Our approach, termed
PharmaNet was implemented here to search for ligands against specific cell receptors
within 102 targets of the DUD-E database, which contains 22886 active molecules.
PharmaNet comprises three main phases. First, a SMILES representation of the
molecule is converted into a raw molecular image. Second, a convolutional encoder
processes the data to obtain a fingerprint molecular image that is finally analyzed by a
Recurrent Neural Network (RNN). This approach enables precise predictions of the
molecules’ target on the basis of the feature extraction, the sequence analysis and the
relevant information filtered out throughout the process. Molecule Target prediction is
a highly unbalanced detection problem and therefore, we propose that an adequate
evaluation metric of performance is the area under the Normalized Average Precision
(NAP) curve. PharmaNet largely surpasses the previous state-of-the-art method with
95.8% in the Receiver Operating Characteristic curve (ROC-AUC) and 58.9% in the
NAP curve. We obtained a perfect performance for human farnesyl pyrophosphate
synthase (FPPS), which is a potential target for antimicrobial and anticancer
treatments. We decided to test PharmaNet for activity prediction against FPPS by
searching in the CHEMBL data set. We obtained [3] potential inhibitors that were
further validated through both molecular docking and in silico toxicity prediction. Most
importantly, one of this candidates, CHEMBL2007613, was predicted as a potential
antiviral due to its involvement on the PCDH17 pathway, which has been reported to
be related to viral infections.
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Introduction 1

The development and subsequent market penetration of new pharmaceuticals is a 2

critical yet time consuming and expensive process that has increased in cost by nearly 3

150% over the last decade. In 2016, the development of just one medicine was estimated 4

at around $ USD 2.6 billion [1]. This is mainly attributed to the costs of pre-clinical 5

and clinical trials where ethical issues and complications are encountered very often. As 6

a result, only 10% of the pharmaceuticals that reach trials finally obtain FDA 7

approval [1, 2]. For these reasons, such large investments have often limited the 8

development of drugs for medical conditions where the niche market is not sufficient for 9

a payback in a reasonable time frame. Even for some molecules of urgent need such as 10

the antibiotics, where resistance is increasingly worrisome worldwide, there has been an 11

stagnation in the discovery of alternative candidate molecules for over a decade. As a 12

result, these issues in the discovery and production of pharmaceuticals have been seen 13

as an opportunity to explore new approaches that combine both experimental and 14

computational routes to accelerate the development. In this regard, some of the most 15

successful experimental approaches include soil-dwelling, Rule of 5 (Ro5), genomics, 16

proteomics, phenotypic screening, binding assays to identify relevant target interaction, 17

turbidimetric solubility measurements and high throughput solubility 18

measurements [3–7]. Despite the progress, such approaches still rely on large 19

investments in sophisticated infrastructure for automated manipulation of samples and 20

data collection and processing [8, 9]. Alternatively, in silico approaches are more 21

cost-effective and consequently, have attracted significant attention over the past few 22

years [8, 9]. Examples include virtual library screening, signature matching, molecular 23

docking, genetic association, pathway mapping, among others [6, 8, 9]. In this case, 24

however, the developed algorithms still lag behind in precision and effectiveness and the 25

obtained candidates might require considerable experimental testing [9, 10]. This 26

combined approach is therefore leading to the repurposing of known molecules for new 27

and more potent treatments, which is attractive for both companies and the 28

patients [11]. To reduce the time for screening and implementation of new therapeutic 29

candidates even further, recent advances in artificial intelligence (AI) have provided 30

more effective search algorithms that rely on the capacity to model relationships 31

between the variables, which can also be trained to discover patterns in significantly 32

large data sets simultaneously [12]. 33

Machine Learning-based algorithms have been particularly useful for improving drug 34

discovery because they can analyze large data sets and learn the optimal representation 35

for specific tasks rather than using hand-craft fingerprints, which are difficult to achieve 36

otherwise [2]. Moreover, computational techniques such as Support Vector Machines 37

(SVM) and Random Forests (RF) have been successfully applied for the design of 38

pharmaceuticals with high specificity and selectivity, and improved physiological 39

behavior in terms of important parameters such as circulation times, bioavailability and 40

biological activity [2], toxicity [13] and potential side effects [14,15]. These 41

developments have been enabled by the availability of large public databases with 42

information about the physicochemical and biological properties of pharmaceuticals [16]. 43

With this information it is possible to train deep learning models, which allow virtual 44

screening over large data sets by means of efficient optimization algorithms and new 45

computational capabilities [17]. A recent example of the application of such models was 46

the screening conducted by Stokes et al. [11] over a data set of more than 107 million 47

candidate molecules. The main result was the identification of the antibiotic potential 48

of halicin, which for the first time allowed the successful re-purpose of this molecule 49

fully in silico. Halicin was originally researched for the treatment of diabetes due to the 50

inhibition potential of the enzyme c-Jun N-terminal kinase but was abandoned because 51

of low performance [18]. This finding provides remarkable evidence for the notion that 52
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AI is a suitable route for the screening and eventual development of new drugs. 53

Moreover, it offers the opportunity of a reduction in both the required investment for 54

development and the potential risks to be undertaken in pre-clinical and clinical trials. 55

Finally, it is possible to assure that from the beginning of the development, candidate 56

molecules comply with requirements imposed by regulatory frameworks in terms 57

safeness and reliability. 58

The current global COVID-19 pandemic is a compelling example of the urgent need 59

for automating drug discovery, as this situation is the result of a novel coronavirus 60

