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Abstract  

 

Convincing evidence for synchronization of cortical oscillations to normal rate speech and 

artificially accelerated speech has been offered. However, the case of natural speech rate 

variations, which are ubiquitous in everyday life, has been largely overlooked. Here, we directly 

compared changes in the properties of cortico-acoustic coupling when speech naturally shifts 

from normal to fast rate and when it is artificially accelerated. Neuromagnetic brain signals of 

24 normal-hearing adults were recorded with magnetoencephalography (MEG) while they 

listened to natural normal (~6 syllables/s), natural fast (~9 syllables/s) and time-compressed (~9 

syllables/s) sentences, as well as to envelope-matched amplitude-modulated noise. We 

estimated coherence between the envelope of the acoustic input and MEG source time-series in 

two frequency bands corresponding to the mean syllable rates of the normal and fast speech 

stimuli. We found that listening to natural speech at normal and fast rates was associated with 

coupling between speech signal envelope and neural oscillations in right auditory and 

(pre)motor cortices. This oscillatory alignment occurred within [5.7-7.7 Hz] for normal rate 

sentences and shifted up to [8-10 Hz] for naturally-produced fast speech, mirroring the increase 

in syllable rate between the two conditions. Unexpectedly, despite being generated at the same 

rate as naturally-produced fast speech, the time-compressed sentences did not lead to significant 

cortico-acoustic coupling at [8-10 Hz]. In addition, neural activity in articulatory cortex 

exhibited stronger tuning to natural fast rather than to artificially accelerated speech, reflecting 

enhanced mapping to articulatory features of natural speech. Finally, we observed no coupling 

when participants listened to amplitude-modulated noise, which suggests that envelope tracking 

does not only reflect passive acoustic tracking but is sensitive to linguistic information. 

Altogether, our findings provide new insights into the oscillatory brain signature underlying the 

perception of natural speech at different rates and highlight the importance of using naturally-

produced speech when probing the dynamics of brain-to-speech coupling.  

 

Keywords: Speech rhythm, Neuronal Oscillations, Syllable rate, Cortico-acoustic coupling, 

Magnetoencephalography (MEG). 
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Introduction 

 

Understanding the neural mechanisms at play during natural spoken language comprehension 

remains a challenging issue, especially given the large variability of the speech acoustic signal 

in everyday life. For communication to be efficient, the brain has to rapidly accomplish a 

cascade of sophisticated operations. One of the first is to parse the continuous acoustic stream 

into smaller units that will then be mapped onto internal linguistic representations. In this 

regard, the (quasi-)rhythmicity of speech is fundamental as it allows the listener’s cognitive 

system to make predictions about the incoming signal, thus helping speech segmentation and 

comprehension (1,2). Neurocognitive models of speech perception assign a key functional role 

to ongoing neural oscillations in the tracking of speech rhythm (3–6). By aligning to speech at 

multiple timescales, brain oscillatory activity in the gamma (~25-40 Hz), theta (~4-7 Hz) and 

delta (~1-3 Hz) frequency bands would segment the acoustic stream into phoneme-, syllable- 

and word-sized packets, respectively. These units may then be integrated hierarchically for 

higher-order linguistic processes. Convincing evidence from electro- and 

magnetoencephalography (EEG/MEG) revealed coupling between theta-band oscillations in 

the auditory cortex and the slow modulations (2-8 Hz) in speech amplitude envelope (7–13). 

Modulations in this range are inherently tied to syllable production (14) and are crucial for 

speech intelligibility as they convey, among other information, prosodic cues such as stress and 

tempo (15). Interestingly, auditory cortex oscillations are therefore able to track and align to 

the speech input in a frequency range which coincides with the average syllable rate of speakers 

across languages (16).  

Speech rate can however substantially vary within and between speakers and contexts. As 

listeners, we need to rapidly adapt to the changing rates for efficient understanding (17,18). 

Surprisingly, only a few studies so far examined brain-to-speech coupling in the case of speech 

rate variations. Furthermore, most of these studies used time-compressed speech, where the 

duration is artificially reduced but the spectral content is kept intact (19–23). Results showed 

that brain-to-speech coupling occurs for moderately time-compressed, still intelligible speech 

but not for higher compression rates, yielding unintelligible stimuli (24,25). Accordingly, it has 

been suggested that the efficiency of speech decoding may depend on the capacity of neural 

oscillations (primarily in the theta range) to remain in sync with the syllable rate. Once the latter 

exceeds the upper limit of the neural theta band, comprehension has been found to deteriorate 

(1,7,26–28). This said, one EEG study (29) reported cortical coupling to the syllabic structure 

of time-compressed speech up to 14 Hz, even for poorly understood sentences (i.e. > 10 
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syllable/s). This suggests that neural oscillations are able to align to the incoming speech signal 

at higher frequencies to match its temporal structure, at least for artificial acceleration (see also 

30) and even if speech is not fully intelligible (but see 31 for convincing evidence of a functional 

contribution of theta-band cortical tracking to speech intelligibility).  

Taken together, previous studies of neural coupling to fast rate speech have mainly focused on 

artificially compressed stimuli and have led to heterogenous and partly contradictory results. In 

fact, studying the perception of time-compressed speech may not provide the best model of how 

neural oscillations handle natural changes in speech rate. This question has been largely 

overlooked in the literature, yet it seems crucial given the subtle differences between naturally-

produced fast speech and artificially accelerated speech. Artificial and natural acceleration of 

speech rate both reduce the acoustic signal in terms of length of acoustic cues, formant 

transitions and pauses. However, and by contrast to time-compressed speech, these changes 

operate non-linearly when we naturally speak at a fast rate, partly due to articulatory restrictions 

(32,33). In French and English for instance, vowel duration and unstressed syllables (for 

English) are more reduced than consonant duration and stressed syllables. Besides temporal 

reduction, natural fast speech also undergoes a series of spectro-temporal changes resulting in 

increased processing load for the listener as compared to time-compressed speech (32,34,35). 

