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ABSTRACT 

Most neuroimaging experiments that investigate how tools and their associated actions are 

represented in the brain use visual paradigms where objects and body parts are displayed as 2D 

images and no real movements are performed. These studies have discovered a tight 

relationship between hand- and tool-selective areas in LOTC and IPS, thought to reflect action-

related processing but this claim has never been directly investigated. Here we addressed this by 

testing whether independently visually-defined category-selective areas were sensitive to real 

action properties involving 3D tools. Specifically, using multi-voxel pattern analysis (MVPA), we 

tested if brain activity patterns would differ depending on whether grasping was consistent or 

inconsistent with how tools are typically grasped for use (e.g., grasp knife by the handle rather 

than its serrated edge). In a block-design fMRI paradigm, participants grasped the left or right 

sides of 3D tools (kitchen utensils) and 3D non-tools (bar-shaped objects) with the right-hand. 

Importantly, and unknown to participants, by varying movement direction (right/left) the tool 

grasps were performed in either a typical (by the handle) or atypical (by the functional-end) 

manner. We found that representations about whether a 3D tool is being grasped appropriately 

for use were decodable from hand-selective areas (LOTC-Hand and IPS-Hand), but not from 

tool-, object-, or body-selective areas, even if partially overlapping. These findings indicate that 

representations of how to grasp tools for use are automatically evoked in visual regions 

specialised for representing the human hand. 
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INTRODUCTION 

The emergence of handheld tools (such as a spoon) marks the beginning of a major discontinuity 

between humans and our closest primate relatives (1). A defining feature of tools, compared to 

other manipulable objects (like a book), is their association with highly predictable motor routines 

(such as wrist-rotation with a screwdriver; 2). Accurate tool manipulation is generally agreed to 

result from neurocognitive, rather than musculoskeletal, evolution (3). Yet, in contrast to our 

understanding of how the human brain represents properties about objects (4,5) or rudimentary 

hand movements (6,7), little is known about the neural representations that underpin real actions 

involving 3D tools (8,9,10). 

A highly replicable functional imaging finding is that simply viewing pictures of tools 

activates sensorimotor brain areas, including the premotor cortex and anterior Intraparietal 

Sulcus (aIPS; e.g., 11,12,13,14), but what drives this functional selectivity? One popular idea is 

that this visually-evoked activation reflects the automatic retrieval of learnt information about how 

to act with tools, such as the hand and finger movements needed for their accurate use 

(11,13,16,17,18,19). Similarly, Supramarginal (SMG) or posterior Middle Temporal Gyri (pMTG) 

activation for visually presented tools is also often interpreted as indirect evidence that these 

tool-selective regions are involved in real tool manipulation (e.g., 14,19,20). Nevertheless, we 

would never grasp a picture of a tool to use it and, more importantly, finding spatially overlapping 

activation between two tasks does not directly imply that the same neural representations are 

being triggered (20,21). Thus, whilst embodied views of cognition predict that conceptual tool 

knowledge is contained (22) or grounded (23,24) in sensorimotor brain areas, the activation of 

these regions during tool viewing does not necessarily mean that perceiving and acting with tools 

are neurally instantiated in a similar way (19). In fact, the aIPS activation found when viewing tool 

pictures versus grasping shows poor correspondence (25,26), questioning the long-standing 

assumption that visually defined tool areas represent sensorimotor aspects of tool manipulation. 

Curiously, the visual regions activated by viewing pictures of human hands in the left IPS 