(SARS-CoV-2) capable of infecting humans at an extremely fast pace [19]. To respond 61

to this contingency, novel antiviral treatments and vaccines need to be developed in an 62

extraordinarily short time. In this regard, according to the experts and even with the 63

unprecedented resources allocated by governments, the shortest possible period for 64

developing and deploying a COVID-19 vaccine is of about eighteen months [20, 21]. The 65

European Union has raised $ 8 billion for collaborative development and universal 66

deployment of diagnostics, treatments and vaccines against SARS-CoV-2 [22]. This is 67

also the case of the U.S. and German governments, which are planning to invest in 68

vaccine and treatments development and distribution over $ 2 billion and $ 812 million, 69

respectively [23,24]. 70

Here, we applied recent developments in the field of computer vision to the critical 71

task of active molecule prediction, which mainly involves the estimation of whether a 72

molecule is able to bind to particular membrane receptors. Starting from the publicly 73

available AD Dataset [25], we formalized active molecule prediction as a detection 74

problem for which we designed an experimental framework that allowed us to evaluate 75

results with the aid of normalized Precision-Recall curves [26]. According to our newly 76

proposed framework, the state-of-the-art technique only performs with a 1% efficiency, 77

however, it was reported to show an AUC score of 52% [25]. In search for a superior 78

performance, we developed an algorithm based on deep learning for active molecule 79

prediction, which we called PharmaNet. Our approach elevated the prediction 80

performance (i.e., the area under the Normalized Average Precision (NAP) curve) to 81

the unprecedented level of 58.9%. 82

PharmaNet was designed on the basis of natural language processing (NLP) 83

techniques given that in this case the most important information lies in the sequence of 84

each of the elements. Consequently, we implemented recurrent neural networks (RNNs) 85

as the baseline for PharmaNet due to their demonstrated performance in problems 86

involving language [27–29]. Specifically, we considered a Gated Recurrent Unit (GRU) 87

cell as it enables the analysis of atom sequences in an information flow direction that 88

finalizes in the current element by analyzing the ones before it. These architectures 89

have been used previously explored for similar tasks such as those required for property 90

prediction and the generation of molecules according to properties of interest. For 91

instance, Marwin et al. [30] trained Long Short-Term Memory (LSTM) cells to learn a 92

statistical chemical language model for the generation of large sets of novel molecules 93

with similar physicochemical properties to those in the training set. The LSTM network 94

receives as input a canonical Simplified Molecular Input Line Entry System (SMILES) 95

representation of the molecules. In the same way, Goh et al. [31] used SMILES as the 96

input of a GRU to predict different chemical properties of the pharmaceuticals. In 97

consequence, due to the versatility of the SMILES format, we implemented it for data 98

representation in PharmaNet. This approach allowed us to build and map a 2D 99

representation of the molecules as simple sequences of characters with varying positions 100

in such 2D space [32]. 101

An overview of PharmaNet information pipeline is presented in Fig. 1. We 102

represented the input molecule as a raw molecular image with rows corresponding to 103

individual atoms. Then, we processed this representation using modern visual 104
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Fig 1. PharmaNet Workflow.
For each molecule we compute a raw molecular image with nxm dimensions, where n is
the number of unique atoms and bonds and m is the molecules’ maximum length. A
convolutional encoder produces a fingerprint molecular image that is then analyzed
globally by an RNN to predict scores for each of the targets in the AD Dataset.

recognition techniques. To accomplish this, we trained a convolutional encoder that 105

gradually merges the embeddings of individual atoms with those of their neighbors, 106

thereby resulting in a fingerprint molecular image. Subsequently, we input the data to a 107

Recurrent Neural Network to analyze the information of the whole molecule and to 108

predict a probability distribution for 102 targets. PharmaNet allowed us to classify 109

organic compounds according to their tendency towards interaction with an active cell 110

membrane receptor without prior knowledge of its structural features. This capability 111

might be attractive for drug discovery approaches where the structural information of 112

target receptors is difficult to access or non-existing. 113

PharmaNet’s architecture combines the processing power of a Convolutional Neural 114

Network (CNN) and a RNN, which have demonstrated superior abilities to learn 115

efficiently from image-like representations such as the proposed raw molecular image. 116

Furthermore, our method enabled us to classify a molecule against multiple targets with 117

a single trained model, which turned out to be much more efficient than most of the 118

previously reported ones [25,33,34]. This is because as opposed to Pharmanet, such 119

approaches are trained to classify between active and decoys for individual targets. 120

