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Although individual subjects can be identified with high accuracy
using correlation matrices computed from resting-state functional
magnetic resonance imaging (rsfMRI) data, the performance signifi-
cantly degrades as the scan duration is decreased. Recurrent neural
networks can achieve high accuracy with short duration (72s) data
segments but are designed to use temporal features not present in
the correlation matrices. Here we show that shallow feedforward
neural networks that rely solely on the information in rsfMRI corre-
lation matrices can achieve state-of-the-art identification accuracies
(≥ 99.5%) with data segments as short as 20s and across a range of
input data-size combinations when the total number of data points (#
regions × # time points) is on the order of 10,000.
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Functional connectome fingerprinting based on the similar-1

ity of correlation coefficient matrices computed from rsfMRI2

data can identify individuals with high accuracy (> 98%)3

using long duration (> 12 minute) scans but considerably4

lower accuracy (≈ 68%) is obtained when the data duration is5

decreased to 72s (1). Recurrent neural networks (RNN) can6

achieve high accuracy (98.5%) with short duration (72s) data,7

presumably reflecting their ability to capture both spatial8

and temporal features (2, 3). However, it has been shown9

that high RNN performance can be achieved even when the10

temporal order of the fMRI data is permuted (4), suggesting11

that the temporal features are not critical for identification.12

Here we introduce two shallow feedforward neural networks13

that can achieve high identification accuracy without the need14

for recurrent connections. Furthermore, we use these networks15

to estimate the minimum size of the data needed to robustly16

identify subjects with high mean accuracy (≥ 99.5%) from17

short segments of rsfMRI data.18

The two networks considered are shown in Figure 1A and19

1B. The input to the correlation neural network (corrNN)20

consists of the upper triangular elements of the correlation21

coefficient matrix C estimated from a data matrix X consisting22

of z-normalized time series (of length N) from M regions of23

interest (ROI). For identification of L subjects, the network24

structure consists of a fully connected classification layer with25

L units, a batch normalization layer, and a softmax layer. The26

norm-based neural network (normNN) uses the z-normalized27

data X as the input. The first stage is a fully connected28

layer that projects the data onto K hidden units using the29

M × K weight matrix W to form the N × K intermediate30

matrix Y = XW . In the second stage, the L2 norm across the31

time-dimension (i.e. across each column of Y ) is computed32

for each hidden unit to form a summary measure of similarity33

over the collection of N time points. The resulting vector34

F =
√

diag(Y T Y ) =
√

diag(W T CW ) is comprised of K35

features extracted from the correlation matrix C. The kth 36

feature is proportional to the variance in the direction of the 37

kth column vector of W . If these vectors are randomly oriented 38

and constrained to be unit norm, then the features represent a 39

random sampling of the "peanut" shaped surface of directional 40

variances (5). The subsequent stages in the network are: a 41

batch normalization layer, a fully connected classification layer 42

with L hidden units, a second batch normalization layer, and 43

a softmax layer. 44

Results 45

We assessed the performance of the two networks using data 46

from the Human Connectome Project (HCP) (6). Two rsfMRI 47

scans acquired on Day 1 were used for training, while the two 48

scans from Day 2 were used for validation and testing. 49

For M = 379 ROIs, N = 100 time points (72s duration) per 50

segment, and K = 256 hidden units, the mean classification 51

accuracies of the corrNN and normNN models were 99.9% 52

and 99.2%, respectively, for an initial set of 100 subjects, and 53

99.8% and 99.5% for a second independent set of 100 subjects. 54

These accuracies are higher than those reported (94.3% to 55

98.5%) for RNN models (2, 3). For comparison, the mean 56

classification accuracy using the similarity of the correlation 57

coefficients was 79.4% for 100 time points per segment, which 58

is higher than the 68% mean accuracy reported in (1) using 59

data from a different dataset. 60

We used a greedy search algorithm to assess the relative 61

importance of the ROIs with respect to model accuracy. Im- 62

portance maps are shown in the top rows of Figures 1C and 1D, 63

respectively, with the subsequent rows thresholded to highlight 64

the top 15 to 60 ROIs. When considering the top 60 ROIs, 65

the highest number of ROIs for both models are found in 66

the dorsolateral prefrontal cortex followed by inferior parietal 67

cortex, lateral temporal cortex, superior parietal cortex (for 68

CorrNN), inferior frontal Cortex, and dorsal stream visual 69

cortex, where brain regions are as defined in (7). 70

We used the top ROIs to evaluate CorrNN and NormNN 71

performance with 15 to 60 ROIs and 5 to 1000 time points, as 72

