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 2 

ABSTRACT 27 

Exposure to endocrine-disrupting chemicals (EDCs) is ubiquitous in all species, including 28 

humans. Previous studies have shown behavioral deficits caused by EDCs that have implications 29 

for social competence and sexual selection. The neuromolecular mechanisms for these behavioral 30 

changes induced by EDCs have not been thoroughly explored. Here, we tested the hypothesis that 31 

EDCs administered to rats during a critical period of embryonic brain development would lead to 32 

disruption of normal social preference behavior, and that this involves a network of underlying 33 

gene pathways in brain regions that regulate these behaviors. Rats were exposed prenatally to 34 

human-relevant concentrations of EDCs [polychlorinated biphenyls (PCB), an industrial chemical 35 

mixture; vinclozolin (VIN), a fungicide], or vehicle. In adulthood, a sociosexual preference test 36 

(choice between hormone-primed and hormone-depleted opposite-sex rats) was administered. We 37 

profiled gene expression of in three brain regions involved in these behaviors [preoptic area (POA), 38 

medial amygdala (MeA), ventromedial nucleus (VMN)]. Prenatal PCBs impaired sociosexual 39 

preference in both sexes, and VIN disrupted this behavior in males. Each brain region (POA, MeA, 40 

VMN) had unique sets of genes altered in a sex- and EDC-specific manner. Sexually dimorphic 41 

gene expression disruption was particularly prominent for gene modules pertaining to sex steroid 42 

hormones and nonapeptides in the MeA. EDC exposure also changed the relationships between 43 

gene expression and behavior in the mate preference test, a pattern we refer to as dis-integration 44 

and reconstitution. These findings underscore the profound effects that developmental exposure to 45 

EDCs can have on adult social behavior, highlight sex-specific and individual variation in 46 

responses, and provide a foundation for further work on the disruption of mate preference behavior 47 

after prenatal exposure to EDCs.  48 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.335984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.335984


 3 

INTRODUCTION 49 

Environmental contamination with endocrine-disrupting chemicals (EDCs) perturbs 50 

hormones and their actions in virtually all species and ecosystems (Gore et al., 2015). Prenatal 51 

EDC exposures pose a particular risk due to the exquisite sensitivity of the developing brain to 52 

gonadal hormones, which are required for sex-typical differentiation and development of neural 53 

circuits, and the manifestation of behaviors. In the hypothalamus of male rodents and other 54 

mammals, prenatal and early postnatal testicular hormones masculinize and defeminize circuits. 55 

In females, the relative quiescence of the ovary and concomitantly lower gonadal hormone 56 

production, together with alpha-fetoprotein that prevents estrogens’ crossing the blood-brain-57 

barrier, is responsible for brain feminization and demasculinization (Bakker et al., 2006; Nugent 58 

et al., 2015; Schwarz & McCarthy, 2008; Wright, Schwarz, Dean, & McCarthy, 2010).  59 

The effects of developmental EDC exposure on sexually dimorphic social behaviors and 60 

gene expression patterns in different brain regions have been described for several classes of 61 

chemicals. Although individual EDCs are not pure hormone agonists or antagonists, some [such 62 

as certain polychlorinated biphenyls (PCBs) and bisphenol A (BPA)] mimic or disrupt estrogen 63 

signaling (Dickerson & Gore, 2007), and others [vinclozolin (VIN) and phthalates] are anti-64 

androgenic (Euling et al., 2002; Stroheker et al., 2005). PCBs, widespread industrial chemical 65 

contaminants, alter gene expression in the hypothalamus (Dickerson, Cunningham, & Gore, 2011; 66 

Faass, Ceccatelli, Schlumpf, & Lichtensteiger, 2013; Topper et al., 2019) and change interactions 67 

of adult rats with conspecifics (Hernandez Scudder et al., 2020; Bell, Hart, & Gore, 2016; Colciago 68 

et al., 2009; Cummings, Clemens, & Nunez, 2008; Steinberg, Juenger, & Gore, 2007). Bisphenol 69 

A (BPA) from plastic, and the fungicide VIN also change brain gene expression (BPA: 70 

Wolstenholme et al., 2012, VIN: Skinner, Savenkova, Zhang, Gore, & Crews, 2014; Faass et al., 71 

2013; Lichtensteiger et al., 2015) and sociosexual behavior (BPA: Jones, Shimell, & Watson, 72 

2011; Monje, Varayoud, Muñoz-de-Toro, Luque, & Ramos, 2009; Porrini et al., 2005, VIN: 73 

Colbert et al., 2005; Krishnan et al., 2018). Prenatal exposure to phthalates causes long-lasting 74 
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changes to gene expression in the hypothalamus and beyond (Gao et al., 2018; Lin et al., 2015). 75 

Phthalate exposure early in life also cause deficits in cognitive and social behaviors (Lin et al., 76 

2015; R. Wang, Xu, & Zhu, 2016). In most cases, outcomes are dependent on the dose, timing, 77 

and length of exposure, as well as the sex of the animal. This is not surprising considering the 78 

dynamic nature of endogenous hormone signaling as the brain develops, and the vulnerability of 79 

estrogenic and androgenic pathways to EDCs. 80 

Reproductive success is contingent upon sex-appropriate differentiation of the brain during 81 

early life. For an individual to reproduce successfully, appropriate dyadic interactions with another 82 

sexually mature potential mate of the opposite sex are required. This process involves assessment 83 

of an opposite-sex animal’s fitness through a variety of physical and behavioral cues, including 84 

hormonal status, as well-documented in rats (Drewett, 1973; Edwards & Einhorn, 1986; Eliasson 85 

& Meyerson, 1975). There is plasticity in this behavior, with the decision-making process affected 86 

by prior sexual experience of both individuals, estrous cycle stage, hormone levels, and other 87 

factors. Within the brain, a complex social decision-making network (O’Connell & Hofmann, 88 

2012) comprising hypothalamic [e.g., ventromedial nucleus (VMN), preoptic area (POA)] and 89 

extra-hypothalamic [e.g., medial amygdala (MeA)] regions expresses specific genes and proteins 90 

that modulate these behaviors (Spiteri et al., 2010). 91 

Here, we tested the hypothesis that prenatal EDC exposures would cause disruptions to the 92 

pattern of expression of a suite of genes in three brain regions in the social decision-making 93 

network (VMN, POA, MeA) and that this underlies functional deficits in an ethologically-relevant 94 

sociosexual behavioral task. Previous work has not considered the complex inter-relationships of 95 

these phenotypes, a gap we intended to fill in current work. The goal was to determine whether 96 

these relationships would break down (become “dis-organized”) and/or become reconstituted into 97 

novel patterns. To do this, we combined an integrative analysis of behavioral and hormonal 98 

phenotypes and gene co-expression patterns to characterize relationships between multiple 99 
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measures of motivated behavior, gene expression patterns, and circulating hormone levels in 100 

response to prenatal EDC exposure in both male and female rats. 101 

 102 

METHODS AND MATERIALS 103 

Experimental design 104 

All rat procedures were conducted in compliance with protocols approved by IACUC at 105 

The University of Texas at Austin. Sprague-Dawley rats purchased from Envigo (Houston) were 106 

housed in colony rooms with consistent temperature (22°C) and light cycle (14:10 dark:light, lights 107 

off at 1100). All rats had ad libitum access to water and were fed a low phytoestrogen rat chow 108 