Finally, our experiments demonstrated that all existing methods for this task provide a 121

performance that is nominally zero, which, to our knowledge, positions PharmaNet as 122

the most robust AI algorithm for target molecule prediction. 123

According to our measures, PharmaNet obtains a maximum performance for human 124

farnesyl pyrophosphate synthase (FPPS) as a target. This protein is a key enzyme on 125

the mevalonate (MVA) pathway that is responsible for the isoprenoid biosynthesis 126

where it catalyzes the formation of farnesyl diphosphate (FDP). This is a precursor for 127

several classes of essential metabolites including sterols, dolichols, carotenoids, and 128

ubiquinones [35]. Overexpression of FPPS has been reported for multiple types of 129

cancer, including prostate, glioblastoma, breast, and bone metastases from breast 130

cancer. FPPS is therefore a potential target for anticancer treatments [36–41]. Also, 131

silencing of FPPS via siRNA has slowed down viral influenza A replication and release 132

in infected cells. This antiviral activity has been attributed to altered plasma membrane 133

fluidity and consequently to a limited formation of the lipid rafts required for the 134

survival of the virus [42]. On this basis, FPPS might potentially exhibit antiviral 135

activity against enveloped viruses [42]. Given the pharmacological application for FPPS 136

inhibitors and the high performance of our approach for FPPS, we evaluated a subset of 137

the CHEMBL dataset to search for candidates towards this target. Our top prediction 138

was the CHEMBL2007613 member of the data set, which corresponded to 139

[5-[(5-amino-1H-1,2,4-triazol-3-yl)sulfamoyl]-2-chloro-4-sulfanylphenyl] acetate 140

(PubChem CID:380934). Details of the interaction of this molecule with FPPS were 141

determined by molecular docking analysis. Cytotoxicity and genotoxicity were further 142

evaluated in silico with the aim of predicting toxicological effects directly relevant to 143

human cells, as well as to support hazard and risk assessment activities [43]. Taken 144

together, our results strongly suggest that CHEMBL2007613 is a potential candidate for 145

antiviral treatments. 146
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Methods 147

DUD-E and AD Data set 148

The DUD-E database contains 22886 active molecules against 102 targets and 50 decoys 149

per target. Each decoy is a chemical compound with physicochemical properties similar 150

to those of the active ones but different structure. Both groups of molecules (i.e., active 151

compounds and decoys) have therefore different data distribution, thereby making the 152

binary classification problem more amenable for a neural network. This approach has 153

been proved successful previously by Gonczarek A. et al. [34] and Chen et al. [25]. 154

The Active Decoys (AD) data set was proposed by [25] as a strategy to eliminate the 155

bias introduced by the decoys. This data set is based on DUD-E but changes the decoys 156

of each target by those contained within the 101 receptors with the highest affinity 157

towards the target as estimated by molecular docking. This approach leads to a rather 158

challenging binary classification problem because all the molecules show the same data 159

distribution. 160

Data Preparation 161

The output of our model for a molecule is the binding probability distribution to 162

individual targets within the set of target classes. This was accomplished by defining a 163

multiclass classification problem instead of a binary one. For this reason, the ligand 164

sequence is labeled with the corresponding target protein prior to be input into our 165

model. 166

We randomly split the complete set of binding ligand-protein SMILES sequences 167

from the AD data set into two main subsets where 90% of the available active molecules 168

for a target helped training the model, while the remaining 10% were employed for 169

testing purposes. Then, we split the training subset into four folders by making sure 170

that all the folders had the same distribution of active molecules per target. 171

Subsequently, we conducted a four-fold cross-validation approach where data in three of 172

the folders were used to train each model while the remaining one was only for 173

validation. This multi-step validation approach allowed us to train the model very 174

robustly and finally report the mean performance of the models as an overall metric. 175

Lastly, we converted the SMILES representation of the active molecules in the data set 176

into Raw molecular images. This process is described into detail below. 177

Neural Network Design: PharmaNet 178

PharmaNet comprises three main phases (Fig. 1). In the first one, a SMILES 179

representation of the molecule undergoes an embedding stage that results in what we 180

denominate a raw molecular image. In the second phase, that representation is the 181

input of a CNN to obtain a fingerprint molecular image that incorporates information 182

of each atom and its neighbors [44]. This stage allows the model to extract fingerprints 183

of functional groups in the molecule, which are essential in defining their functionality. 184

After this stage, the CNN’s output is processed by an RNN architecture that enables a 185

sequence-based analysis of the molecules [27]. This approach enables precise predictions 186

of the molecules’ target on the basis of the feature extraction, the sequence analysis and 187

the relevant information filtered in the last two stages. The extracted information 188

allows a different representation of the molecule in which the model can learn the 189

features that determine the activity towards a target protein. For this purpose, we 190

compute the probability scores from the RNN’s output with the aid of a Fully 191

Connected (FC) layer, followed by a Softmax Classifier. 192
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Raw Molecular Image 193

PharmaNet’s input is a SMILE sequence embedded into a one hot vector as performed 194

in [31]. We then generated a matrix of size n x m, where n = 36 is the total of unique 195

chars (atoms and type of bonds) in the data set, and m = 116 is the longest SMILES 196

sequence over all the molecules. This representation can be seen as a two dimensional 197

image of the molecule. This type of data arrays are typically encountered in computer 198

vision algorithms, which is attractive as we have extensive expertise with such 199

approaches [45–47]. As delineated below, we indeed applied our most recent 200

developments and insights in classification algorithms to classify them accurately. 201

Fingerprint Molecular Image 202

As shown in Fig. 1, the raw molecular image enters a feature extracting phase. The 203

image passed through a convolutional encoder composed by two 2D convolutional layers, 204

ReLU nonlinearity activations and batch normalizations. By following ResNet’s central 205

concept [48], we performed a residual connection between the convolutional layers. For 206

the first layer, we computed the feature maps with a 5x5 kernel to produce a 64 207

channels output. The second convolutional layer used a 5x5 kernel to produce 128 208

output channels. The final output is a matrix representation of each atom that takes 209

into account several of its neighbors. The obtained matrix can be interpreted as a 210

fingerprint molecular image of functional groups for the chemical compound. 211

Global analysis by recurrence 212

The fingerprint molecular image was input to an RNN, which is a bidirectional Gatted 213