Uttering speech at a fast rate decreases the spatial magnitude of articulatory movements (i.e., 

they are achieved more quickly and less accurately) and enhances coarticulation (i.e., increased 

gestural overlap) and assimilation, which can even lead to the suppression of whole segments 

(36). Accordingly, the listener’s auditory system faces a major challenge, namely to adjust not 

only to a shortened (as in time-compressed speech) but also spectro-temporally degraded signal 

for efficient decoding. Although adaptation to naturally accelerated speech has been reported 

behaviourally (17), the underlying brain oscillatory dynamics remain, to our knowledge, largely 

underinvestigated. In a compelling MEG study, Alexandrou and colleagues (37) recently 

reported alignment of auditory and parietal cortex oscillations to speech spontaneously 

produced at different rates (from ~2 to 7 syllables/s). Yet their fast rate condition falls within 

the canonical theta range (4-7 Hz), and therefore does not address the question whether neural 

oscillations change their coupling frequency beyond the theta limit to track natural speech 

acceleration. More generally, and to the best of our knowledge, no study to date has directly 

compared neural entrainment to speech using either natural fast rate speech or artificially 

accelerated stimuli. Such a comparison may elucidate whether using artificial acceleration of 

speech stimuli accurately captures the brain mechanisms at play during perception of natural 

speech rate changes. 
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Here we address this question using an unprecedented MEG experiment where we compare the 

modulations of cortico-acoustic tracking patterns induced by normal and fast speech, generated 

either naturally or using time compression. Although seemingly subtle, the distinction we 

address is of fundamental importance to better understand how our brains track and encode the 

spectro-temporal changes we encounter in daily communication. Furthermore, observing 

differences in the neural processing of naturally versus artificially accelerated speech could be 

key to improving oscillatory models of speech perception. Based on previous work (29,30), one 

would expect that increases in speech rate would be associated with upward shifts in cortico-

acoustic coupling frequency, matching the change in syllable rate, and that this would occur 

both for natural and artificial acceleration of the stimuli. However, given the articulatory 

changes elicited by natural acceleration (36) and the tight relationship between speech 

perception and production processes (38–40), the parsing process may particularly engage 

sensorimotor mechanisms during natural fast speech perception. As a result, we expect neural 

coupling to occur not only in auditory but also in motor regions and importantly, that this motor 

resonance may be stronger for naturally accelerated than for artificially manipulated speech. 

To test these assumptions, we sought to unravel the oscillatory brain signature of speech 

naturally produced at a normal or fast rate, and of time-compressed speech. We investigated 

whether neural oscillations in auditory and motor cortex, recorded with MEG, align to syllable 

rate when it is naturally accelerated and how this compares to artificially manipulated speech. 

To this end, we computed cortico-acoustic coherence at the source level while participants 

listened to single sentences naturally produced at a normal and fast rate, or time-compressed. 

Most previous work assessed neural coupling to speech amplitude envelope in the canonical 

theta band (e.g., 10,13,37), yet speakers can naturally slow down or speed up their syllable rate 

outside the limits of this range. Examining cortical tracking of speech rate variations in 

frequency ranges that specifically match the temporal structure of heard speech therefore 

appears as a more straightforward approach (41). Accordingly, we assessed brain 

synchronization to the envelope of normal and fast rate speech in two frequency ranges centred 

on the mean syllable rate computed from our sentence stimuli. By including amplitude-

modulated noise control stimuli (based on the temporal envelopes of normal and fast rate 

sentences), we furthermore investigated whether cortico-acoustic coupling depends on the 

linguistic content of the material or simply reflects brain responses to low-level acoustic cues.  

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.344895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.344895


6 
 

Results 

 

We recorded MEG brain activity of 24 healthy French adult participants during perception of a 

set of natural normal rate (mean = 6.76 + 0.57 syllables/s), natural fast rate (9.15 + 0.60 

syllables/s) and time-compressed sentences (to the same rate as natural fast rate speech). 

Amplitude-modulated noise stimuli (modulated with normal rate and fast rate sentence 

envelopes) served as non-speech control conditions. Participants were instructed to attentively 

listen to the different stimuli and detect beep-sounds embedded in filler sentences (not 

analyzed) by pressing a button as quickly as possible. To assess neural tracking of speech rate 

variations, we computed cortico-acoustic coherence between signal’s amplitude envelope and 

source-localized MEG time-series (see Fig. 1 for an overview of the method). We defined two 

frequency bands for analysis, based on the mean syllable rate of the speech stimuli (5.7-7.7 Hz 

and 8-10 Hz). We further verified that these mean rates, which were derived by assessing the 

number of syllables over time, corresponded to equivalent peaks in the power spectrum of the 

speech envelopes (see supplementary Fig. S1 and Table S1). For statistical analysis, we 

contrasted coherence measures obtained for actual stimulus encoding with coherence values 

obtained using surrogate data, as well as with during a pre-stimulus baseline. We generated the 

surrogate data by randomly shuffling the speech trial order so that they no longer matched the 

associated MEG signals (see Material and Methods). 
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Fig 1. Overview of the cortico-acoustic coupling analysis.  Computation of cortico-acoustic coherence required 

three inputs: the reference signal, namely the audio recordings; the anatomical data, i.e. the participants’ MRI; and 