shown in Figures 1E and 1F, respectively. As the number of 73

ROIs decreases, the number of time points needed to achieve 74

higher accuracy increases. Defining 99.5% as the threshold for 75

high mean accuracy, we observed that this threshold is sur- 76

passed with as few as M = 60 ROIs and N = 100 time points 77

for CorrNN and 40 ROIs and 200 time points for NormNN, 78
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Fig. 1. (A,B) CorrNN and NormNN model structures. (C,D) Top rows: Maps showing the relative importance of the ROIs for identification accuracy with maximum importance of
1.0 indicated in yellow. The remaining rows are thresholded to show the locations of the top 15 to 60 ROIs. (E,F) Mean identification accuracies as a function of the number of
time points and ROIs.

corresponding to M × N = 6000 or 8000 total data points,79

respectively.80

To further explore the dependence on number of ROIs and81

time points, we considered combinations (M, N) where the82

total number of data points was constrained to be equal to83

or close to either 6000 or 10,000 (see Figure 2 caption). For84

CorrNN, high mean accuracies are obtained for two of the85

combinations (dark red squares) with 6000 data points and86

all five of the combinations (dark red diamonds) with 10,00087

points, respectively.88

For NormNN, the number of parameters exhibits a linear89

dependence on the number of ROIs (M) as compared to the90

quadratic dependence for CorrNN (see Figure 2 caption). To91

better compare the models, we increased K by powers of 2 up92

to the value Keq = 0.5L
(
M2 − M

)
/(M +L+3) for which the93

numbers of NormNN and CorrNN parameters were equivalent,94

while also including Keq as one of the possible options. In figure95

2b, we show NormNN accuracies obtained for either (1) the96

minimum value of K ≥ 256 that surpassed the 99.5% threshold97

or (2) the value K ≤ Keq that achieved the highest accuracy98

when the threshold was not met. High mean accuracies were99

obtained for three and four of the combinations with 6000 and100

10,000 data points, respectively. As shown by the histograms,101

the high mean CorrNN and NormNN accuracies correspond102

to robust identification performance with the majority of the103

trials demonstrating 100 percent prediction accuracy.104

Using the ROIs determined from the first 100 subjects we105

evaluated performance on the 2nd set of 100 subjects for the106

combinations denoted in Figure 2. High mean CorrNN accu-107

racies (≥ 99.5%) were maintained for both of the previously108

identified high performance combinations with 6000 points and109

three of the combinations with 10, 000 points, with the remain-110

ing two combinations (with M ≥ 300) exhibiting slightly lower111

accuracies (≥ 99.33%) for the 2nd dataset. Thus, the same set 112

of ROIs can offer comparable and high levels of performance 113

across independent datasets. 114

For NormNN we find that the first layer trained weights are 115

randomly distributed so that the features after the L2 norm 116

operation represent an approximately uniform sampling of the 117

directional variance surface of C. Indeed, high performance 118

can also be achieved by replacing the first layer with a set of 119

random Gaussian weights. The generalizability of the features 120

across datasets exhibits a dependence on the number of units 121

K. For example, when using first layer weights trained using 122

the first set of subjects, performance for the combination 123

(50, 200) with K = 256 drops from 99.66% for the first 100 124

subjects to 97.98% for the second 100 subjects. Increasing 125

to 512 units with weights trained using the first set yields 126

accuracies of 99.64% and 99.52% for the first and second sets, 127

respectively. Essentially the same accuracy levels (99.59% and 128

99.56%) are obtained when using random weights for the first 129

layer. Thus, generalizability of the NormNN features increases 130

when there is a higher number of features to characterize the 131

directional variance. 132

Discussion 133

We have shown that shallow feedforward models can identify 134

subjects based solely on information in rsfMRI correlation ma- 135

trices, with CorrNN directly using the correlation coefficients 136

as features while NormNN uses features related to the direc- 137

tional variance surface. The performance levels achieved are 138

state-of-the-art, with high (≥ 99.5%) mean identification accu- 139

racies robustly obtained with 6000 to 10,000 data points. For 140

comparison, the convolutional RNN presented in (3) achieved 141

98.5% accuracy with 23, 600 data points. 142

Consistent with prior observations (1), high performance 143
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Fig. 2. (A,B) CorrNN and NormNN identification accuracies for combinations (M, N) of numbers of ROIs (M ) and span lengths (N ) that are constrained to have
either 6000 or 10,000 data points, with the exception of the combinations (379, 16), (300, 34), and (379, 27), which have 6064, 10,200, and 10,233 data points,

respectively. Mean accuracies are indicated by labels and color scale. The numbers of model parameters (in thousands) for CorrNN
(