(Teklad 2019, Envigo). 109 

To generate experimental rats, virgin females were mated with sexually experienced males. 110 

Successful mating was indicated by the presence of sperm in a vaginal smear. The day after mating 111 

overnight was termed embryonic day 1 (E1). Pregnant rats received intraperitoneal (i.p.) injections 112 

of one of three treatments daily from E8-E18: (1) Vehicle (6% DMSO in sesame oil), (2) A1221 113 

(1mg/kg), or (3) VIN (1mg/kg). Each dam was exposed to the same treatment daily and received 114 

a total of 11 injections. The route, timing of treatment and the dosages were selected to match prior 115 

work, based on ecological relevance, and to span the period of hypothalamic neurogenesis, fetal 116 

gonadal development and the early stages of brain sexual differentiation (Arnold & Gorski, 1984; 117 

Krishnan, Hasbum, et al., 2019; Krishnan et al., 2018; Krishnan, Rahman, et al., 2019; Rodier, 118 

1980). A subset of offspring (30 male and 29 female) from 9 DMSO, 10 A1221 (PCB), and 10 119 

VIN dams were included in this study. No more than 2 same sex rats per litter were used. We 120 

measured body weight and anogenital distance (AGD) on days P7 and P14 to calculate the 121 

Anogenital Index (AGI = 𝐴𝐺𝐷/%𝑏𝑜𝑑𝑦	𝑤𝑒𝑖𝑔ℎ𝑡1 ). The 5 males and 5 females with the median 122 

intrasex AGI measurements were used for the subsequent experiments. The pups were weaned at 123 
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P21 and re-housed in same-sex groups of 2-3. Beginning on the day of vaginal opening, daily 124 

vaginal smears were collected from females and cell cytology was examined as an indication of 125 

estrous cyclicity. Timing of pubertal development did not vary across treatment groups (ANOVA; 126 

Male age at preputial separation: DMSO 43.50 ± 0.5, PCB 44.22 ± 0.70, VIN 44.10 ± 0.66. Female 127 

age at vaginal opening: DMSO 36.44 ± 0.65, PCB 35.30 ± 0.92, VIN 34.60 ± 0.56). Rats were 128 

euthanized at ~P120, with females in proestrus, by rapid decapitation and brains removed and 129 

processed as described below. 130 

Stimulus Sprague-Dawley rats for the mate preference test were purchased as virgin adults. 131 

Males were castrated (GDX) and females ovariectomized (OVX) under isoflurane anesthesia in 132 

aseptic conditions (Garcia, Bezner, Depena, Yin, & Gore, 2017; Wu & Gore, 2010). During the 133 

surgery, stimulus animals assigned to the hormone-replaced group also had a 1.5 cm Silastic 134 

capsule containing testosterone (males: 100% T; GDX+T) or a 1.0cm silastic capsule containing 135 

17β-estradiol (females: 5% E2/95% cholesterol; OVX+E2) implanted subcutaneously into the 136 

nape of the neck (Garcia et al., 2017). All rats recovered from surgery for at least one week prior 137 

to use in behavioral tests. 32 GDX males (no hormone replacement), 32 GDX+T males, 32 OVX 138 

females (no hormone replacement), and 32 OVX+E2 females were used as stimuli throughout the 139 

study. For the latter group, on the day of use these E2-treated females were primed for sexual 140 

receptivity by a subcutaneous injection of progesterone (P4, 0.6 mg) in sesame oil four hours 141 

before experiments started. 142 

Sociosexual preference behavior 143 

A 1 m x 1 m three-chambered apparatus (Stoelting, Wood Dale, IL) was used as the testing 144 

arena (Bell et al., 2016; Reilly et al., 2015). Testing was conducted under dim red light 145 

approximately two hours into the dark phase of the light-dark cycle. Each test utilized an 146 

experimental (EDC or vehicle exposed) rat at ~3 months of age. Two opposite-sex stimulus rats, 147 

one with and one without hormone replacement, were used, with each one placed inside 7 cm x 15 148 
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cm cylindrical cages positioned in two far opposite corners of the apparatus. These cages have 149 

spaced vertical bars, allowing for limited tactile interactions between rats. The position of stimulus 150 

rats was randomized between trials and with respect to hormone status. The bars of the stimulus 151 

cage allowed for visual, olfactory, auditory, and minimal tactile interaction between the confined 152 

stimulus rat and the freely-moving experimental rat. Each trial began with the two stimulus rats 153 

already in position in their cylindrical cages. An experimental rat was placed in the center chamber 154 

of the apparatus with closed doors preventing entry into either side chamber for a five-minute 155 

habituation period. After habituation, the doors were removed and the experimental rat was 156 

allowed to freely explore the entire arena for 10 minutes. Each test was recorded by overhead 157 

video. ANY-Maze (Stoelting, Wood Dale, IL) was used to track the position, speed, and distance 158 

traveled of the experimental rat in each compartment of the chamber (Hernandez Scudder et al., 159 

2020; Garcia et al., 2017; Reilly et al., 2015). Recordings of the tests were scored by a trained 160 

investigator blinded to treatment for the following behaviors: nose touching (direct nose-to-nose 161 

contact between the experimental rat and a stimulus rat) and stimulus investigation (all other 162 

investigation by the experimental rat of a stimulus rat or stimulus cage). The time the experimental 163 

animal spent within one body length of either stimulus cage without engaging with the stimulus 164 

animal or cage [time within one body length – (time nose touching + time investigating)] was 165 

defined as “time near”. To avoid testing fatigue, stimulus rats were used for no more than three 166 

rounds of testing per day and had 10 minutes of rest with access to food and water between each 167 

round. Stimulus rats had two days of rest between each day of testing. The entire apparatus was 168 

cleaned using 70% ethanol between each test subject. 169 

Hormone radioimmunoassay 170 

Serum levels of testosterone and corticosterone (CORT) were measured in duplicate 171 

samples, and estradiol (E2) in single samples (due to larger serum volume needed for this assay) 172 

using radioimmunoassays (Testosterone: MP Biomedicals #07189102, CORT: MP Biomedicals 173 
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#07120102; E2: Beckman Coulter #DSL-4800). Assay parameters were: CORT, limit of detection 174 

7.7 ng/ml, intra-assay CV 2.5%; testosterone, limit of detection 30 pg/ml, intra-assay CV 3.7%; 175 

E2: limit of detection 2.2 pg/ml, intra-assay CV 16.8%. 176 

TaqMan Low Density qPCR Array 177 

Brains from experimental rats were rapidly removed, chilled on ice, and then coronally 178 

sliced at 1 mm using a chilled brain matrix. These slices were placed on slides and stored at -80 179 

until all samples were collected. Bilateral punches were taken of the POA, MeA and VMN using 180 

a 1 mm Palkovits punch (Gillette et al., 2014). RNA from frozen POA, MeA, and VMN punches 181 

was extracted using AllPrep RNA/DNA Mini Kit (Qiagen, 80204) according to the manufacturer’s 182 

protocol. To determine the integrity and purity, a subset of samples was run on a Bioanalyzer 2100 183 

(Agilent, RNA Pico Kit 5067-1513). All samples had a RIN of 8.4 or above. RNA (200 ng) was 184 

then converted to single stranded cDNA using high-capacity cDNA reverse transcriptase kit (Life 185 