the functional data, i.e. MEG recordings. We used the amplitude envelope of speech as the reference signal to 

investigate cortical alignment at the syllable rate. We segmented each participant’s MRI and then constructed the 

source space based on a warped Montreal Neurological Institute (MNI) anatomical grid template, which we used 

for group analysis. After preprocessing the individual MEG recordings, we computed the source modelling and 

cortico-acoustic coupling using the Dynamical Imaging of Coherent Sources (DICS) beamformer (42). Lastly, for 

statistical analysis we applied non-parametric randomization, cluster-based permutation statistical tests across 

participants for each frequency band and condition in five bilateral regions-of-interest (ROIs). We achieved the 

statistical assessment of cortico-acoustic coherence by comparison to two control conditions: coherence obtained 

either using surrogate data (trial shuffling) or using pre-stimulus data. 
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Fig 2. Power spectra of the speech signal for the five conditions. (A) Power spectra of the speech signals’ 

envelopes across the five experimental conditions: Natural Normal and Natural Fast correspond to naturally-

produced speech at a normal (mean syllable rate 6.76 syllables/s) and fast rate (mean rate 9.15 syll/s), respectively. 

Time-compressed speech was compressed at the same syllable rate as in the natural fast rate condition (mean 

syllable rate 9.15 syll/s). Noise Normal and Noise Fast correspond to noise stimuli modulated with the amplitude 

envelopes of normal rate and fast rate sentences, respectively. The depicted spectra represent parametric model 

fits of the PSD, that consist of aperiodic and periodic components computed using the FOOOF algorithm (43) (B) 

Periodic components of the full model shown in (A), i.e. after removal of the aperiodic (the so-called 1/f) 

component of the spectra. The spectral power peaks in the speech stimuli for each condition occur at frequencies 

that match the corresponding mean syllable rates calculated using the Praat software (see supplementary Table S1 

and supplementary Fig S1 for details).  

 

The ROI-based analysis using shuffled data as control revealed a shift in the frequency domain 

of cortical oscillations to align to the syllable rate of naturally-produced heard sentences. 

Significant increase of cortico-acoustic coherence for the normal rate condition was found in 

the frequency band encompassing the mean normal syllable rate (5.7-7.7 Hz) (Fig. 3A). 

Crucially, for natural fast speech, coherence significantly increased in the band matching the 
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mean fast syllable rate (8-10 Hz; Fig. 3B). The time-compressed speech condition did not show 

any significant brain coupling in the corresponding [8-10 Hz] range. Comparable patterns of 

cortico-acoustic coupling were obtained when coherence during speech encoding was 

compared to coherence computed for baseline data (Fig. S2). As Fig. 3 shows, in both natural 

speech rate conditions, cortical tracking of speech envelope in the corresponding frequency 

bands was seen in the primary auditory cortex (Brodmann Area BA 41), middle and superior 

temporal gyri (BA 21/22), primary sensory (BA 1) and primary motor and premotor cortices 

(BA 4/6) of the right hemisphere (see also Fig. S2). Note that we also found significant brain 

coupling in the right precentral gyrus (BA 4) for naturally and artificially accelerated speech in 

the [5.7-7.7 Hz] (normal rate) range. By contrast, we did not find any significant increase in 

coherence for normal rate speech in the higher [8-10 Hz] range. Neither of the two amplitude-

modulated noise conditions presented statistically significant cortico-acoustic coupling in any 

of the two frequency bands of interest (Figs. 3A and 2B).  

 

 

Fig. 3.  Cortical tracking of speech in the frequency bands encompassing (A) the normal syllable rate (5.7-

7.7 Hz) and (B) the fast syllable rate (8-10 Hz). Coherence maps between signal’s amplitude envelope and neural 

oscillations in the active period (i.e. during stimulus presentation), as compared to surrogate data, together with 

statistical maps in the right hemisphere (corrected, α = .05; results were not significant in the left hemisphere) 

presented for the five conditions. Natural Normal = naturally-produced normal rate speech; Natural Fast = 

naturally-produced fast rate speech; Time-compressed = artificially accelerated speech from normal rate sentences 

at the same rate as natural fast speech; Noise Normal = amplitude-modulated noise with the envelope of normal 

rate sentences; Noise Fast = amplitude-modulated noise with the envelope of natural fast rate sentences.  
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To specifically test our hypothesis of a stronger involvement of the motor cortex in the tracking 

of natural fast as compared to time-compressed speech, we computed direct contrasts between 

speech conditions in the band matching the mean fast syllable rate (8-10 Hz). We conducted 

this analysis in the inferior motor cortex (BA 4), based on previous neuroimaging reports on 

articulatory cortex involvement during speech perception/production (44,45) and on the 

coherence peak observed in the [8-10 Hz] band (Fig. 3B). Fig. 4A shows the maps of cortico-

acoustic coherence for the three computed contrasts. Results revealed significantly higher 

coupling of the right articulatory region at [8-10 Hz] to natural fast rate speech as compared to 

both time-compressed and natural normal speech (Fig. 4B, articulatory ROI). Note that 

contrasts between speech conditions using the whole set of predefined ROIs (as in Fig. 1) 

showed an increase of coherence for natural fast as compared to time-compressed speech in the 

same articulatory region as well as in the right temporal cortex (uncorrected results; see suppl 

Fig. S3). For completeness, we also computed direct pairwise contrasts between speech 

conditions in the [5.7-7.7 Hz] band matching the mean normal syllable rate. Results showed 

significantly stronger coupling to natural speech, both at normal and fast rates, than to time-

compressed speech in the right precentral ROI (see Fig. S4). The two naturally-produced 

conditions did not significantly differ from each other at the frequency of normal speech.  