(IPS-Hand) and Lateral Occipital Temporal Cortex (LOTC-Hand) overlap with their respective 

tool-selective areas (IPS-Tool; LOTC-Tool; 27,28,29). Stimulus features often described to drive 

the organisation of category-selective brain areas, like form (30), animacy (31), texture (32) or 

manipulability (12) cannot simply explain this shared topography because hands and tools differ 

on these dimensions. Instead, their overlap is suggested to result from a joint representation of 

high-level action information related to skilful object manipulation (27,29), perhaps coding the 

function of hand configurations (33,34,35) or the process by which a tool extends the body’s 

boundaries (28). This account fits with evidence that the LOTC hand/tool region is selectively 

connected with visuomotor areas such as left aIPS and premotor cortex (27). Further, the 

existence of this LOTC hand-tool overlap even in individuals who are blind (36) or born without 

hands (37) suggests that hand- and tool-selective regions may be similar in how they represent 

abstract non-sensory information about tool manipulation. While the role of visually-defined body-
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selective areas in motor control has been the subject of controversy (38,39,40), whether their 

neighbouring hand-selective areas represent properties of real movements, like the typical way in 

which tools are manipulated for correct use, remains unknown (41,42). Arguably, the only way to 

directly test whether these visual tool- or hand-selective areas actually carry information about 

actions with tools is to examine their responses when participants directly manipulate 3D tools 

with their hands. 

Here, an fMRI experiment involving real hand actions (Fig. 1) tested whether visually 

defined hand- and tool-selective areas represent how to appropriately grasp 3D tools. 

Specifically, 19 participants grasped 3D-printed tools in a way that was either consistent with 

their use (typical: by their handle) or not (atypical: by their functional-end e.g., knife blade). As a 

control, non-tool bars (adapted from 43) were also grasped on their right or left sides to match as 

much as possible any biomechanical differences between typical and atypical actions. Multivoxel 

Pattern Analysis (MVPA) was used to assess whether the different types of grasping for tools 

(typical vs. atypical) and non-tools (right vs. left), could be decoded using fMRI activity patterns 

from independent and visually defined Regions of Interest (ROIs). We interpreted greater-than-

chance decoding accuracy of typical vs. atypical actions for tools, but not for control non-tools, as 

evidence that an area contains high-level representations about how a tool should be grasped for 

its correct use (i.e., by its handle). This pattern of findings was expected only for the tool- and 

hand-selective areas since these are thought to support accurate tool manipulation (e.g., 

16,18,37). Additionally, we performed whole-brain MVPA using searchlight analyses to explore 

the possibility that this information was encoded by other regions, including those that have 

previously been shown to process information about hand-object interactions (e.g., 44,45).  

 

RESULTS 

For each participant we identified 12 visual ROIs from an independent Bodies, Chairs, Hands 

and Tools localizer (see Materials and Methods; see Fig. 1D; for ROIs descriptives see Table 

S1). Given the predominantly left lateralised nature of tool-processing (8), all individual 

participant ROIs were defined in the left hemisphere (27,28,29,36). Six tool-selective ROIs 

commonly described in left frontoparietal and occipitotemporal cortices were identified by 

contrasting activation for tool pictures vs. other object pictures [IPS-Tool; SMG; dorsal and 

ventral Premotor Cortex (PMd; PMv), LOTC-Tool; pMTG; 11,15). Moreover, two hand-selective 

ROIs were identified in LOTC (LOTC-Hand) and IPS (IPS-Hand) by contrasting activation for 

hand pictures vs. pictures of other body parts (27,29,34,35). Additionally, we defined a body-

selective (LOTC-Body; Bodies > Chairs; 29), two object-selective ROIs (LOTC-Object; posterior 

Fusiform, pFs; Chairs > Scrambled; 29,46) and an Early Visual Cortex ROI (EVC; All 

Categories>Baseline; 29). 

In line with our predictions, as can be seen in Fig. 2, Support Vector Machine (SVM) 

decoding accuracy (false discovery rate-corrected) from hand-selective ROIs in LOTC and IPS 
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was significantly greater-than-chance when discriminating typical vs. atypical actions with tools, 

but not non-tools [one-sample t-test against chance 50% - Tools: LOTC-Hand decoding accuracy 

= 56% ± [SD] 0.9% [t(16) = 2.73, p = 0.007, d = 0.66], IPS-Hand accuracy = 57% ± 0.11% [t(18) 