Technologies, 4374966) according to the manufacturer’s protocol. cDNA was run on a custom 48-186 

gene TaqMan Low Density Array Card (ThermoFisher Scientific) with target genes selected based 187 

on a priori hypotheses and their role in neuroendocrine function and sensitivity to EDCs reported 188 

in the literature. Run parameters were: 95 °C for 10 min, 50 cycles of 95 °C for 15 sec, and 60 °C 189 

for 1 min (Topper et al., 2019). Gene expression cycle threshold (Ct) values were normalized using 190 

the ΔΔCt method. First, each target gene value was normalized to the expression level of the 191 

reference gene Gapdh within each subject to generate ΔCt. To standardize between subjects, the 192 

Δ Ct of each gene was normalized to the median value of a control group (DMSO females) to 193 

generate ΔΔCt. Data are reported as 23∆∆56. Two genes (Cyp11a1 & Hsd3b1) did not amplify and 194 

were excluded, leaving 44 target genes and 2 housekeeping genes (Gapdh, 18s). In all cases, 195 

significance was set at p < 0.05 after appropriate corrections for multiple comparisons. 196 
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Behaviors and hormones 197 

For behaviors, analyses were performed separately for each sex. Those behaviors involving 198 

choice based on the hormone status of the stimulus rat were analyzed by a two-way ANOVA 199 

(treatment x stimulus hormone status). Other behaviors (e.g. center time, distance traveled of 200 

experimental rat) were analyzed by one-way ANOVA. To explore sex differences, a two-way 201 

ANOVA for treatment x sex was used for stimulus-independent behaviors between the sexes. 202 

Hormone concentrations, body weight, and puberty timing within each sex were analyzed by one-203 

way ANOVA. Reported p-values of multiple comparisons were adjusted using Sidak’s multiple 204 

comparisons test. 205 

A hormone preference score was calculated as 789:;<	6:=>	?8@=8A>-@>B<;9>C	@;6
686;<	789:;<	6:=>

. Social 206 

preference was calculated as a ratio of time within one body length of both stimulus animals out 207 

of the total test time:	6:=>	D:6?:A	8A>	E8CF	<>AG6?
686;<	6>76	6:=>

. Linear regressions were used to determine 208 

correlations with significantly non-zero slopes. 209 

Principal components analysis 210 

To characterize coordinated phenotypic response to EDC exposure, we performed a 211 

Principal Components Analysis (PCA) on morphological, physiological, and behavioral measures 212 

including body weight, CORT, E2, T (males only), activity, social preference, hormone preference, 213 

and social activity (time spent investigating and interacting with stimulus rats) using the prcomp 214 

function in R. Behavioral variables included in the PCA are provided in Table 1. All variables 215 

were centered and scaled prior to PCA. 216 
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 217 

Weighted gene co-expression network analysis 218 

To capture coordinated gene expression changes associated with EDC exposure we 219 

performed a Weighted Gene Co-expression Network Analysis (WGCNA) on the 44 target genes 220 

Behavior
Abbreviation 
in PCA

Mean SEM N Mean SEM N Mean SEM N
Females
Total distance (m) Dist 46 3 9 43 3 10 43 4 10
Center time (s) CentTime 102 14 9 101 11 10 118 16 10
Total social time (s) SocTime 335 19 9 332 22 10 343 21 10
Total time near 
stimulus (s) NearTime 158 11 9 157 13 10 163 16 10
Total nose touch time 
(s) NoseTouch 8.1 2.5 9 8.6 4.4 10 13.8 4.2 10
Total stimulus explore 
time (s) StimExpl 169 14 9 166 28 10 167 15 10
Hormone preference HormPref 0.64 0.05 9 0.52 0.04 10 0.66 0.06 10
Social preference SocPref 0.56 0.03 9 0.56 0.04 10 0.57 0.03 10

Males
Total distance (m) Dist 25 2 10 22 4 9 23 4 10
Center time (s) CentTime 171 34 10 285 65 9 317 59 10
Total social time (s) SocTime 256 46 10 219 52 9 143 37 10
Total time near 
stimulus (s) NearTime 142 37 10 95 25 9 68 17 10
Total nose touch time 
(s) NoseTouch 9.7 5.0 10 3.9 1.6 9 5.2 1.8 10
Total stimulus explore 
time (s) StimExpl 105 32 10 121 38 9 70 20 10
Hormone preference HormPref 0.41 0.12 10 0.23 0.08 9 0.45 0.11 10
Social preference SocPref 0.43 0.08 10 0.37 0.09 9 0.24 0.06 10

DMSO PCB VIN

Table 1. Behavioral variables analyzed in the sociosexual preference test

Sociosexual preference behaviors are shown as mean + SEM, with n's indicated. Total behaviors 
are times for the two stimulus rats combined. Bolded numbers are significantly different from the 
same-sex DMSO control.
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measured (Langfelder & Horvath, 2008). WGCNA was performed independently for the two sexes 221 

and three brain regions with a minimum module size of five genes. Expression values of each 222 

module were summarized as module eigengenes (i.e., the first principal component of each gene 223 

co-expression module). Thus, each eigengene is the linear combination of gene expression values 224 

that explains the most variation in the expression levels of the genes contained in the module. We 225 

assessed coordinated changes in phenotypes and gene expression across treatments using general 226 

linear models. Specifically, we tested the hypotheses that the relationship between behavioral 227 

measures associated with preference and social interactions and gene co-expression modules 228 

describing coordinated nonapeptide gene expression patterns would differ across the treatments in 229 

both sexes (Co-expression module ~ Treatment + Behavioral PC + TreatmentXBehavioral PC).  230 

Co-variance patterns between neural gene expression, physiology, behavior, and morphology 231 

To assess systems-level response to EDC treatment and the potential dis-integration and/or 232 

reconstitution, defined as loss or change of correlations by EDCs, respectively, we examined co-233 

variance patterns among all neural gene expression, physiological, behavioral, and morphological 234 

measures for each control and treatment conditions separately and visualized changes in the 235 

correlation structure across treatments. We calculated Spearman’s rank correlations between all 236 

pairwise variables. Variables were clustered using 1-correlation scores as distance variables. To 237 

visually assess the extent of integration or re-organization (or lack thereof) for each EDC treatment 238 

across levels of biological organization, neural gene expression and phenotype clustering of the 239 

control condition was maintained for treatment animals for each sex and brain region. 240 

Sexually dimorphic neural expression of nonapeptide and sex steroid hormone signaling 241 
genes  242 

To characterize changes to sexually dimorphic gene expression and any potential 243 

demasculinizing/feminizing or defeminizing/masculinizing effects of EDC treatment, we 244 

quantified gene expression distances of all pairwise treatments and sexes for genes from two 245 
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candidate functional categories, nonapeptides and sex steroid hormone signaling (Fig. 5, yellow 246 

and orange functional group, respectively). Nonapeptide genes included Oxt, Oxtr, Avp, Avpr1a, 247 

Kiss1, and Kiss1r for all 3 brain regions, with Gnrh1 and Tac3 also included in the POA. Sex 248 

steroid hormone signaling genes included Esr1, Esr2, Ar, Pgr, Nr3c1, Cyp19a1, Srd5a1, and 249 

Hsd17b1 for all three brain regions. Euclidean distances for each pairwise sex, treatment 250 

comparison were calculated using the expression levels of each gene in these functional categories. 251 