 

 

Fig. 4.  Direct contrasts between speech conditions in the [8-10 Hz] range reveal increased coupling to 

natural fast speech in articulatory cortex. (A) Contrast maps show the difference in cortico-acoustic coherence 

in the three pairs of speech conditions. The values represent the difference in Fisher z-transformed coherence 

between each two conditions. The black rings highlight the right articulatory ROI. (B) Mean cortico-acoustic 

coherence in the right articulatory ROI for the natural normal, natural fast and time-compressed conditions. Stars 

(*) indicate significant differences between conditions (t-test, α = .05, corrected).  
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Finally, we sought to rule out that the observed increases in coupling between cortical 

oscillations and the speech envelope can be linked to increases in cortical power at the coupling 

frequency. To this end, we analyzed source power modulations, contrasting power for the 

speech encoding period with power measured during a pre-stimulus baseline. The analyses 

showed significant increases of spectral power at [5.7-7.7 Hz] in the left prefrontal and inferior 

frontal cortex for all sentence conditions (Fig. S5). These areas did not overlap with the regions 

that exhibited significant cortico-acoustic coherence at these frequencies. This was 

accompanied by significant desynchronization in the [8-10 Hz] range in the right temporal 

cortex in all conditions (except for noise modulated with the envelope of fast rate sentences) 

and in the left inferior frontal cortex for the two naturally-produced speech conditions (Fig. S6). 

These power reductions in the same areas and frequencies in which we report entrainment to 

the natural fast stimuli suggest that the observed coupling cannot be attributed to local increases 

in power. 

 

Discussion 

 

To date, most of the evidence for brain alignment to speech rate variations has come from 

research using artificially accelerated speech (24,30,29), and has thereby left the issue of natural 

speech rate changes largely unaddressed. The present MEG study is the first to directly compare 

brain-to-speech coupling between naturally-produced fast speech and artificially compressed 

speech. We first showed that neural oscillations in auditory and motor cortex track natural 

variations of syllable rate in frequency ranges that specifically reflect the temporal structure of 

the speech material. Cortical rhythms indeed shift up their frequency coupling to match the 

faster modulations in natural fast speech. Surprisingly, we did not observe any significant 

cortical coupling in the corresponding frequency band for time-compressed speech. Crucially, 

direct contrasts between conditions revealed stronger tracking of speech envelope in 

articulatory cortex for natural fast than for artificially accelerated speech, possibly reflecting 

the specific mapping to articulatory features of naturally-produced material. Finally, we found 

that cortico-acoustic coupling is sensitive to the linguistic content of the stimuli as no significant 

increase of coherence is seen for amplitude-modulated noise, despite being generated using the 

speech signal envelopes.  
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Auditory and motor cortices track natural speech rate changes in a frequency-specific 

manner 

  

Brain coupling to the amplitude envelope of naturally-produced speech was found in auditory 

and precentral regions of the right hemisphere, in agreement with oscillatory-based models of 

speech perception and previous work showing right-lateralized brain responses to speech 

envelope (6,13,19,46–48). Most importantly, our coherence measures revealed that neural 

oscillatory activity is tuned to speech rate variations: cortical tracking of naturally-produced 

sentences was observed in frequency ranges coinciding with the syllable rate of the stimuli. For 

normal rate speech, cortico-acoustic coherence in auditory and (pre)motor regions increased in 

the [5.7-7.7 Hz] frequency band, whereas when participants listened to natural fast speech, the 

peak of coupling shifted up to [8-10 Hz] (Fig. 3). Note that a significant increase of coherence 

in the precentral gyrus was also observed for naturally accelerated speech in the lower 

frequency range. Syllable frequencies in natural speech tend to overlap between speech rates 

(49). Along this line, the envelope of our natural fast sentences also contains slower frequency 

components, which may account for the observed pattern of results. In fact, this explanation is 

consistent with the spectral power density plots (see supplementary Fig. S1). The lack of 

coupling for normal rate speech in the higher frequency range (8-10 Hz), which was expected, 

however underlines the specificity of the reported effects. Similar patterns of brain-to-speech 

coupling were observed when we contrasted coherence between speech and MEG brain activity 

with coherence computed for baseline trials (supplementary Fig. S2). This replication using two 

distinct methods supports the reliability of our observations.  

Importantly, the significant increases of cortico-acoustic coherence for natural normal and fast 

rate speech were not accompanied by power increases (but rather power suppression at 8-10 

Hz) in the same cortical regions and frequency bands (Figs S5 and S6), suggesting a genuine 

synchronization phenomenon that cannot be attributed to increases in signal amplitude. The 

[5.7-7.7 Hz] (~theta) power increase to sentences in left prefrontal and inferior frontal cortex 

may be related to increased working memory load and lexico-semantic retrieval during sentence 

processing (50–52). Besides, the [8-10 Hz] desynchronization in right anterior temporal and 

left inferior frontal regions is in agreement with studies showing alpha band (8-13 Hz) 

desynchronization during auditory stimulus processing. This is classically thought to reflect 

enhanced mental operations and thus more active cognitive processing of the signal (53,54). 