= 2.72, p = 0.007, d = 0.62]; Non-tools: both p’s > 0.15]. Importantly, results from a stringent 

comparison (paired samples t-test) of decoding between conditions further supported this: for 

both LOTC-Hand and IPS-Hand grasp type decoding accuracy was significantly higher for tools 

than non-tools [LOTC-Hand: t(16) = 2.11, p = 0.026, d = 0.51; IPS-Hand: t(18) = 3.26, p = 0.002, 

d = 0.75; Fig. 2A and Fig. 2B]. No other visual ROIs, including tool-selective areas, displayed the 

same pattern of findings. Instead, significant above-chance decoding of grasp type was observed 

in LOTC-Body and pFs for both tools and non-tools [Tools: LOTC-Body accuracy = 59% ± 0.08% 

[t(17) = 4.75, p < 0.001, d = 1.12], pFS accuracy = 58% ± 0.14% [t(18) = 2.57, p = 0.01, d = 

0.59]; Non-tools: LOTC-Body accuracy = 56% ± 0.10% [t(17) = 2.46, p = 0.012, d = 0.58], pFS 

accuracy = 57% ± 0.12% [t(18) = 2.59, p = 0.009, d = 0.59]; Fig. 2A]. In addition, PMd decoded 

actions with non-tools only [accuracy = 59% ± 0.08% [t(13) = 4.11, p = 0.001, d = 1.1], Fig. 2A]. 

This suggests that hand-selective LOTC and IPS regions represent how to appropriately grasp 

tools for use. Alternatively, could typical vs. atypical decoding specific for tool stimuli in visual 

hand-selective cortex be accounted for by low-level differences between the tools’ handles and 

functional-ends? First, to test the possibility that tool-specific decoding in hand-selective cortex 

could be driven by simple textural differences (e.g., a smooth handle vs. a serrated blade), we 

repeated the analysis using a left somatosensory cortex ROI (SC; defined by an independent 

univariate contrast of All Grasps > Baseline; 47). However, unlike the tool specific effects in the 

hand-selective ROIs, grasp type decoding in SC was significantly greater-than-chance for both 

tool and non-tools [Tools accuracy = 57% ± 0.11% [t(18) = 3.04, p = 0.004, d = 0.7]; Non-tools 

accuracy = 57% ± 0.09% [t(18) = 3.45, p = 0.001, d = 0.79]; Fig. 1C], indicating that tool-specific 

decoding cannot be explained by somatosensory differences in the stimuli. Second, we tested if 

size differences between our objects, and thus grip size, could drive tool-specific decoding in 

hand-selective cortex (i.e., the functional-end of the tool being wider than its handle). However, 

decoding analysis of grip size (i.e., smaller vs. larger) that collapsed across object category (i.e. 

tools and non-tools) was not was not significant (all p’s > .17; Fig. S1). Taken together, these 

findings suggest that hand-selective regions in LOTC and IPS represent how to grasp tools for 

use and that these effects are not simply due to textural or size differences between the stimuli 

used or actions performed.  

 Finally, we repeated the classification procedures using whole-brain searchlights (48; see 

Materials and Methods) to examine whether other brain regions represent how to appropriately 

grasp tools. As before, decoding accuracy from the tool classification (typical vs. atypical) was 

contrasted with that from the non-tool classifier (left vs. right), this time producing a difference 

map (Fig. 3; SI Table 3). Significantly higher decoding accuracy was found for tools, relative to 

biomechanically matched actions with non-tools, in a cluster within the left anterior temporal 
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cortex comprising the Superior/Middle Temporal (STG; MTG) and Parahippocampal Gyri (PHG). 

Additional clusters were found in the right Fusiform Gyrus (FG), anterior Superior Parieto-

Occipital Cortex (aSPOC) and posterior Superior Temporal Sulcus (pSTS). No cluster of activity 

demonstrated higher decoding accuracy in the reverse direction, that is, for non-tools higher than 

tools. 