We then used a permutation analysis to test for significant modifications in sexually dimorphic 252 

expression of functional categories. Specifically, to test the hypothesis that sex or treatment were 253 

closer in any pairwise comparison than expected by chance, we shuffled sample treatment 254 

assignment within sex and recalculated the Euclidean distances for all pairwise comparisons. We 255 

repeated this process for 1000 iterations and compared the observed distance to the distribution of 256 

permutated distances to obtain a p-value. Distance networks were plotted for both functional 257 

categories and all three brain regions.  258 

 259 

RESULTS 260 

Embryonic exposure to EDCs affected sociosexual behavior in a sex-dependent manner 261 

The mate preference task was performed on 29 females (9 DMSO, 10 PCB, and 10 VIN) 262 

and 30 males (10 DMSO, 10 PCB, 10 VIN). Twelve male rats (4 DMSO, 4 PCB, and 4 VIN) failed 263 

to investigate both of the stimulus rat options during the allotted 10 minutes. We refer to these 264 

males as “non-responders” in all subsequent analyses. All males were included regardless of 265 

responder status in analyses of sex differences, PCA analysis, and gene expression analysis. 266 

However, Figure 1 shows analyses of only the responder males (6 DMSO, 6 PCB, and 6 VIN), as 267 

that test required rats to interact with both opposite-sex stimulus animals to calculate a score. Other 268 

figures are inclusive of the entire cohort of males, regardless of responder status. 269 
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There was a main effect of hormone status of the stimulus rat on the time experimental 270 

females spent associating (within one body length) with the stimulus rats (F(1, 52) = 18.77; p < 271 

0.0001). Females prenatally exposed to DMSO or VIN preferred the hormone-replaced male. 272 

Prenatal exposure to PCB, however, abolished this preference in females (Fig 1A). There was no 273 

effect of treatment on the total time that the experimental rats spent investigating both stimulus 274 

rats (Social Time; Table 1).  275 

In males, there was a significant interaction between treatment and hormone status of the 276 

stimulus rat on the time spent associating with the stimulus rats (F(2, 30) = 7.113; p < 0.01). Males 277 

exposed prenatally to DMSO spent more time investigating the stimulus female with hormone 278 

replacement over the one without. However, the time males exposed prenatally to PCB or VIN 279 

spent near the two stimulus rat options did not differ significantly (Fig 1B). These findings 280 

replicated those in our recent publication (Hernandez Scudder et al., 2020). 281 
 282 

 

Figure 1: Time spent with each stimulus rat (social time) during mate preference is shown for 
females (A) and males (B) as median (bar within the box), quartiles (upper and lower limits of 
the box), and range (whisker) for the 10-minute mate preference test. The same graphing 
conventions are used for other box-and-whisker graphs. Data for males include responders 
only. Asterisks indicate a significant difference between the social time spent with the two 
stimulus options. Two-way ANOVA, main effect of stimulus hormone, followed by Sidak’s 
multiple comparisons test. GDX, gonadectomized male; OVX, ovariectomized female. ** p < 
0.01. 
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There were significant sex differences in several behavioral measures (Fig 2). Throughout 283 

the test duration, females traveled significantly farther than males (Fig 2A; F(1, 52) = 55.94; p < 284 

0.0001). Females spent more time in close proximity to but not interacting with both stimulus rats 285 

(Fig 2B; F(1, 52) = 10.49; p < 0.01). Females spent more time directly investigating the stimulus rats 286 

than males (Fig 2C; F(1, 52) = 10.43; p < 0.01). For hormone preference score, females preferred the 287 

hormone-replaced stimulus animals more strongly than males did (Fig 2D; F(1, 52) = 13.21; p < 288 

0.001). VIN males spent less time in close proximity to the stimulus rats without interacting than 289 

DMSO males, shown in Figure 2E as the social preference score (F(1, 52) = 20.66; p < 0.0001). 290 

These and all other behavior measures included in further analyses are summarized in Table 1. 291 
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 292 
 293 

 
 
Figure 2: Sex differences during the 10-minute mate preference test are shown. (A) Total 
distance traveled during the test duration. (B) Total time the experimental rat spent near 
(within one body length) both stimulus cages without interacting with the stimulus rats. (C) 
Total time the experimental rat spent exploring (sniffing, touching, etc.) the stimulus cages 
and stimulus rats (but not nose-touching). (D) Hormone preference score (social time with 
hormone-replaced stimulus rat/social time with both stimulus rats). (E) Social preference 
score (social time with both stimulus rats/time in the remote portions of the side chambers 
[further than one body length away from the stimulus cage]). For males, non-responders 
(rats who failed to venture near one or both stimulus options) are indicated with solid black 
circles, here and in subsequent figures. Asterisks indicate a significant sex difference. Two-
way ANOVA, main effect of sex followed by Sidak’s multiple comparisons test. ** p < 
0.01, **** p < 0.0001, * VIN < DMSO p < 0.05. 
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EDCs did not affect circulating steroid hormone levels, but PCBs resulted in reduced body 294 

weight in males and females 295 

We measured body weight and serum hormone concentrations (CORT, E2, and T) of 296 

behaviorally characterized rats on the day of euthanasia (Fig 3). PCB exposure significantly 297 

reduced the body weight of both female (F(2, 26) = 3.506; p < 0.05; Fig 3A) and male (F(2, 27) = 298 

6.080; p < 0.01; Fig 3D) rats. There were no significant effects of treatment on hormone 299 

concentrations within males or females [Fig 3B, C (females), E-G (males)]. In females, there was 300 

a non-significant trend for PCB exposure to increase E2 levels (F(2, 26) = 2.916; p = 0.07; Fig 3C). 301 

 
 
Figure 3: Body weight and serum hormones are shown for female (A-C) and male (D-G) 
experimental rats. Note differences in y-axes for body weight and serum E2 for the two sexes. 
Asterisk indicates significant difference from DMSO. One-way ANOVA, main effect of 
treatment followed by Sidak’s multiple comparisons test. * p < 0.05. 
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Integration across levels of biological organization revealed high levels of individual 302 

variation with treatment groups 303 

A PCA of behavioral and physiological measures in females (12 measures) and males (13 304 

measures) revealed variation between the sexes in coordinated phenotypic response to EDC 305 

treatment, as the PCs characterized different aspects of the phenotype (Fig 4). Eigenvectors 306 

describing the loadings, or contribution, of phenotypes to PC variation revealed patterns of 307 

coordinated phenotypic variation that differed in strength (absolute value of the eigenvector) and 308 

directionality (positive or negative). The results indicate that relationships differed for each 309 

treatment group (Fig. 4C and 4D).  310 

In females, the first four PCs described 78% of the total variation in morphology, behavior, 311 

and physiology within and across treatments (Fig. 4A). Social Time, Social Preference, and 312 

Stimulus Explore loaded strongly and concordantly on PC1 (35%), indicating that PC1 primarily 313 

represents variation in time spent engaging in sociosexual behavior. With strong and concordant 314 

loadings of Hormone Preference and Near Time, PC2 (20%) represents Social Preference and 315 

Social Interaction. PC3 (12%) is strongly loaded by sex steroid (E2) levels and time spent near a 316 

stimulus rat with opposing effects. Finally, with strong and opposing loadings of CORT and body 317 

weight, PC4 (11% of the variation) may be an indicator of condition. Within treatment, females 318 

varied in their integrated response to EDC treatment; however, there were no significant 319 

differences across treatments for the first four PCs (Fig. 4E; Supplementary Fig. 1A-F).  320 