Alpha suppression associated with theta power enhancement in frontal regions have also been 

reported in response to speech for lexico-semantic processing (53,55,56). 
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Our findings first add new evidence to previous work on artificially accelerated speech 

(21,30,29) by revealing that cortical oscillations align to envelope modulations in a higher 

frequency range to match the faster syllable rate of naturally-produced speech, despite 

increased articulatory variation (as compared to time-compressed speech). Such auditory and 

motor coupling at 8-10 Hz fits with recent results showing three peaks of resting-state theta-

band activity in auditory cortex (4.5, 6.5 and 8.5 Hz) as well as intrinsic alpha-band activity (7-

13 Hz) in the right precentral gyrus (57). It is also of note that the shift in coupling frequency 

was found for single, relatively short sentences with a syllable rate up to 10 syllables/s (mean 

= 9.15 syllables/s). Ahissar et al. (24) suggested that coupling to short sentences compressed to 

ratios of 0.35 (~9 Hz) and 0.2 (~14 Hz) failed in their experiment because neural oscillations 

may not have had enough time to change their coupling frequency to match that of the stimuli. 

Although this is a plausible explanation, the present data using naturally-produced material 

show that even with single and relatively short sentences, neural oscillations are able to adjust 

their coupling frequency to higher syllable rates.  

Neural tracking of natural normal and fast rate speech in precentral cortex furthermore agrees 

with dual-stream models (38,39,58) stating that speech perception relies on a dorsal pathway 

matching phonological and articulatory representations. Assaneo and colleagues reported 

cortico-acoustic coupling in inferior and middle frontal gyri at 4.5 Hz (59), as well as enhanced 

phase coupling between auditory and motor regions (60), when participants listened to 

synthesized syllables at the same rate (see also 41 for delta motor coupling to normal rate 

sentences embedded in noise). Here, we show that (pre)motor regions synchronize their 

oscillatory activity to more complex speech stimuli (i.e. meaningful sentences) that are naturally 

produced at faster rates (up to 9.15 syllables/s on average). Similarly as auditory cortex, 

oscillations in the (pre)motor cortex are therefore able to shift up their coupling frequency to 

follow the natural increase of syllable rate. Interestingly, analyses in the [8-10 Hz] frequency 

band revealed tracking of natural fast speech in a region of the inferior precentral cortex (BA 

4) which coordinates are very close to those of the articulatory cortex (mouth motor region) 

identified in neuroimaging studies on speech production and/or perception (44,45,61). Coupling 

to naturally-produced fast speech in this ventral motor region may therefore reflect articulatory 

mechanisms and more particularly simulation of the syllable production rhythm of heard 

sentences.  

Motor regions have also been suggested to contribute to top-down auditory processing and to 

the establishment of auditory temporal predictions (9,62–66). Our findings, along with those of 

few other studies (37,59), underline that motor regions do not only exert a modulatory control 
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but directly track the speech signal. Neural oscillations in motor regions align to low-frequency 

modulations in natural speech, both at normal and fast rates, possibly reflecting sensorimotor 

integration processes. In the present study, participants listened to sentences with the same 

syntactic structure, it is therefore possible that motor regions tracked and synchronized to 

syllable rate regularities so as to predict the occurrence of the next syllables. Such a predictive 

timing mechanism may facilitate the syllabic parsing of the unfolding speech stream by the 

auditory cortex (64). Further cortico-cortical coupling analyses may be required to better grasp 

how auditory and motor regions orchestrate during processing of natural speech rate variations 

(see 60 for synthesized repeated syllables).  

In line with the study by Keitel and collaborators (41), our results emphasize the relevance of 

assessing neural tracking of speech in frequency ranges given by stimulus properties rather than 

in generic frequency bands which may not capture the specific underlying processes at stake. 

The MEG study by Alexandrou et al. (37) showed cortical tracking of spontaneously-produced 

connected speech at slow (~2.6 syllables/s), normal (~4.7 syllables/s) and fast (~6.8 syllables/s) 

syllable production frequencies (yet slower than our fast speech rate condition). Despite 

providing valuable evidence regarding natural speech perception, the authors however 

examined coupling in the canonical delta (2-4 Hz) and theta (4-7 Hz) bands and did not look at 

potential variations in brain coupling frequency according to speech rates. Although our study 

used single sentences, we bring novel evidence for cortical alignment to natural syllable rates 

up to an average of 9 Hz and in frequency bands that are specific to the speech material. Future 

work should certainly investigate brain coupling to longer extracts of naturally-produced speech 

(37) at such normal and fast rates and in stimulus-based frequency bins as we did in our study.  

 

Motor coupling to speech is stronger for naturally-produced than for artificially 

accelerated speech  

 

No significant cortical coupling to time-compressed sentences was observed in the 

corresponding [8-10 Hz] range, which is at odds with previous work, at least regarding auditory 

cortex oscillations (21,24,29). To the best of our knowledge, these studies have indeed mostly 

focused on neural coupling in the auditory cortex and we are only aware of a few studies that 

documented theta (4-7 Hz) synchronization to degraded (though noise-vocoded, not time-

compressed) speech in distributed cortical networks including the motor cortex (10,67). Note 

from Fig. 3B that coherence maps tend to show increase of coherence, although weaker, for 

time-compressed speech at [8-10 Hz] in a similar fronto-temporal network as for natural fast 
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rate speech, however this did not survive statistical correction despite a sample size of 23 

analyzed participants. Some methodological considerations may account, at least partly, for this 

apparent discrepancy between studies. Unlike previous work, we mixed two types of 

accelerated speech, with sentences pseudo-randomly presented to participants. This may have 

elicited different coupling effects because of the attention-grasping nature of natural fast 

speech, which may be more difficult to process than time-compressed speech (32,34). Along 

this line, the increase of coherence at [8-10 Hz] in the right temporal cortex for natural fast 

speech only may reflect encoding of greater spectro-temporal variations in natural fast than in 

time-compressed speech, in line with the role of the right superior temporal gyrus in spectral 

processing (68–70). In fact, this stronger neural coupling to sentences in the natural fast 