Recurrent Unit (GRU) of 10 layers. This RNN analyzed the sequence of atoms by 214

selecting the information flow from the current fingerprint with that of the atoms 215

previously considered. Each GRU’s cell comprises two gates that control the flow of 216

information between them, namely, the reset gate (r) and the update gate (z ). (r) 217

decides whether to keep, in the current cell state (h’t), information of the previous cell 218

or to change it by information from the input (xt). The recurrence of this process is 219

described by the following set of equations: 220

rt = σ ∗ (Wrxt + Urht−1 + br) (1)
221

h′t = tanh(Whxt + Uh(ht−1 � rt) + bh (2)

In parallel, (z ) controls which type of information of the previous and current cell will 222

go to the next one. The process is described by the following set of equations 223

zt = σ(Wz ∗ xt + Uzht− 1 + bz) (3)
224

ht = zt � ht−1 + (1 − zt) � h′t (4)

where W and U are weight matrices, b is a non-linearity, h’ is the current cell state and 225

h is the output of the memory block [27,49]. Finally, we considered the last hidden 226

state of the GRU, which contains information of each atom based on both its neighbors 227

atom type and its position in the SMILES. This output is processed by a FC layer and 228

a Softmax Classifier to compute the probability distribution over the 102 target 229

receptors. This multiclass classification task was accomplished with the aid of a Cross 230

Entropy Loss. 231
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Implementation details 232

The training curriculum was implemented via an Adam optimizer with a starting 233

learning rate of 5x10−4, betas of 0.9 and 0.999, an epsilon of 1x10−8 and a weight decay 234

of 0.1. We reduced the learning rate when the validation loss stagnated at both a factor 235

of 0.1 and a patience of 10. We trained the model end-to-end during 30 epochs with a 236

batch size of 128. For the network, we implemented a four-fold cross-validation 237

approach. 238

Evaluation Metrics 239

In order to measure algorithmic performance, both the DUD-E and AD data sets report 240

the area under the Receiver Operating Characteristic curve (ROC-AUC). The ROC 241

curves feature Fallout against Recall, where Fallout (F) is the probability that a true 242

negative was labeled as a false positive while Recall (R) is the fraction of the true 243

positives that are detected rather than missed [50]. Considering that we are classifying 244

molecules according to their binding receptor but against 101 no binding receptors, we 245

can understand our problem as a highly unbalanced detection task. Consequently, when 246

evaluating a single target, negative samples largely exceed the positives ones. As a 247

result, if we evaluate in light of the ROC-AUC curves, the probability of predicting 248

undesirable true negatives increases significantly. In this scenario, Precision-Recall (PR) 249

curves represent an attractive alternative to ROC curves because detection tasks 250

proceed by normalizing Precision (P) over the true positives [51–53]. The area under 251

the PR curves has been typically reported as the main metric for detection problems, 252

which has been also known as Average Precision (AP). 253

Nevertheless, as pointed out by Hoiem et al. [26], AP strongly depends on the true 254

positive samples in each class t (Nt). As a result, the best performance is for classes 255

with the largest numbers of true positives. To create a normalized precision Pn, [26] 256

replaces (Nt) with a constant N that corresponds to the average of positive samples over 257

all the classes. Eq. 5 corresponds to the definition of Normalized Precision (PN), where 258

R is the fraction of objects detected while F is the number of those incorrectly detected. 259

PN =
R ∗N

R ∗N + F
(5)

As not all targets have the same number of active molecules, we prefer to use APn 260

for evaluating the prediction on each target. We tested the four trained models in the 261

test subset and computed the APn for each target. With the estimates of mean and 262

standard deviation for the four models, we then computed the Normalized Averaged 263

Precision (NAP) curve based on the frequency of targets that achieve each APn score. 264

We estimated the overall performance of PharmaNet as the area under the NAP curve 265

normalized by the total number of targets. 266

Screening in ChEMBL 267

We evaluated our best trained model with the ChEMBL database [54]. This manually 268

curated database contains information on chemical, bioactivity and genomic data of 269

over 15’504.604 bioactive molecules with drug-like properties [54]. Within ChEMBL, 270

15’367.297 members have their chemical structures represented by SMILES. This large 271

volume of information requires a wide search field to predict the activity of ChEMBL 272

molecules towards the 102 receptors in the AD data set. 273

Within ChEMBL, we only selected the molecules with lengths below those of the 274

largest SMILE in the AD data set. Also, those exhibiting the same components and 275

SMILES representations in AD data set. After applying this filter, the screening was 276
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reduced to 13’827.575 SMILES towards 102 targets. We computed the probability of 277

each molecule to be a binding-ligand for each target, and predicted whether it was 278

active towards the one with the highest score. Then, we focused on the molecules 279

predicted as active toward FPPS and sort them out to find the top-10 compounds for 280

which the network was more confident at the prediction. 281

Molecular Docking 282

The top 10 candidates for human farnesyl pyrophosphate synthase (FPPS) predicted by 283