In males, the first four PCs described 75% of the total variation in morphology, behavior, 321 

and physiology within and across treatments (Fig. 4B). PC1 (38%) primarily described variation 322 

among males in the time they spent in the center of the apparatus (Fig. 4D), and, thus, represents 323 
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differences between responder and non-responder males (Supplementary Fig. 1G. 4F). PC2 (15% 324 

of the variation) primarily represented, in opposing fashion, CORT levels and time spent engaging 325 

 
Figure 4: Integrated phenotypic response to EDC treatment. Principal components analysis 
(PCA) of behavioral and physiological measures in females (left - 12 measures) and males 
(right - 13 measures) revealed variation between the sexes in coordinated phenotypic 
response to EDC treatment. The proportion of variation described (A and B) and aspects of 
the integrated phenotype described by the first four PCs (C and D) are shown.  Contribution 
of each behavioral, morphological, and physiology measures to each PC is indicated by the 
eigenvectors. Strength of the contribution of each measure is indicated by color saturation. 
Concordance in directionality of variation among measures is indicated in color. Grays 
indicate the same direction and browns indicate opposing directions (Fig. C and D). There 
were no significant treatment differences in either sex for the first four PCs (E and F). 
Definitions of most included phenotypes are provided in Table 1; in addition, NonSocTime is 
time spent greater than one body length away from the stimulus rats in the side chambers. 
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in non-social activity. PC3 (12% of the variation) characterized opposing variation in body weight 326 

and T among males. With strong loadings of nose touch, stimulus explore, and hormone 327 

preference, PC4 (10% of the variation) characterized variation in preference and social interaction. 328 

Because non-responders failed to approach one or both of the stimulus rat options during the 329 

allotted 10 minutes biasing their hormone preference and other sociosexual behavioral scores, 330 

responder and non-responder males differed across PC4 (Supplementary Fig. 1K).  331 

Embryonic EDC exposure had sex-specific effects on candidate gene expression in VMN, 332 

POA, and MeA 333 

The effect of EDC treatment and sex on the expression of the 44 detectable candidate genes 334 

in three brain regions was examined (all results shown in Supplementary Table 1). The expression 335 

levels of only a small number of genes were significantly affected by treatment after correction for 336 

multiple comparisons. In the VMN of females, PCB-exposed rats had higher expression of 337 

Cyp19a1, Oxt, Avp, and Kiss1 than DMSO females. In VIN females, Hsd17b1 and Oxt were higher 338 

than levels in DMSO females. The expression level of only one gene in the female POA, Grin2b, 339 

was changed significantly by EDCs: it was over-expressed in the POA of females exposed to PCBs 340 

and VIN compared to DMSO. Two genes were affected in the female MeA: Kiss1 was more highly 341 

expressed by PCBs, and Oxt expression was lower in PCB treatment and higher in VIN treatment 342 

compared to the DMSO control females. 343 

In the male VMN, Cyp19a1 was lower in both PCB and VIN treatment. In the male POA, 344 

only Grin2b expression was affected: it was higher in VIN compared to DMSO males. One gene 345 

in the male MeA, Kiss1, was expressed at lower levels in the VIN treatment group compared to 346 

DMSO. 347 
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Several sex differences in the gene expression of DMSO rats were identified 348 

(Supplementary Table 2). In the VMN, males had significantly higher expression of Cyp19a1 349 

compared to females. In the POA, females had significantly higher Kiss1 expression, while males 350 

had higher Grin2b expression. In the MeA, males had significantly higher Kiss1 expression than 351 

females. 352 
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Gene co-expression modules displayed treatment-specific relationships with preference and 353 

social interaction 354 

The 44 candidate genes assessed were selected based on a priori hypotheses and their roles in 355 

neuroendocrine function and sensitivity to EDCs reported in the literature, as described in greater 356 

 
Figure 5. Candidate genes representing eight functional categories were assigned to co-
expression modules using WGCNA for each sex (females, A-C; males, D-F) and brain region 
independently. Genes that did not cluster into any module are not shown. Presence of a gene in 
a module is indicated in black. Genes are assigned to the functional categories indicated in 
color. Different number of co-expression modules were identified across the sexes and brain 
regions. For each sex and brain region, modules are labeled as m1up to m4.  
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detail in the Discussion. These genes belong to functional categories that include sex steroid 357 

hormone signaling, glucocorticoid stress axis, nonapeptides, GnRH-related genes, neurotrophins, 358 

neurotransmission, epigenetics, and clock genes and other transcription factors (Suppl. Table 1; 359 

Fig 5). Co-expression modules generated using WGCNA spanned functional gene groups and 360 

varied across brain regions and sexes. Treatments did not differ in eigengene expression for either 361 

sex or brain region after adjusting for multiple hypothesis testing (Suppl. Fig. 2).  362 

An example of how these data can be used in hypothesis-testing is provided for the 363 

nonapeptides. To test the hypothesis that coordinated expression of nonapeptides varies with 364 

preference and other social interactions we first identified gene co-expression modules integrating 365 

expression of the majority of the nonapeptides including: MeA module 2, POA module 1, and 366 

VMN module 4 in females, and MeA module 2 and VMN module 3 in males (Fig. 5). Second, we 367 

identified PC2 in females and PC4 in males as representing variation in preference and social 368 

interaction across individuals. For PC4 in males, linear models revealed significant treatment and 369 

interaction effects in the relationship between module eigengene expression and preference and 370 

social interaction in the VMN and a trend in the MeA in males (Fig. 6; Supplementary Table 3). 371 

 372 

 373 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.335984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.335984


 23 

 374 

 
Figure 6. The relationship between expression of gene modules and preference and social 
interaction differed across treatments in males. Co-expression of gene modules containing 
nonapeptides genes were compared to principal components describing variation in preference 
and social interactions in females and males (Supplementary Table 3). In the male MEA a trend 
highlighting a potential relationship between gene co-expression and preference and social 
interactions with VIN (blue: t = -0.15; p < 0.1) that is not present in control (black) or PCB 
(red) treatments (A). In the male VMN there was a significant relationship between gene co-
expression and preference and social interactions with VIN (blue: t = -0.20; p < 0.05) that is not 
present in control (black) or PCB (red) treatments (B). Treatment is indicated in color and 
shading indicates 95% confidence interval. 
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Embryonic exposure to EDCs caused dis-integration and reconstitution across levels of 375 

organization 376 

The results presented thus far demonstrate that there was considerable individual variation 377 

in both behavior and gene expression. This allowed us to examine co-variance patterns between 378 

phenotypic measures (behavior, body weight, hormones) and gene expression to identify any 379 

 

Figure 7: Representative correlation heatmap from the VMN of females, illustrating the dis-
integration and reconsolidation of behavioral, hormonal, and neuromolecular phenotypes 
caused by EDC treatment. Gene expression, behavioral, and physiological measures were 
clustered using Spearman’s rank correlations for the DMSO control samples (A). The same 
ordering of phenotypes in the control group was applied to both the PCB (B) and VIN (D) 
treatment groups to illustrate dis-integration associated with EDC treatment. To illustrate 
reorganization of phenotypes, behavioral, hormonal, and neuromolecular phenotypes were 
clustered for using Spearman’s rank correlations for PCB (C) and VIN (E) females. 
Correlation strength is indicated by intensity of color with yellow indicating positive 
correlations and indigo indicating negative correlations. Correlations of remaining brain 
regions and sexes including the order of phenotypes in the reorganized heatmaps above are 
provided in Supplementary Fig. 3. 
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systems-level effects of EDC treatment and ask if behavioral, physiological, and neuromolecular 380 

correlations are maintained across treatments. Correlation strengths and phenotypic clustering are 381 

illustrated as heatmaps in Figure 7 (in this case for gene expression in the VMN of females). 382 