compared to the time-compressed conditions in the right temporal cortex was also visible on 

the direct contrast map in the same [8-10 Hz] range (see supplementary Fig. S3). Most 

importantly, the way speech rate was sped up in our study may have affected brain oscillatory 

responses to sentences. Uttering speech at a fast rate is a nonlinear phenomenon whereby 

segments are not reduced similarly, partly because of articulatory constraints, thus enhancing 

the prosodic pattern (32,33). By contrast, artificially accelerated speech was obtained by linear 

compression, meaning that all segments were shortened in the same way. This leads to unnatural 

patterns that are not biologically (articulatory-speaking) plausible and may thus not resonate in 

brain motor regions (or less so) as naturally-accelerated speech does. Whereas we are indeed 

rather accustomed to and can reproduce natural fast sentences relatively easily, this is not the 

case for linearly time-compressed speech. Crucially, our results revealed significant coupling 

of articulatory cortex at [8-10 Hz] to naturally accelerated but not to time-compressed speech, 

despite having the same syllable rate. Direct contrasts between the two conditions corroborated 

this result (Fig. 4). This major finding may reflect differences in the rhythmic structure of the 

two types of signals and demonstrate specific mapping, in the mouth motor cortex, to 

articulatory features that characterize naturally-produced fast speech as compared to 

synthesized fast speech.  

Remarkably, our contrasts analyses in the lower [5.7-7.7 Hz] frequency range highlighted 

significantly stronger tuning in the precentral cortex for naturally-produced speech, either at a 

normal or fast rate, than for time-compressed speech (supplementary Fig. S4). No difference 

was observed when we contrasted the natural normal and fast rate conditions. This finding is 

particularly interesting and can be interpreted in the framework of studies showing that the 

motor cortex intrinsically oscillates in the theta band (57,71–73). Given that the [5.7-7.7 Hz] 

frequency band of analysis fell within this range, our results may emphasize the tendency of 
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the motor cortex to preferentially align to natural rather than to artificially speech. Hence, the 

motor cortex more strongly resonates, at its own preferred rhythm, with speech perception when 

the signal is naturally produced, irrespective of the syllable rate, than when it has been 

artificially manipulated. This may indicate enhanced synchronization to articulatory patterns 

that are most prominent in natural vs compressed speech as well as increased sensorimotor 

integration required to match phonological and articulatory templates of natural speech.   

 

Linguistic information influences cortico-acoustic coupling  

 

Previous work has documented auditory cortex alignment to both verbal and non-verbal stimuli 

(e.g., 46,74). Our data show that amplitude-modulated noise did not significantly “entrain” 

cortical oscillations in the two frequency bands of interest, although these stimuli were 

generated using the temporal envelopes of normal rate and fast rate sentences. In other words, 

increased cortico-acoustic coherence was found for normal rate and fast rate sentences but not 

for stimuli with the same envelope characteristics but which lack linguistic information. This 

result suggests that brain coupling to natural syllable rate variations does not only reflect passive 

tracking of acoustic features present in the low modulations of the amplitude envelope, but that 

it is sensitive to the linguistic content of the heard items, consistent with previous studies 

(10,13,75–78), but see (67,74) for contradictory findings. Alternatively, stronger coherence for 

sentences than for amplitude-modulated noise could result from the richer spectral structure of 

the former stimuli and not from the availability of linguistic information. Our results cannot 

currently disentangle these two interpretations and future work comparing brain oscillatory 

responses to unintelligible natural speech that has the same spectro-temporal complexity as 

intelligible natural speech are certainly needed (67). 

 

Conclusions 

 

Our findings provide novel insights into the brain oscillatory dynamics that mediate natural 

speech perception, by revealing that neural oscillations are tuned to natural speech rate 

variations in frequency ranges that match the syllabic structure of the acoustic input. Such 

frequency-specific coupling is observed not only in auditory but also in (pre)motor regions, 

emphasizing their role in speech sensorimotor integration. Our results furthermore underline, 

for the first time to our knowledge, stronger oscillatory coupling in motor cortex to naturally 

accelerated than to artificially manipulated speech, which we believe is likely associated with 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.344895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.344895


17 
 

enhanced mapping to articulatory features of natural fast speech. This highlights the relevance 

of using both natural speech material (despite being more methodologically constraining) and 

stimulus-specific (vs generic) frequency bands to thoroughly assess brain-to-speech alignment 

in future studies. Such an approach may also prove of high interest to investigate the 

developmental trajectory of neural tracking of speech, both in children with typical and atypical 

language development.  

 

 

Materials and Methods 

 

Participants 

 

Twenty-four French native speakers participated in the study after providing informed consent 

(14 females, mean age 23 years, range 18-45 years). All participants were right-handed (mean 

score at the Edinburgh handedness inventory = 94) (79) and reported normal hearing together 

with no history of neurological or psychiatric disorder. The protocol conformed to the 

Declaration of Helsinki and was approved by the local ethical committee (Comité de Protection 

des Personnes Lyon Sud-Est II; ID RCB: 2012-A00857-36). Participants received monetary 

compensation for their participation. 

 

Stimuli 

 

We created 288 meaningful sentences (7-9 words) following the same syntactic structure: 

Determiner – Noun 1 – Verb – Determiner – Noun 2 – Preposition – Determiner – Noun 3 (e.g., 

“Sa fille déteste la nourriture de la cantine” / His daughter hates the food at the canteen). 

Sentences were recorded in a sound-attenuated booth by a French native professional theatre 

actor who was able to produce sentences at the required fast rate while remaining intelligible. 