PharmaNet were further corroborated by molecular docking via AutoDock 4.2. 284

Target Protein 285

The target protein in this study was the human farnesyl diphosphate synthase. The 3D 286

structure for this protein was downloaded from Protein Data Bank Database (PDB ID: 287

1ZW5). Protein optimization was performed by removing all water molecules and all 288

other molecules outside of the A chain of the target protein. Polar hydrogen groups 289

were added, and finally, Kollman charges were computed. A PBDQT file was produced 290

using MGL-Tools in AutoDock. 291

Ligand Preparation 292

SDF files of candidates were downloaded from PubChem and converted to PDF files 293

with the aid of PyMOL. Ligands were optimized and converted to PDBQT files via the 294

MGL-Tools in AutoDock. For optimization Gasteiger charges were assigned and 295

non-polar hydrogens were combined. The rigid roots of each compound were defined 296

automatically and rotation of amide bonds was fully restricted. 297

Molecular Docking Parameters 298

Molecular docking was performed by following [55]. The grid box size was set at 40, 40, 299

and 40 Å(x, y, and z) and Auto Grid 4.2 in conjunction with Auto Dock 4.2 were used 300

to produce the grid maps for each ligand. The distance between grid points was 0.375 Å. 301

To search the best conformer, the Lamarckian Genetic Algorithm was implemented with 302

a maximum of 10 conformers per ligand. The size of the population was set to 150 and 303

the individuals were initialized arbitrarily. The maximum number of energy estimation 304

was set to 2500000 while the maximum number of generations to 27000. Also, the 305

maximum number of top individuals that automatically survived was set to 1 with a 306

mutation rate of 0.02, a crossover rate of 0.8. The step sizes were 0.2 Åfor translations, 307

5.0◦ for quaternions and 5.0◦ for torsions. Cluster tolerance was maintained at 2.0 308

Åwith an external grid energy of 1000.0 and a max initial energy of 0.0. The max 309

number of retries was set to 10000 for 10 LGA runs. The highest binding energy (most 310

negative ∆G ) was considered as the ligand with maximum binding affinity. A positive 311

control of the binding algorithm was the well studied inhibitor for FPPS, 312

Zoladronate [55]. 313

Verification of AD data set distribution 314

In order to verify the complexity of the binding ligand-receptor task in the AD data set, 315

we applied molecular docking for the best five hundred (500) molecules predicted by 316

PharmaNet for each target. This data set encompassed both active and inactive 317

molecules for the receptors. We used the binding energy as classification -parameter- by 318

multiplying the energy by -1 and computing the corresponding sigmoid function. The 319

obtained data was interpreted as the classification probability for active molecules and 320
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allowed us to compute the precision recall curve over all the classes and the mean 321

average precision. 322

Toxicity evaluation in silico 323

The top 3 candidates obtained by molecular docking were further evaluated for 324

cytotoxicity and genotoxicity via the on-line Way2Drug Predictive Services server [56]. 325

Citotoxicity was performed using the SDF file of the ligands as input to the GUSAR 326

Software. This software predicts the LD50 for four routes of pharmaceutical 327

administration (intraperitoneal, intravenous, oral and subcutaneous) and calculates a 328

toxicity class based on the OECD principles [57]. Genotoxicity evaluation was 329

conducted with the aid of the DIGEP-Pred software. This tool is a web-based service 330

for in silico prediction of drug-induced changes of gene expression profiles based on the 331

structural formula of the compounds [58]. This server received as input the SMILES 332

sequence of the ligands. 333

Results and Discussion 334

Verification of AD data set 335

We performed molecular docking for 51000 molecules and found that 1926 of them 336

showed activity towards one of the 102 targets. With the binding energy, we calculated 337

the probability for a binary classification and computed the average precision (AP) of 338

these predictions. Fig. 2 shows the precision recall curve for the active classes with an 339

area under curve, i.e., AP of 3.8%. This result indicates that classification by molecular 340

docking essentially leads to the same result obtained by random classification. 341

Furthermore, this experiment confirms the need for new computational tools for more 342

robust and accurate analyses of scenarios where active and inactive molecules toward 343

some targets have similar data distributions, molecular structures, length and 344

physicochemical properties. 345

Fig 2. Performance of Molecular Docking as a Classifier.
Precision Recall Curve over the predictions computed with the binding energy of the
molecular docking in the selected molecules against one of the 102 targets.

Comparison with the state-of-the-art AI algorithms 346

We compared the performance of PharmaNet against the prediction made by the 347

state-of-the-art method recently published by Chen et al. [25] for each target in the AD 348

data set. The data was kindly provided by the authors for the comparisons presented 349

herein. 350

Fig. 3A shows the behavior of Chen et al.’s method [25] for the 102 targets classes 351

evaluated, where half of the models separate active molecules and decoys with an AUC 352

performance of 51%. After reaching this point, their curve decreases rapidly to zero to 353

reach an overall performance of 51.8% (Curve Area in the AUC frequency curve). 354

While [25] trains a different model for each of the 102 target molecules, our single model 355

is able to predict targets with a general performance of 95.8%. However, a relatively 356

small decrease in performance was observed after 0.8. A more stringent evaluation 357

shows an area under the AP curve of 3.2% for Chen et al.’s method [25] while for 358

PharmaNet is 60.8% (Fig. 3B). We obtained consistent results when we evaluated both 359

methods with the area under the NAP curve, in which [25] achieved 1% while ours 360

approached to 58.9% (Fig. 3C). 361
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Fig 3. Comparison of PharmaNet against the state-of-the-art method
of [25].
The curves correspond to the frequency in the 102 targets for each metric score: (A)
Area Under the ROC Curve, (B) Average Precision, (C) Normalized Average Precision.
We report area under the frequency curve. Best viewed in color.