 

DISCUSSION 

Most neuroimaging experiments that investigate how tools and their associated actions are 

represented in the brain use visual paradigms where objects and body parts are displayed as 2D 

images and no real movements are performed (8). These studies have discovered a tight 

anatomical and functional relationship between hand- and tool-selective areas in LOTC and IPS, 

thought to reflect action-related processing however this was yet to be directly tested 

(27,28,29,36,37,49). For the first time, we tested whether independently visually-defined 

category-selective areas were sensitive to real action properties involving 3D tools. We found 

that representations about whether a 3D tool is being grasped appropriately for use were 

decodable from hand-selective areas (LOTC-Hand and IPS-Hand), but not from partially 

overlapping tool-, object-, or body-selective areas.  

Our results indicate that visual hand-selective cortex contributes to the performance of 

actual hand movements with 3D tools. Furthermore, since these motor-relevant neural 

representations were detected exclusively for actions with tools (but not for biomechanically 

matched actions with control non-tools), our results reveal critical features of sensorimotor 

processing in hand-selective visual areas. First, their representations are sensitive to concepts 

acquired through experience (i.e., knowing how to grasp tools appropriately is a learnt skill; 

50,51), fitting with evidence showing that learning about how to manipulate tools (e.g., 52). or 

even using this knowledge (35,42,53), affects LOTC and IPS activity. Second, information 

processed by hand-selective cortex is represented in an abstract format beyond low level 

properties (e.g., basic kinematics), since no significant decoding was found for grip size. This 

resembles reports that tool-selective areas in pMTG/LOTC and IPS represent abstract action 

goals (reach vs. grasp) regardless of biomechanics (26; also see 54), albeit our findings were 

observed for hand-selective areas only. Third, our study shows that these high-level 

representations are automatically evoked (25,51,55); as throughout the real-action fMRI task 

there was no explicit requirement to use the tools and participants were never told that we were 

investigating ‘tools’. Here for the first time we demonstrate that these principles, frequently 

described to support tool-use (7,18,56,57,58,59,60,61), apply to brain areas specialised for 

representing the human hand, our primary tool for interacting with the world. 

An intriguing aspect of our results is the lack of decoding in tool-selective regions, even 

though these areas sharing voxels with hand-selective ROIs. Thus, despite their anatomical 

overlap, regions that respond to hands appear to be functionally distinct from tool-selective 
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regions (see 27; 37). Highlighting the robustness of this category-selective difference between 

tool and hand-selective regions, this dissociation was persistent across LOTC and IPS ROIs: 

successful decoding of grasp typicality for tools could be achieved in hand-selective and not tool-

selective regions. This is the first evidence that visually-defined hand- and tool-selective regions 

code different information. Importantly, this pattern of results is unlikely to be driven by 

differences in ROI radius (e.g., 62) since the difference between hand- and tool-selective ROI 

size was negligible (mean voxel difference: IPS: 29; LOTC: 4). In fact, if category-related results 

were merely caused by ROI size, then significant decoding should have also been observed in 

LOTC-Object, because this region was much larger than the other LOTC ROIs (see Table S1). 

Alternatively, successful decoding in hand- (but not tool-) selective areas may reflect the fact that 

in our study the task required simply grasping-to-touch the tools, rather than utilising them. That 

is, coding in category-selective areas might operate in an effector-dependent manner, akin to 

how tool-selective pMTG/LOTC codes the type of action being performed when holding a pair of 

tongs, but not if being performed by the hand alone (26). In line with this interpretation, neural 

representations in LOTC-Hand of one-handed amputees are also known to become richer as 

prosthetic usage increases (63), which, again, indicates that the representations in hand-

selective cortex depend on effector use. An alternative, but not mutually exclusive, possibility is 

that only tool-use actions elicit tool-selective representations (see 64 for distinct lesion sites 

associated with grasping vs. using tools) because of the cognitively taxing demands of these 

complex actions that rely on retrieving knowledge about manipulation hierarchies (65) and the 

laws that constrain object movement (66). In either case, the absence of significant decoding of 

tool manipulation in tool-selective cortex challenges the popular interpretation that brain 

activation for viewing tool pictures is a reflection of sensorimotor processing linked to tool 

manipulation (11,12,13,15,67, also see 18). 