We recorded each sentence twice (44.1 kHz, mono, 16 bits) using ROCme! software (80), first 

at a normal and then at a fast rate. The procedure was the following: the sentence was first 

displayed on a computer screen in front of the speaker who was instructed to silently read it and 

to subsequently produce it aloud as a declarative statement at his normal speech rate. The 

speaker then produced the sentences at a fast rate (i.e. as fast as possible while remaining 

intelligible) using the same procedure (i.e. no external pacing was imposed).  
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We calculated the durations of the 2×288 sentences and the number of actually produced 

syllables for each sentence with Praat software (81). The mean syllable rate was 6.76 syllables/s 

(SD 0.57) for natural normal rate sentences and 9.15 syllables/s (SD 0.60) for natural fast rate 

sentences. This led to an overall fast-to-normal ratio of 0.74 (i.e. speed-up factor of 1.35). 

Subsequently, we computed time-compressed sentences by digitally shortening them with a 

PSOLA (Pitch Synchronous Overlap and Add) algorithm (82), as implemented in Praat. We 

obtained compression rates for each sentence: we matched each individual time-compressed 

sentence in terms of syllable rate to its equivalent natural fast item. This artificial compression 

corresponds to a re-synthesis of the natural normal rate stimulus, changing only its temporal 

structure. For the total of 864 sound files (288×3 speech rate variants), we applied an 80 Hz 

high-pass filter, and smoothed the amplitude envelope sentence-initially and finally. We then 

peak normalized the intensity of the sound files.  

Finally, for each of the 288 normal rate and 288 fast rate sentences, we created amplitude-

modulated noise stimuli (i.e., Gaussian white noise with no linguistic content) using the 

amplitude envelope of the sentence material. These stimuli served as control non-speech 

conditions. We also used 48 filler sentences (different from the experimental stimuli but with 

the same syntactic structure, either at a normal rate, natural fast rate, or time-compressed) in 

which we added beep-sounds at the end and to which the participants had to respond during the 

experiment (see MEG data acquisition and task design). 

We divided the total number of stimuli into two experimental lists, each including 288 sentences 

(96 normal rate, 96 natural fast rate and 96 time-compressed), 192 amplitude-modulated noise 

stimuli (96 with normal rate envelope and 96 with fast rate envelope) and 48 filler sentences. 

Each stimulus appeared in each rate condition across all participants but only once per list (to 

avoid repetition effects).  

 

MEG data acquisition and task design 

 

Participants were comfortably sitting in a sound-attenuated, magnetically-shielded recording 

room with a screen in front of them. We presented stimuli binaurally through air-conducting 

tubes with foam insert earphones (Etymotic ER2 and ER3). Prior to the MEG recording, we 

determined participants’ auditory detection thresholds for each ear with a 1-minute pure tone 

of 44 kHz; the level was then adjusted so that we presented the stimuli at 50 dB Sensation Level 

with a central position (stereo) with respect to the participant’s head. 
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During the experiment, participants attentively listened to all stimuli from one of the two 

experimental lists while looking at a fixation cross at the center of the screen. Their task was to 

detect beep-sounds embedded in filler sentences by pressing a button (response button 

Neuroscan, Pantev) with their left index finger. Participants detected 100% of these trials, which 

we excluded from subsequent analysis. We pseudo-randomly presented all stimuli in 8 blocks 

of 66 trials allowing for short breaks. A training phase with 5 sentences (different from 

experimental stimuli) preceded the actual experiment. Each trial started with the appearance of 

a fixation cross which remained on the screen throughout the duration of the trial. An auditory 

stimulus (sentence or amplitude-modulated noise) was delivered 1500 ms after trial onset. Each 

trial was followed by an inter-trial interval (grey screen) of 1250 ms. We instructed the 

participants to attentively listen to the presented stimuli. In the case of filler stimuli, they had 

to press the response button as quickly as possible. To maintain the participants’ attention 

throughout the experiment, we informed them there would be questions about the content of 

the sentences at the end of the experiment. We used Presentation software (Neurobehavioral 

Systems) to run the experiment. 

We recorded brain activity of the 24 participants using a 275-channel whole-head MEG system 

(CTF OMEGA 275, Canada) at 1200 Hz sampling rate. We placed three fiducial coils (nasion, 

left and right pre-auricular points) on each participant to determine head position within the 

MEG helmet. We also placed four electrooculographic (EOG) electrodes to record horizontal 

and vertical eye movements. We monitored reference head position before each of the 8 

experimental blocks and tracked head movements throughout the experiment using continuous 

head position identification (HPI).   

 

Data analysis 

 

We performed all analyses using custom written Matlab scripts (Mathworks Inc., MA, USA) 

and the Fieldtrip toolbox (83). Fig. 1 describes the general methodology. The following section 

describes the processing of (1) speech recordings, (2) MEG data, (3) Magnetic Resonance 

Imaging (MRI) data, (4) source localization and coherence analyses, and (5) statistical analyses.  

 

Speech recordings (reference signals) 

We computed the amplitude envelope of the speech signal following the methodology of Peelle 

and colleagues (10). We first rectified the signal (full wave rectification) and then filtered it 

using a Butterworth low-pass filter (30 Hz, fifth order Butterworth filter, zero-phase digital 
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filtering). For the cortico-acoustic coupling analysis, we selected speech envelope segments 

between 200 and 1000 ms post-stimulus onset (equal to the time of interest of the functional 

MEG data). We computed coherence in two frequency bands centred on the mean syllable rate 

of the speech stimuli in each condition, namely [5.5-7.5 Hz] for normal rate stimuli and [8-10 

Hz] for fast stimuli (naturally-produced and compressed). We confirmed the relevance of these 

bands by computing the spectral power for all sentence envelopes for each condition and 

identified the central frequencies of the prominent rhythmic components, using the FOOOF 

algorithm (fitting a parameteric model to the power spectral densities) and subtracting the 1/f 

(i.e. aperiodic) component (43). The main peaks in the speech PSD closely matched the mean 

syllable rates calculated with the Praat software (81), i.e. 6.76 syllables/s (SD 0.57) for natural 

normal rate and 9.15 syllables/s (SD 0.60) for natural fast rate (see Fig 2, and supplementary 

Table S1 and figure S1 for details).  