Ablation Experiments 362

To verify whether all the components of PharmaNet were relevant to the task and to 363

select optimal hyperparameters, we performed an ablation study. First, we evaluated the 364

main phases of the architecture and their performance in the prediction task. Fig. 4A 365

shows the configuration of PharmaNet for our best result, the same architecture without 366

the convolutional encoder and without the RNN. It is evident that the RNN is the most 367

important component for superior performance but their combination is still beneficial 368

for improving performance somewhat further. Regarding the specific RNN implemented 369

herein, Fig. 4B shows that training with an LSTM decreases significantly PharmaNet’s 370

performance. Considering the amount of parameters that an LSTM has to learn and the 371

time to train this network, we decided to keep the GRU as our main RNN architecture. 372

Fig 4. Main ablation experiments.
(A) NAP curves evaluating the three main phases of our architecture. (B) NAP curves
evaluating different RNNs. Best viewed in color.

Regarding the Convolutional Encoder, experiments show that the best performance 373

was achieved with two convolutional layers and a residual connection (Fig. 5A, and 5D). 374

However, we obtained similar results after eliminating one layer. We also found that 375

batch normalization produced the best results (Fig. 5C) and that the optimal kernel 376

size was 5x5 (Fig. 5B). 377

Fig 5. Ablation study of Convolutional architecture.
(A) Number of convolutional layers. (B) Kernel size for the convolution. (C) Type of
normalization layers. (D) Type of residual connection. Best viewed in color.

We also studied directionality, depth and hidden state size to establish the best 378

configuration for the RNN. Fig. 6A shows that an bidirectional configuration leads to 379

an slight improvement in performance compared with unidirectional GRU cells. This 380

result is obtained by the analysis of the molecule from both left to right and right to left 381

most likely due to the complementarity of the fingerprints obtained by the analysis of 382

each direction. Regarding deepness of the network, Fig. 6C shows a significant increase 383

in performance from 0 to 10 layers followed by a decrease afterwards. Finally, Fig. 6B 384

demonstrates that by increasing the hidden size from 116 to 256, the performance 385

increase in about 10%. 386

Fig 6. Ablation study of GRU’s architecture.
(A) Unidirectional vs. Bidirectional GRU. (B) Hidden State Size. (C) GRU’s depth.
Best viewed in color.

Targets Analysis 387

Table 1 summarizes the performance and possible pharmaceutical applications of the 388

top-10 best-performing receptors. Most of these receptors exhibit potential 389
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antimicrobial activities, which is attractive not only to pharmaceutical industries but 390

also to public health, giving the increasing resistance of microorganisms to conventional 391

antibiotics [59]. In this regard, having a method to predict with high accuracy new 392

active molecules towards the target proteins might propel the drug discovery process 393

unprecedentedly. Also, we identified multiple possible targets for the development of 394

novel pharmacological anticancer therapies. This is particularly important for certain 395

types of cancer that are resistant to conventional chemotherapy such as doxorubicin [60], 396

imatinib [61], nilotinib [62], cisplatin [63], tamoxifen [64], paclitaxel [65], 397

temozolomide [66], and docetaxel [67]. Finally, one of the receptors could be a potential 398

target for Parkinson’s disease and consequently, a route to improve the palliative 399

treatments for the disease. 400

Table 1. Name, biological function and pharmaceutical application of best 10 performing targets with
PharmaNet.

Target NAP Biological Function Pharmaceutical Application
C-X-C Chemokine Receptor Type 4 (CXCR4) 1 Receptor for the C-X-C chemokine CXCL12/SDF-1 Antiviral
Farnesyl Pyrophosphate Synthase (FPPS) 1 Key enzyme in isoprenoid biosynthesis Antimicrobial and Anticancer

Thymidine Kinase (KITH) 1 Catalyzes the addition of a gamma-phosphate group to thymidine Antimicrobial and Anticancer
Adenosylhomocysteinase (SAHH) 0.99813 Competitive inhibitor of S-adenosyl-L-methionine dependent methyl transferase reaction Anti-inflammatory
Phosphoribosylamine (PUR2) 0.99627 Involved in the synthesizes of N(1)-(5-phospho-D-ribosyl) glycinamide Antimicrobial and Anticancer

Fatty Acid-Binding Protein (FABP4) 0.97483 Lipid transport protein in adipocytes Anti-inflammatory
3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (HMDH) 0.96755 Transmembrane glycoprotein, rate-limiting enzyme in biosynthesis of cholesterol and nonsterol isoprenoids None
Natural Resistance-Associated Macrophage Protein (NRAM) 0.96162 Divalent transition metal transporter and host resistance to certain pathogens Antibacterial and Immunomodulator

Heat Shock Protein 90-Alpha 1 (HS90A) 0.94723 Involved in cell cycle control and signal transduction Anticancer
Catechol O-Methyltransferase (COMT) 0.93565 Catalyzes the O-methylation - Inactivation of catecholamine neurotransmitters Parkison’s disease

A closer inspection of each class separately allowed us to identify certain functional 401

groups that enabled a better classification, as we illustrate in Table 2. 402

Table 2. Chemical characteristics of the best performing classes with
PharmaNet.