Whole-brain searchlight analysis further indicated that right pSPOC and pSTS and left 

anterior temporal cortex (ATC) also coded how to grasp tools appropriately for use. In line with 

this, increased grey matter density has been found in pSPOC and pSTS after action practice, 

including tool-use (68,69). The ATC, however, is traditionally thought to play a critical role in the 

processing of conceptual knowledge (70) with lesions or Transcranial Magnetic Stimulation 

(TMS) to this area impairing tasks that rely on retrieving information about a tool’s function, but 

not how it is handled (71,72,73). Nevertheless, in line with our results, two recent studies using 

tool pictures also found that tool manipulation-related information can be decoded from the ATC 

(74,75). Clarifying specific roles of the regions identified here will be an important next step in 

understanding how the brain achieves complex tool-use and is well suited for connectivity 

approaches (76,77,78). 

In conclusion, parietal and occipital visual regions specialised for representing hands, but 

not tools, as well as additional regions such as ATC, code how to appropriately grasp 3D tools 

for use. These findings raise novel questions about why overlapping hand- and tool-selective 
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regions are functionally distinct and begin to uncover which brain regions evolved to support tool-

use, a defining feature of our species. Measuring hand-selectivity in visual areas could prove a 

fruitful avenue for monitoring motor rehabilitation outcomes. 

 

MATERIALS AND METHOD 

Participants. Twenty healthy participants (11 males) completed the real action fMRI experiment 

followed by an additional visual localizer experiment on a separate day. Data from one 

participant (male) was excluded from statistical analysis due to excessive head movements 

during the real action experiment (i.e., translation and rotation exceeded 1.5mm and 1.5° 

rotation) leaving a total sample of 19 participants (mean age = 23 years ± 4.2 years; age range = 

18 - 34). All participants had normal or corrected-to-normal vision, no history of neurological or 

psychiatric disorders, were right-handed (79) and gave written consent in line with procedures 

approved by the ethics committee of the University of East Anglia. 

 

Stimuli and Apparatus. A set of three common kitchen tools (knife, spoon and pizzacutter) and 

non-tool control bars were designed (Autodesk Inc.) and 3D-printed (Objet30 Desktop) in 

VeroWhite material (Statasys; Fig. 1A). Tools had identical handles with different functional-ends 

attached. Non-tools were comprised of three cylindrical shapes (adapted from 43) that had 

dimensions matching the handle, neck and functional-end of the tool they controlled for (for 

measurements see SI Materials and Methods). Each tool and non-tool pair were also carefully 

matched for elongation (e.g., 14). The non-tool control bars were chosen, instead of scrambled 

tools, to avoid familiarity confounds and thus, our control objects were familiar, but had no 

specific associated function. To reduce their variability and to match kinematic requirements 

when grasping the tool and non-tool pairs (i.e., grip aperture size and reach distance), a small 

black sticker was placed at pre-specified locations to indicate grasp points (80). Objects were 

secured to slots placed onto black pedestals used for stimulus presentation. 

In a completely darkened room, participants were scanned in a head-tilted configuration 

that allowed direct viewing of the workspace and 3D stimuli without the use of mirrors (SI 

Materials and Methods; Fig. 1B). Objects were placed by an experimenter on a turntable above 

the participant’s pelvis and were only visible when illuminated (45,51,80,81,82; Fig. 1B). For 

stimulus presentation, the workspace and object were illuminated from the front using a bright 

white Light Emitting Diode (LED) attached to a flexible plastic stalk (Loc-line, Lockwood 

Products; Fig. 1B). To control for eye movements, participants were instructed to fixate a small 

red LED throughout data collection which was positioned above and behind objects such that 

they appeared in the lower visual field (81; see SI Materials and Methods). Throughout the 

experiment, participants’ right eye and arm movements were recorded using two MR-compatible 

infrared-sensitive cameras (MRC Systems GmbH) that allowed us to exclude errors by verifying 

that participants performed the correct grasping movement (hand camera; Fig. 1B) and 
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maintained fixation (eye camera; Fig. 1B; SI Materials and Methods). The likelihood of motion 

artefacts related to grasping was reduced by restraining the upper-right arm and providing 

support with additional cushions so that movements were performed by flexion around the elbow 

only. Auditory instructions were delivered to the participants through Earphones (Sensimetrics 

MRI-Compatible Insert Earphones Model S14, USA). 