Heatmaps for the POA and MeA in females, and for all three regions in males, are shown in 383 

Supplementary Fig. 3). In all cases, we observed that correlations between gene expression levels 384 

are stronger (females: median r = 0.3 to 0.43; males: median r = 0.28 to 0.43) than between genes 385 

and behavior (females: median r = 0.2 to 0.28; males: median r = 0.2 to 0.32). Importantly, for 386 

both sexes and all brain regions the co-variance structure was strongly integrated in control animals 387 

(in terms of number and size of robust clusters), whereas with EDC treatment these patterns 388 

appeared to “dis-integrate” and/or reorganize. In other words, many genes and phenotypes that 389 

were strongly correlated in the control group (indicated as clusters of yellow cells in the heatmap) 390 

were uncorrelated or only weakly correlated in treatment groups. To illustrate dis-integration of 391 

correlations in the female VMN, the identical order of phenotypes generated by clustering of the 392 

DMSO control group (Fig. 7A) was maintained and applied to generate a heatmap for PCB and 393 

VIN females (Fig. 7B and 7D), clearly showing few if any robust clusters. If instead the heatmap 394 

for PCB and VIN was generated by unbiased clustering, a completely different reconstituted 395 

correlation structure emerged (Fig. 7C and 7E), albeit less robust. Importantly, a subset of 396 

phenotypes (e.g., Ahr, Esrrg, and Crh expression are positively correlated in the female VMN 397 

across treatments, Fig. 7) maintained strong correlations across all treatment groups indicating 398 

their robust relationships. While the present study is underpowered to perform a quantitative 399 

analysis of this “dis-integration hypothesis,” the pattern of correlation loss and reorganization in 400 

both sexes and in all three brain regions reveals striking qualitative differences between the DMSO 401 

and EDC-treated rats.  402 

One set of factors that demonstrates this dis-integration effect particularly well is the total 403 

distance traveled during the mate preference test and VMN Grin2b expression in females (Fig 8). 404 
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A robust correlation between these factors was found for the DMSO group (F(1,7) = 19.60; p < 0.01; 405 

R2 = 0.74; Fig 8A) but not the PCB (R2 = 0.005; Fig 8B) or VIN (R2 = 0.0008; Fig 8C) females. 406 

Conversely, we found strong evidence of reconstitution in males, where the direction of 407 

correlations present in the DMSO group were reversed by EDC treatment. Fig 8D shows one such 408 

example: the negative correlation between hormone preference score and Hsd17b1 expression in 409 

the POA of DMSO males (F(1,8) = 13.56; p < 0.01; R2 = 0.63). The direction of this correlation was 410 

reversed by PCB treatment (F(1,7) = 17.68; p < 0.01; R2 = 0.72; Fig 8E) and abolished by VIN 411 

treatment (R2 = 0.03; Fig 8F). Furthermore, there was considerable individual variation in both 412 

gene expression and behavior, and the correlation heatmaps demonstrate that there are many 413 

stronger correlations between genes than between genes and behavior.  414 
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 415 

EDC exposure disrupts sexually dimorphic expression of nonapeptides and sex steroid 416 
hormone signaling genes 417 

To test the hypothesis that EDC treatment interferes with sexually dimorphic gene 418 

expression patterns, or, based on the behavioral phenotype, specifically, demasculinizes (VIN, 419 

PCB in males) or defeminizes (PCB in females) neural gene expression patterns of our 420 

experimental rats, for each brain region, we calculated the Euclidean distance in expression for all 421 

pairwise sex, treatment comparisons for genes from two functional categories, nonapeptide and 422 

sex steroid hormone signaling genes (from Fig. 5, yellow and orange groups, respectively). While 423 

 
Figure 8: Example of treatment-induced dis-integration and reconstitution of behavioral 
measures and gene expression. Correlation between (A) total distance traveled during the 
mate preference test and Grin2b expression in the VMN of female DMSO rats. (B) No 
correlation between measures after PCB exposure. (C) No correlation between measures after 
VIN exposure. (D) Negative correlation between hormone preference score and Hsd17b1 
expression in the POA of male DMSO rats. (E) Positive correlation between hormone 
preference score and Hsd17b1 expression in the POA of male PCB rats. (F) No correlation 
between measures after VIN exposure. 
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no generalized demasculinizing or defeminizing effects of EDC treatment was evident across all 424 

brain regions (Suppl. Figure 4), several interesting patterns emerged. In the MeA, modification of 425 

sexually dimorphic nonapeptide and sex steroid hormone signaling gene expression in response to 426 

EDC treatment was quite similar (Fig. 9).  For both nonapeptides and sex steroid hormone 427 

signaling genes, males treated with VIN and females treated with PCB were significantly more 428 

similar to each other than expected by chance (Fig. 9 – line between red circle and blue triangle). 429 

This finding indicates that EDC treatment shifted both sexes away from their respective control 430 

groups and toward an intermediate defeminized (females) and demasculinized (males) phenotype. 431 

In addition, males treated 432 

with PCB were 433 

significantly more similar 434 

to control males than 435 

expected, indicating a 436 

muted response of 437 

nonapeptide and sex 438 

steroid signaling in the 439 

MeA to this treatment 440 

(Fig. 9).  441 

DISCUSSION 442 
The current study a novel 443 

analysis of the changing 444 

phenotypic relationships among neural gene expression and behavior, and the dis-integration and 445 

reconstitution among related sociosexual behavioral measures and neuromolecular networks, in 446 

rats exposed prenatally to EDCs. More specifically, sociosexual preference behaviors were 447 

 
 
Figure 9. MeA distance networks indicate gene expression 
distance for all pairwise sex and treatment comparisons for 
nonapeptide (A) and sex steroid hormone signaling genes (B). 
Nodes (circles, female; triangles, male) represent each sex and 
treatment. Edge width is defined as – z-score of all pairwise 
Euclidean distance in the network such that thick edges represent 
nodes that are more similar in gene expression. Darker edge 
colors indicate that nodes are closer than would be expected by 
chance. Distance networks of remaining brain regions are 
provided in Supplementary Fig. 4. 
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impaired by PCBs in both sexes, and by VIN in males. This difference between the EDCs is 448 

interesting and may reflect the different modes of action by which the PCB mixture, A1221, acts 449 

[mainly weakly estrogenic (Dickerson & Gore, 2007)] vs. that of VIN [anti-androgenic (Euling 450 

et al., 2002; Stroheker et al., 2005)]. These results are also consistent with the literature showing 451 

that phenotypes induced by EDCs are compound-specific, likely reflecting different mechanisms 452 

by which a compound can disrupt the endocrine system. In line with the current finding, Crews 453 

et al. (Crews et al., 2012) demonstrated the utility of using an approach to combines levels of 454 

biological organization to produce the ‘functioning phenotype’ in a model of transgenerational 455 

exposures using VIN. Here, each of the EDCs (PCBs, VIN) resulted in a unique dis-456 

integration/reconstitution of the behavioral and molecular relationships within each sex. As a 457 

whole, the perturbations by EDCs of conspecific interactions have implications for social 458 

preference and sexual selection (Gore, Holley, & Crews, 2018). 459 

Prenatal EDCs changed mate preference in a treatment- and sex-specific manner 460 