Target Characteristic
CXCR4 At least one dihydroimidazole group
FPPS One or two phosphonic acid groups
KITHH One secondary amide
SAHH One Amino-purine
PUR2 Two carboxyl groups at the end of the sequence
FABP4 One caboxilyc acid group
HMDH At least one carbonyl group or one C-C-O sequence
HS90A One benzothiazole group
COMT At least one benzene group

The top-6 worst-performing classes were ABL1, CP3A4, CP2C9, SRC, LCK, and 403

CDK2. Their active molecules, however, vary widely within each of class, both in length 404

and in the type of present functional groups. These organic molecules are composed 405

principally by chains of C, N, O, H, and contain from few to none P, Cl, Br, I, S, and Si 406

in their structures. The process of learning functional fingerprints was relatively hard 407

for the network due to the similarities between the involved molecules. 408

Due to the increasingly growing interest of the pharmaceutical industry in 409

antimicrobial treatments, and specifically in antivirals for enveloped viruses due to the 410

possible impact on the ongoing coronavirus pandemic, we performed a screening for 411

molecules active towards FPPS on a subset of the CHEMBL data set. The top-10 412

predicted molecules with a NAP of 99.8% are shown in Fig. 7. All molecules contain 413

Nitrogen atoms, which have been reported previously to be essential in the interaction 414

with the IPP active site of FPPS [68]. However, it can also be seen that none of the 415

candidates has a phosphonic acid group, which we detected previously as a common 416

moiety of active molecules towards FPPS. This unexpected outcome supports the idea 417

that neural networks learn different fingerprints that those proposed and implemented 418
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by chemists for drug design for decades [11]. This shift on the molecule and fingerprint 419

learning will enable the discovery of pharmaceuticals within a further representation 420

space that consequently leads to significant structural differences. This, in turn, is likely 421

to lead to revealing new and different mechanisms of action for known molecules. This is 422

a very important characteristic for drug discovery since drugs with similar mechanisms 423

of action are very likely to have the same drawbacks of current pharmaceuticals. 424

Fig 7. Top-10 predictions of PharmaNet towards FPPS on the CHEMBL subset data.
CHEMBL ID, IUPAC name, SMILE and the molecule structure is given for the best 10 performing molecules in CHEMBL
subset data towards FPPS target when predicting with PharmaNet.

To further corroborate the performance of our method, the top-10 candidates were 425

analyzed via molecular docking and compared with Zolonadrate, a molecule reported to 426

induce inhibition of FPPS (Table 3) [68]. All of our candidates showed binding energies 427

lower than Zolonadrate’s and consequently, they should exhibit better affinity towards 428

FPPS than Zolonadrate. This suggests a potential pharmacological use of the identified 429

molecules and therefore the need for further toxicity studies. The interactions and 430

binding energies with FPPS for the top-3 candidates and Zolonadrate are shown in Fig. 431

8. 432

Table 3. Binding Energies for top-10 candidates and inhibitor. Inhibitor in
bold.

CHEMBL ID Binding Energy
CHEMBL250434 -10.04
CHEMBL2007613 -9.56
CHEMBL222102 -8.48
CHEMBL1506796 -7.82
CHEMBL1523492 -7.60
CHEMBL1318151 -7.49
CHEMBL1992583 -7.43
CHEMBL316508 -6.56
CHEMBL1996901 -6.49
CHEMBL1492290 -5.94
Zolonadrate -5.92

Fig 8. Molecular docking.
(A) Zoledronate’s interaction with active site. Hydrogen bonds with Arg126 and Gln254.
Binding Energy = -5.92. (B) CHEMBL250434’s interaction with active site. Hydrogen
bonds with Arg126 and Thr215. Binding Energy = -10.04. (C) CHEMBL2007613’s
interaction with active site. Hydrogen bonds with Arg126. Binding Energy = -9.56. (D)
CHEMBL222102’s interaction with active site. Hydrogen bonds with Arg126. Binding
Energy = -8.48.

The obtained binding energy for Zolonadrate agrees well with that reported 433

elsewhere [55]. In this case (Fig. 8A), the prevalent interaction is by means of hydrogen 434

bonding between the hydroxyl groups of Zolonadrate and the amine groups of the 435

residues Gln254 and Arg126 [69]. Additional hydrogen bonding takes place between the 436

protonated nitrogen atom of the heterocyclic ring in the side chain of Zolonadrate and 437

the conserved main-chain carbonyl oxygen of Lys214 and the hydroxyl group of the 438

Thr215. This stabilization mechanism resembles that of a carbocation intermediate [68]. 439

CHEMBL250434 (6-bromo-N-[1-[[(1R,5S)-6,6-dimethyl-2-bicyclo[3.1.1]hept-2- 440

enyl]methyl]piperidin-4-yl]-1,3-benzothiazol-2-amine) (Fig. 8B) has two heterocyclic 441
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Table 4. Citotoxicity predicted by GUSAR. NA: Non-Applicable to
predictor domain.