 

Real action experimental design. We used a powerful block-design fMRI paradigm, to 

maximise the contrast-to-noise ratio and generate a reliable estimate of the average response 

pattern (83; Fig. 1C), while also improving detection of blood oxygenation level-dependent 

(BOLD) signal changes without significant interference from artefacts during overt movement 

(84). A block began with an auditory instruction (‘Left’ or ‘Right’; 0.5s) specifying which side of the 

upcoming object to grasp. During the ON-block (10s), the object was briefly illuminated for 0.25s 

five consecutive times (within 2s intervals) cueing the participant to grasp with a right-handed 

precision grip (i.e., index finger and thumb) along the vertical axis. Between actions, participants 

returned their hand to a “home” position with their right hand closed in a fist on their chest (see 

Fig. 1B). This brief object flashing presentation cycle during ON-blocks has been shown to 

maximise the signal-to-noise ratio in previous perceptual decoding experiments (85,86) and 

eliminates the sensory confound from viewing hand movements (81,87). An OFF-block (10s), 

followed the stimulation block, where the workspace remained dark and the experimenter 

prepared the next stimulus. A single fMRI run included 16 blocks involving the four grasping 

conditions (i.e., typical tool, atypical tool, right non-tool and left non-tool) each with three 

repetitions (one per exemplar; every object was presented twice and grasped on each side 

once). An additional foil tool and a foil non-tool were presented on the remaining four blocks per 

run, but not analysed as they were not biomechanically matched. On average participants 

completed six runs (minimum five, maximum seven) for a total of 18 repetitions per grasping 

condition. Block orders were pseudorandomised such that conditions were never repeated (two-

back) and were preceded an equal amount of times by other conditions. Each functional scan 

lasted 356s, inclusive of start / end baseline fixation periods (14s). Each experimental session 

lasted ~2.25 hours (including setup, task practise and anatomical scan). Prior to the fMRI 

experiment, participants were familiarised with the setup and practiced the grasping tasks in a 

separate lab session (30 minutes) outside of the scanner. 

 

MRI Acquisition. The BOLD fMRI measurements were acquired using a 3T wide bore GE-750 

Discovery MR scanner (SI Materials and Methods). To achieve a good signal to noise ratio 

during the real action fMRI experiment, the posterior half of a 21-channel receive-only coil was 

tilted and a 16-channel receive-only flex coil was suspended over the anterior-superior part of the 

skull (see Fig. 1B). A T2*-weighted single-shot gradient Echo-Planer Imaging (EPI) sequence 

was used throughout the real action experiment to acquire 178 functional MRI volumes (Time to 
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Repetition [TR] = 2000ms; Voxel Resolution [VR] = 3.3 x 3.3 x 3.3mm; Time to Echo [TE] = 

30ms; Flip Angle [FA] = 78°; Field of View [FOV] = 211x 211mm; Matrix Size [MS] = 64 x 64) that 

comprised 35 oblique slices (no gap) acquired at 30° with respect to AC-PC, to provide near 

whole brain coverage. A T1-weighted anatomical image with 196 slices was acquired at the 

beginning of the session using BRAVO sequences (TR = 2000ms; TE = 30ms; FOV = 230mm x 

230mm x 230mm; FA = 9°; MS = 256 x 256; Voxel size = 0.9 x 0.9 x 0.9mm).  