 
 

MEG data 

We first segmented the MEG data into periods of 3 s (from 1 s before stimulus onset to 2 s after 

onset) for preprocessing. We rejected data segments contaminated by eye blinks, heartbeat and 

muscle artefacts using a standard semi-automatic procedure available in the Fieldtrip toolbox 

as follows. First, we filtered the signals at 50, 100 and 150 Hz, we then re-sampled the data to 

300 Hz and rejected the deviant trials from visual inspection. Second, we detected and rejected 

EOG artifacts, jumps and muscle artifacts and visually double-checked the trials. Finally, we 

performed an Independent Component Analysis (ICA) to correct for electrocardiographic 

(ECG) artifacts as well as to check for residual EOG artifacts. For each trial, we defined the 

speech encoding period (i.e. active period) as the time from 200 ms to 1000 ms post-stimulus 

onset, and the baseline from 1000 ms to 200 ms before onset. 

 

MRI data 

We acquired the T1-weighted structural MRIs (MRI 1.5 T, Siemens AvantoFit) of 23 of the 24 

participants after the MEG study. We aligned each MRI to the MEG coordinate system using 

the localization coils marked on the MRIs and the interactive alignment option in the Fieldtrip 

toolbox. We segmented each MRI and then computed each subject’s head model and source 

space using Fieldtrip. We used the single-shell as volume conductor model (84). To have a 

common space for group analysis, we constructed each subject’s source space based on a 

warped MNI template grid. This way, each location on the template grid corresponds to 
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homologous grid points across subjects and therefore, we can average results across subjects at 

the source level. We used a template grid with 8693 vertices.  

 

Source localization, power and cortico-acoustic coherence estimation  

We estimated source power and cortico-acoustic coupling using Dynamical Imaging of 

Coherent Sources (DICS) beamformer (42). This method allowed us to appropriately assess 

cortico-acoustic coupling by computing coherence between speech envelope and cortical 

activity.  

The magnitude squared coherence is defined as the linear correlation between two signals as a 

function of frequency. It is mathematically defined by: 

Coh (ref,rc,f) = |Cs(ref,rc,f) |
2 / (Cs(ref,ref,f) Cs(rc,rc,f))        (1) 

Where ref is the reference signal, namely the amplitude envelope of the speech signal; rc is the 

signal at each vertex of the anatomical grid estimated with DICS; f is the frequency bin and Cs 

is the cross spectral density matrix. 

We computed the cross spectral density (CSD) matrix using the multitaper FFT, with +1 Hz 

smoothing, at the mean of the two frequency bands of interest.  

In addition to computing cortico-acoustic coherence during the speech encoding period (200 to 

1000 ms), we also computed cortico-acoustic coherence (a) for the baseline window (-1000 to 

-200 ms) and (b) for shuffled data, as control conditions for statistical analysis. In the case of 

shuffled data, we randomly permuted the speech trial order (i.e. destroying the correspondence 

between the speech stimulus heard by the participant and the associated MEG data segment) 

before computing cortico-acoustic coherence. We repeated the shuffling procedure 100 times 

and averaged coherence across iterations for each participant, each condition, each node and 

frequency band. This led to 23 surrogate coherence values associated with 23 true coherence 

values, for each node, frequency band and condition. 

 

Statistical analyses 

We conducted group statistical analysis for the 23 participants (out of 24) with individual MRI. 

As control conditions, we used shuffled data and the baseline period for cortico-acoustic 

coherence, and the baseline for source power analysis. We compared the speech encoding 

period to each control condition applying non-parametric Monte-Carlo randomization (1000 

randomizations), dependent-samples T-test statistics using FieldTrip. We corrected for multiple 

comparisons using ‘maxsum’ cluster-based correction and used a statistical significance 

threshold of 0.05 (85). Because we hypothesized that brain-speech coherence increases 
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compared to control conditions, we used one-sided tests for the coherence analyses. However, 

two-sided tests were used when we explored task-based differences in spectral power, since we 

tested for both increases and decreases of mean power. Furthermore, and in line with several 

previous studies on neural entrainment to speech (10,30,62), statistical analyses were performed 

on regions of interest (ROIs). These were determined using the Automated Anatomical 

Labeling (AAL) atlas (86). We chose ten ROIs (five in each hemisphere) based on 

neurocognitive models (5,38) and neuroimaging data on speech perception (87–89). The ROIs 

consisted of Heschl’s gyrus, superior temporal gyrus, middle temporal gyrus, precentral and 

postcentral gyri (bilaterally). For the analysis of direct contrasts between speech conditions, we 

additionally defined the articulatory cortex ROI as all the voxels located within 8 mm from two 

locations in MNI space at (66, 3, 17) and (66, -4, 17). These were chosen based respectively on 

(a) previous reports identifying articulatory cortex (44,45) and (b) the location of the speech-

brain coherence peak found in the [8-10 Hz] band. Finally, we used the BioImage Suite software 

(www.bioimagesuite.org) (90,91) to identify the Brodmann areas detected as significant in the 

statistical analysis. 
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