CHEMBL ID IP (Intraperitoneal) IV (Intravenous) Oral SC (Subcutaneous)
CHEMBL250434 Class 4 Class 4 Class 4 NA
CHEMBL2007613 NA Non-Toxic NA NA
CHEMBL222102 Class 4 Class 4 Class 4 NA

rings in its structure, which could protonate and interact strongly with the protein at 442

residues Lys214, Arg126, and Thr215 via hydrogen bonding. This is in contrast with 443

Zoledronate, which has only one site for interaction. CHEMBL2007613 444

(5-[(5-Amino-4H-1,2,4-triazol-3-yl)amino]sulfonyl-2-chloro-4-mercaptophenyl acetate) 445

(Fig. 8C) has one heterocyclic ring with Nitrogen atoms that can interact strongly with 446

Lys214 and Arg216 and much less with Thr215. This is most likely the reason for the 447

lower binding energy compared to CHEMBL250434 (6-bromo-N-[1-[[(1R,5S)-6,6- 448

dimethyl-2-bicyclo[3.1.1]hept-2-enyl]methyl]piperidin-4-yl]-1,3-benzothiazol-2-amine). 449

Finally, CHEMBL222102 (2-morpholin-4-yl-6-thianthren-1-ylpyran-4-one) (Fig. 8D) has 450

one heterocyclic ring with only one Nitrogen atom capable of forming hydrogen bonds 451

primarily with Arg126 residues, which explains the lowest biding energy of the analyzed 452

set of molecules. 453

After corroborating the interaction through molecular docking, the top-3 candidates 454

were analyzed with the aid of the online servers GUSAR, for cytotoxicity, and 455

DIGEP-Pred for genotoxicity. Table 4 shows the toxicity label for the three compounds 456

after administration via four different routes. Toxicity is categorized in a relative scale 457

that goes from 1 to 5, with 1 for absence of toxicity and 5 the highest toxicity [57]. 458

According to our findings, the only molecule with the potential for IV administration at 459

the clinical level is CHEMBL2007613 (5-[(5-Amino-4H-1,2,4-triazol-3-yl)amino]sulfonyl 460

-2-chloro-4-mercaptophenyl acetate). 461

Regarding gene tocixity, CHEMBL2007613 upregulates the expression of the 462

PCDH17 gene, which encodes for a protein that contains six extracellular cadherin 463

domains, a transmembrane domain, and a cytoplasmic tail, which makes it different 464

from classical cadherins [70]. This gene has shown varying expression levels under some 465

viral infections, which change depending on the type of virus [71]. Moreover, no reports 466

are available discussing the downregulation of any other genes. 467

CHEMBL2007613 5-[(5-Amino-4H-1,2,4-triazol-3-yl)amino]sulfonyl-2-chloro-4- 468

mercaptophenyl acetate (PubChem CID:380934) was established as non-toxic for IV 469

administration routes and upregulates the PCDH17 gene, which has been related to 470

viral infections. Furthermore, this molecule is purchasable at the chemical companies 471

ChemTik and ZINC. Given the above, we propose CHEMBL2007613 as a potential 472

antiviral drug, for enveloped viruses, such as SARS-CoV-2. 473

Conclusion 474

One important challenge in modern drug discovery is to accelerate the search for new 475

and more potent therapeutic molecules but in a more assertive manner as thus far, 476

conventional approaches are extremely costly, time consuming and largely ineffective. 477

Pharmaceutical companies have spent billions of dollars in development but only a 478

small percentage of candidates have made it to the market. Novel artificial intelligence 479

algorithms provide an alternative route for a more comprehensive search of candidates 480

in already available and large databases of pharmaceutical compounds. Also, those 481

algorithms reduce the number of experiments needed in vitro and in vivo, given that 482

only the most promising candidates are further analyze. We implemented this approach 483
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here and put forward PharmaNet, a deep learning architecture for predicting binding of 484

a molecule to possible protein target receptors. PharmaNet´s algorithm represents the 485

2D structural information of a molecule as a molecular image and process it with 486

modern computer vision recognition techniques. Our architecture is trained end-to-end 487

and consists of a convolutional encoder processing phase followed by an RNN. This 488

approach allows multiclass classification with a single model. The conventional metric 489

for this type of task has been the Receiver Operating Characteristic curve (ROC-AUC); 490

however, we propose that a more accurate metric is the area under the Normalized 491

Average Precision (NAP) curve. Under this framework, PharmaNet outperforms the 492

state-of-the-art algorithm by one order of magnitude (from 1% to 58.9%) in the AD 493

dataset, and has a perfect performance in identifying the active molecules for 3 494

receptors of the 102 targets: CXCR4, FPPS and KITH. We selected FPPS as target to 495

apply our model in the search of active molecules within the large database of 496

pharmacological molecules, ChEMBL. We chose the 10 best candidate molecules to 497

investigate into detail interactions with FPSS via molecular docking. We also conducted 498

an in silico evaluation of toxicity with the aid of online servers. We found that the 499

compound identified with the ID CHEMBL2007613, i.e., 500

(5-[(5-Amino-4H-1,2,4-triazol-3-yl)amino]sulfonyl-2-chloro-4-mercaptophenyl acetate) 501

exhibits potential antiviral activity, which needs to be corroborated in vitro. We expect 502

that our algorithm opens new opportunities for the rediscovery and repurpose of 503

pharmacological compounds that otherwise might be disregarded in importance by the 504

pharmaceutical industry. Moreover, we are currently exploring its potential in the 505

reverse problem, i.e., searching for multiple receptor targets for molecules with certain 506

physicochemical properties. 507
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