 

Visual Localizer. On a separate day from the real action experiment, participants completed a 

Bodies, Chairs, Tools and Hands visual localizer (adapted from 27,28,29). A standard coil 

configuration was used for the visual localizer session. For details see SI Materials and Methods.  

 

Data Preprocessing. Preprocessing of the raw functional datasets and ROI definitions were 

performed using BrainVoyager QX [version 2.8.2] (Brain Innovation, Maastricht, The 

Netherlands). Anatomical data were transformed to Talairach space and fMRI time series were 

preprocessed using standard parameters (no smoothing) before being coaligned to an 

anatomical dataset (SI Materials and Methods). Timeseries from the real action and localizer 

experiments were subjected to a general linear model with predictors per condition of interest, as 

to estimate activity patterns for MVPA and defining ROIs, respectively (SI Materials and 

Methods). 

 

Pattern Classification. We trained two linear pattern classifiers (linear SVM), independently for 

tool and control non-tool trials, to learn the mapping between a set of brain-activity patterns and 

the type of grasp being performed (86; SI Materials and Methods). We then tested the classifiers 

on an independent set of test data (leave one run out cross-validation). These procedures were 

performed within single participants using voxel beta-weight input (per block) from the 

independently defined visual localizer ROIs (see Fig. S2 for raw beta weights) and repeated 

using whole-brain searchlights (88,89; SI Materials and Methods).  
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FIGURES 

 
Figure 1. Experimental set-up and design. (A) Real action 3D-printed tool and non-tool control 

object pairs (black markers on objects indicate grasp points) matched for elongation, width and depth. 

(B) Side view of real action participant set-up used to present 3D objects at grasping distance (without 

the use of mirrors). Red star indicates fixation LED. The hand is shown at its starting position. (C) 

Timing and grasping tasks from subject’s point of view. During the 10s ON-block the object was 

illuminated 5 times cueing the participant to grasp the object each time by its left or right sides (as per 

preceding auditory cue) with the right hand. This was followed by a 10s OFF-block involving no 

stimulation where the workspace remained dark. For MVPA, we treated tool and non-tool trials 

independently, where for the tools only, right- and left-sided grasps were typical and atypical grasps 

respectively (based on handle orientation). (D) Visual functional localizer experiment tools, hands, 

chairs, bodies and scrambled exemplar stimuli. For each individual participant independent ROIs 

were defined for MVPA. The representative ROI locations are displayed on a group activation contrast 

map from the visual localizer [All conditions > (Baseline*5)] projected onto a left hemisphere cortical 

surface reconstruction of a reference brain (COLIN27 Talairach) available from the neuroElf package 

(http://neuroelf.net). 
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Figure 2. Grasp type decoding results in left hemisphere ROIs. (A) Violin plots of MVPA data 

from visual localizer ROIs for the typical vs. atypical classification of grasping tools (white violins) and, 

non-tool control grasping (right vs. left decoding; grey violins). Box plot centre lines are mean 

decoding accuracy while their edges and whiskers show ±1SD and ±2SEM, respectively. Decoding 

accuracies of typical vs. atypical grasping in IPS and LOTC hand-selective cortex (pink) are 

significantly greater-than-chance for tools, but not non-tools. (B) Differences of tool vs. non-tool 

decoding accuracy of typical vs. atypical grasping (or right vs. left) per participant for hand-selective 

ROIs (red line = mean decoding accuracy difference). (C) Violin plot of MVPA data for control ROI in 
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somatosensory cortex (SC) based on an independent contrast (all actions > baseline) from real action 

experiment showing significant decoding of grasp type for both tools and non-tools. Red asterisks 

show FDR-corrected results while black asterisks show uncorrected data. 
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Figure 3. Whole-brain searchlight MVPA typicality difference map. Data shown on the group 

average structural MRI. Tool and non-tool typicality decoding accuracies were calculated 

independently in searchlight analyses for each participant then subtracted to generate the 

difference map between tools and non-tools decoding. To correct for multiple comparisons 

cluster correction was used (voxelwise P<0.01, cluster P<0.05; cluster size = 10 voxels). 
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