0.5L
(

M2 −M + 6
))

and NormNN

(K (M + L + 3) + 3L) are also listed (with L = 100), as are the numbers of hidden units (K) for NormNN combinations. For combinations where CorrNN mean accuracy
is greater than 99%, auto-scaled histograms show the distribution of identification accuracies obtained over 250 test trials per combination.

can be achieved when using a subset of the ROIs, including144

those located in frontoparietal and lateral temporal regions.145

The same set of ROIs can be used to achieve high performance146

across independent datasets, suggesting that the predictive147

value of inter-subject variability in the functional boundaries148

and connectivity of these regions generalizes across datasets.149

While combinations with span lengths as short as 27 points150

(19.5s; CorrNN (379, 27)) can offer high performance, they151

require a large number of model parameters. In contrast,152

combinations with fewer ROIs but increased span lengths (e.g.153

(100, 100)) achieve high performance with one to two orders154

of magnitude fewer parameters. For NormNN the number of155

trainable parameters can be further decreased through the use156

of random weights in the first layer.157

The effectiveness of the feedforward networks for distin-158

guishing individuals with relatively little data suggests that159

similar future approaches may have the potential to more fully160

utilize the information contained in rsfMRI data to better161

identify disease-related differences.162

Materials and Methods163

164 Data and Preprocessing. We used pre-processed rsfMRI data from165

the 100 Unrelated Subjects subset of the HCP1200 Data Release166

and an additional 100 subjects from the S900 subset. HCP pre-167

processing included detrending, denoising, and registration to a168

common cortical surface. We divided the data into 379 regions of169

interest (ROI) consisting of 360 ROIs in the cortex as defined in (7)170

and 19 subcortical ROIs as defined in the group average parcellation171

provided by the HCP (6). The time series were averaged within172

each ROI and global signal regression was applied to the ROI time173

series.174

Training, Validation, and Testing. We used the ROI-averaged data175

from day one as the training set (2 scans; 1200 pts per scan)176

and data from day two as validation and test sets (1 scan each).177

The performance was initially assessed using K = 379 ROIs and178

N = 100 time points. Overlapping data segments were used with179

shifts of 1 point between segments for training and 25 points for both180

validation and testing. The full connected layers were initialized181

with the Glorot uniform initializer We used the Adam optimizer with182

learning rate, β1,and β1 values of 0.001, 0.9, and 0.999, respectively.183

We used a batch size of 64 and monitored the validation loss every184

600 steps with patience set to 30 monitoring steps, with learning 185

rate annealed by halving it every 100 monitoring points. 186

Using the trained model weights, we assessed the relative impor- 187

tance of the ROIs by first looping over all 379 ROIs, independently 188

zeroing out the data from each ROI, and finding the ROI for which 189

the model retained its maximum accuracy. The identified ROI data 190

was eliminated (i.e. set to zero) for the remainder of the process 191

and the search was repeated over the remaining 378 ROIs to select 192

the next ROI for elimination. This process was continued until only 193

one ROI remained. The importance score of each ROI was 1 −Mc 194

where Mc denotes the model accuracy just prior to ROI elimination. 195

We then examined performance across a range of ROI numbers 196

(K = 15 to 60; with the top K ROIs selected based on importance 197

scores) and durations (N = 5 to 1000 time points), retraining the 198

models for each combination (K,N) with 1 point shifts for both 199

training and validation. Testing was performed with 250 randomly 200

chosen initial starting points with the exception of 200 sequential 201

points for N = 1000. Performance using additional parameter 202

combinations was also evaluated. 203

We used the approach of (1) to identify subjects based on simi- 204

larity of the correlation coefficient matrices. Target matrices were 205

calculated using all the data from day one, whereas test matrices 206

were calculated using data segments from day two. Identification 207

was performed by computing the spatial correlation between the 208

test and target matrices and then matching (with replacement) each 209

test matrix to the most highly correlated target matrix. 210
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