Female mammals have an incentive to seek out mates with the best likelihood of producing 461 

fertile offspring due to this sex’s high investment in reproduction. For example, males with the 462 

typical adult range of concentrations of testosterone (Spiteri et al., 2010), and odors from a male 463 

with higher testosterone levels, are preferred by sexually active female rats over their low- or no-464 

testosterone counterparts (Osada, Kashiwayanagi, & Izumi, 2009; Taylor et al., 1982). Here we 465 

showed that prenatal exposure to PCBs abolished the females’ preference for a stimulus male with 466 

testosterone replacement over a male without testosterone, replicating results from a recently 467 

published study (Hernandez Scudder et al., 2020). This outcome could translate into compromised 468 

reproductive success if a female were unable to discriminate between optimal and sub-optimal 469 

males in more naturalistic conditions. Interestingly, VIN treatment had no effect in the females. 470 
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The difference between the EDCs may be attributable to differential hormonal mechanisms acted 471 

upon by the different classes of EDCs (Nugent et al., 2015; Schwarz & McCarthy, 2008). 472 

While males tend to be less choosy about mates, the process of mating involves mutual 473 

interactions and coordination between both members of the dyad. Females exhibit proceptive 474 

behaviors to solicit the sexual attention of males, and males are also able to discriminate the odor 475 

of urine from receptive females (Edwards & Einhorn, 1986; Hurtazo, Paredes, & Ågmo, 2008; 476 

Lydell & Doty, 1972; Xiao, Kondo, & Sakuma, 2004). In the current study, and unlike females, 477 

exposure of experimental males to both classes of EDCs (PCB or VIN) abolished the preference 478 

for the hormone-primed female over the female without hormone-replacement. The male rat brain 479 

develops under the influence of relatively high concentrations of both androgens and estrogens 480 

(Bakker et al., 2006; Nugent et al., 2015; Schwarz & McCarthy, 2008; Wright et al., 2010), perhaps 481 

conferring greater sensitivity to disruption of these pathways by both VIN and PCBs, respectively. 482 

Previous work on prenatal A1221 exposure showed disrupted sex behavior in female rats, 483 

and decreased sexual motivation in male rats (Steinberg et al., 2007; Topper et al., 2019). Exposure 484 

to other PCBs caused reduced sexual motivation and receptivity in females and altered sexual 485 

behavior in males (Colciago et al., 2009; Cummings et al., 2008; Faass et al., 2013; Faqi, Dalsenter, 486 

Merker, & Chahoud, 2016; X. Q. Wang, Fang, Nunez, & Clemens, 2002). Exposure to VIN during 487 

the prenatal period and during postnatal life (E14 to adulthood) resulted in a lack of sexual 488 

motivation and deficits in sexual performance (reduced erections and ejaculations) in male rabbits 489 

(Veeramachaneni, Palmer, Amann, & Pau, 2007; Veeramachaneni et al., 2006). Our current 490 

finding adds to this literature on sex-specific effects of EDCs on sociosexual behaviors. 491 

Subsequent integrative and systems-level analyses provide novel insights into patterns of dis-492 

organization and reconstitution into novel phenotypes. 493 

 494 
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Prenatal EDCs altered the neuromolecular phenotype in the hypothalamus and amygdala  495 

Prenatal EDCs affected the expression of a small number of genes in the VMN, POA, and 496 

MeA. It is notable that genes for kisspeptin (Kiss1), nonapeptides (Avp, Oxt), steroidogenic 497 

enzymes (Cyp19a1, Hsd17b1), and the glutamatergic NMDA receptor subunit 2b (Grin2b) were 498 

those affected, as these same genes have previously been shown to be disrupted by EDCs and are 499 

involved in sexually-dimorphic behaviors. For example, the hypothalamic kisspeptin system is 500 

highly estrogen sensitive (Jenny Clarkson, Boon, Simpson, & Herbison, 2009; Navarro & Tena-501 

Sempere, 2008), making it an obvious target for estrogenic EDCs. Other studies have shown that 502 

PCBs and other estrogenic EDCs affect kisspeptin protein and gene expression (Cao, Mickens, 503 

McCaffrey, Leyrer, & Patisaul, 2012; Dickerson, Cunningham, Patisaul, Woller, & Gore, 2011; 504 

Ruiz-Pino et al., 2019), consistent with the current results. Our finding that VIN affects Kiss1 in 505 

males is also consistent with this neuropeptide’s regulation by androgens (Cernea, Phillips, 506 

Padmanabhan, Coolen, & Lehman, 2016; Clarkson, Shamas, Mallinson, & Herbison, 2012). 507 

Oxytocin gene expression was decreased in the MeA of PCB females; this was the same 508 

group of rats that showed deficits in the mate preference test. The MeA has been characterized as 509 

an important target of oxytocin in mate and odor preference behaviors (Yao, Bergan, Lanjuin, & 510 

Dulac, 2017), but, although it has relatively sparse oxytocin fibers, there is evidence for a role of 511 

oxytocin expression in the amygdala in social behavior (Smith, DiBenedictis, & Veenema, 2019). 512 

Oxytocin knockout mice have deficits in social recognition associated with reduced activity in the 513 

MeA and its projection targets (Ferguson, Aldag, Insel, & Young, 2001). By contrast, Oxt was 514 

increased by both PCBs and VIN in the female VMN in the current study, and vasopressin by 515 

PCBs in the female VMN. Other labs have reported effects of EDCs on the nonapeptides 516 

vasopressin, oxytocin, and their receptors in several brain regions (Arambula, Jima, & Patisaul, 517 

2018; Sullivan et al., 2014; Witchey, Fuchs, & Patisaul, 2019), implicating these as targets for 518 

perinatal endocrine disruption. 519 
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Both PCB and VIN males had lower Cyp19a1 (aromatase) expression in the VMN 520 

compared to DMSO control males. This region exhibits some of the highest levels of aromatase in 521 

the brains of rats along with the POA and the bed nucleus of the stria terminalis (BNST) (Wagner 522 

& Morrell, 1996). In the hypothalamus, aromatase expression and activity is sexually dimorphic 523 

with males having denser expression and higher activity (Roselli, Klosterman, & Fasasi, 1996). 524 

Prenatal exposure to a similar PCB, Aroclor 1254, reduced aromatase activity in the hypothalamus 525 

of neonatal male rats (Hany et al., 1999). Prenatal exposure to another EDC, the phthalate DEHP, 526 

reduced Cyp19a1 expression in the hypothalamus of neonatal rats (Gao et al., 2018). 527 

The N-methyl-D-aspartate (NMDA) glutamate receptor subunit 2b (Grin2b) is expressed 528 

widely throughout the rat hypothalamus (Eyigor, Centers, & Jennes, 2001) and its presence and 529 

abundance affects functional properties of NMDA receptors. In the POA, PCBs resulted in the 530 

over-expression of Grin2b in both sexes, and VIN also increased Grin2b in the female POA. 531 

Hypothalamic Grin2b expression is sensitive to circulating estradiol levels, and naturally decreases 532 

during reproductive senescence (Maffucci, Noel, Gillette, Wu, & Gore, 2009). The activation of 533 

gonadotropin-releasing hormone (GnRH) neurons in the POA by glutamate is necessary for 534 

reproductive function, and administration of a specific antagonist of the NMDAR2b subunit 535 

altered GnRH and downstream luteinizing hormone (LH) release in rats (Maffucci, Walker, 536 

Ikegami, Woller, & Gore, 2008). Limited work also suggests that EDCs may change Grin2b 537 

expression (Alavian-Ghavanini et al., 2018; Dickerson, Cunningham, Patisaul, et al., 2011). Our 538 

finding suggests that glutamatergic neurotransmission may be altered by prenatal EDC exposure. 539 

While we found no evidence for globally demasculinizing or defeminizing effects of EDC 540 

treatment on gene expression, the typically sexually dimorphic expression of nonapeptide and sex 541 

steroid signaling genes was significantly disrupted in the MeA. Specifically, we found that EDC 542 

treatment (VIN males and PCB females) shifted both sexes away from their respective control 543 

groups and toward an intermediate defeminized (females) and demasculinized (males) phenotype 544 
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(Fig. 9). Further work using global gene expression profiling, something we are in the midst of 545 

undertaking, will enable us to better test this hypothesis. Some evidence is provided by a previous 546 

study from our lab (Walker, Goetz, & Gore, 2014) in which a shorter-term (2 day) prenatal 547 

exposure to PCBs changed gene expression patterns in the anteroventral periventricular nucleus of 548 

the hypothalamus (AVPV) in female rats such that developmental profiles were masculinized. 549 

Furthermore, hierarchical clustering analysis of genes in the AVPV and the arcuate nucleus 550 

revealed changes in relationships among gene expression profiles, with males and females each 551 

being affected in a sex-specific manner. That prior study’s results presaged those of the 552 

comprehensive analyses of the current one and its finding of dis-integration and reconstitution, as 553 

discussed next. 554 

 555 

EDC treatment can dis-integrate and/or reconstitute the relationships of behavior and gene 556 

expression phenotypes 557 

Gene co-expression patterns revealed sex, brain region, and treatment-specific effects of 558 

EDCs. Genes clustered into distinct modules between males and females across all brain regions 559 

suggesting sex-specificity of neuromolecular phenotypes. In VIN males there was a relationship 560 

between gene co-expression of modules containing nonapeptides and the behavioral PC describing 561 

variation in social interaction and preference in the VMN (and a trend in the MeA) that was not 562 

present in DMSO or PCB males. This finding indicates that a reorganization of the neuromolecular 563 

and behavioral phenotypes occurs in males in response to prenatal VIN exposure. Previous studies 564 

have reported effects of EDCs on the nonapeptides vasopressin, oxytocin, and their receptors in 565 

several brain regions (Arambula et al., 2018; Sullivan et al., 2014; Witchey et al., 2019), 566 
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implicating these as targets for perinatal endocrine disruption. Interestingly, gene co-expression 567 

modules clustered genes across functional categories and often clustered genes from the same 568 

functional category into distinct modules (see Fig. 5). This finding illustrates the importance of a 569 

systems-level approach that describes the neuromolecular phenotype beyond typical candidate 570 

pathways to identify gene expression mechanisms of complex behavior.  571 

Furthermore, there were many more correlations among the expression of genes rather than 572 

between genes and behavior. The correlation heatmaps showed a striking pattern of EDC influence 573 

on these relationships. In both males and females, we observed an EDC-induced qualitative dis-574 

integration of gene-gene and gene-behavior interactions in all three brain regions. 575 
 576 

Conclusions 577 

Overall, this present study presents evidence that prenatal exposure to two classes of EDCs 578 

abolished the innate preference of males and females for an opposite-sex mate, and identified 579 

several gene targets modified by EDC treatment both independent of and related to specific 580 

behavioral measures. More importantly, the relationships across the different levels of phenotypic 581 

analysis underwent considerable dis-organization and reorganization, indicating that beyond 582 

effects on individual genes and behaviors, EDCs disrupt the integration across these levels or 583 

organization. Because there were stronger correlations between genes than there were between 584 

genes and behavior, a broader analysis of more genes and brain regions is merited. These findings 585 

provide a foundation for further work on the disruption of complex behaviors after prenatal 586 

exposure to EDCs.  587 
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K. Female VMN: DMSO 
L. Female VMN: PCB

N. Female VMN: VIN

M. Female VMN: PCB
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P. Male MeA: DMSO 
Q. Male MeA: PCB

S. Male MeA: VIN

R. Male MeA: PCB

T. Male MeA: VIN
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U. Male VMN: DMSO 
V. Male VMN: PCB

X. Male POA: VIN

W. Male POA: PCB

Y. Male POA: VIN

− 0.5

0

0.5

1

−1

dis-integra�on recons�tu�on

dis-integra�on recons�tu�on

Tac3
E

sr1
P

gr
A

r
C

yp19a1
H

orm
one stim

ulus explore tim
e

E
stradiol(pg/m

l)
M

eC
P

2
H

orm
one nose touch tim

e
K

iss1
Total distance
S

ocial preference
C

ort(ng/m
l)

Tim
e near horm

one
H

orm
one preference

H
orm

one social tim
e

C
enter tim

e
W

eight
E

sr2
Tim

e near blank
O

xt
C

rh
Foxp2
Avp
A

hr
D

nm
t3b

Testosterone(ng/m
l)

C
rhr1

B
lank social tim

e
B

lank stim
ulus explore tim

e
B

lank nose touch tim
e

N
r3c1

H
dac2

S
tar

Arntl
Igf1
M

c3r
K

iss1r
D

rd2
S

rd5a1
E

srrg
E

gr1
Foxp1
E

srrb
G

rin1
Per2
G

ad1
G

abbr1
E

srra
D

nm
t3a

H
dac4

G
per

Igf1r
Avpr1a
D

rd1
G

nrh1
G

rin2b
O

xtr
H

sd17b1
B

dnf

Tac3
Esr1
Pgr
Ar
Cyp19a1
Hormone stimulus explore time
Estradiol(pg/ml)
MeCP2
Hormone nose touch time
Kiss1
Total distance
Social preference
Cort(ng/ml)
Time near hormone
Hormone preference
Hormone social time
Center time
Weight
Esr2
Time near blank
Oxt
Crh
Foxp2
Avp
Ahr
Dnmt3b
Testosterone(ng/ml)
Crhr1
Blank social time
Blank stimulus explore time
Blank nose touch time
Nr3c1
Hdac2
Star
Arntl
Igf1
Mc3r
Kiss1r
Drd2
Srd5a1
Esrrg
Egr1
Foxp1
Esrrb
Grin1
Per2
Gad1
Gabbr1
Esrra
Dnmt3a
Hdac4
Gper
Igf1r
Avpr1a
Drd1
Gnrh1
Grin2b
Oxtr
Hsd17b1
Bdnf

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.335984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.335984


Z. Male VMN: DMSO 
AA. Male VMN: PCB

CC. Male VMN: VIN

BB. Male VMN: PCB
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Supplementary Table 1. TLDA gene expression results

VMN-Female

Mean SEM N Mean SEM N Mean SEM N
Esr1 1.39 0.41 9 2.16 0.37 10 1.63 0.29 10
Esr2 0.98 0.08 9 1.13 0.09 10 1.00 0.06 10
Ar 0.89 0.11 9 1.26 0.10 10 1.07 0.11 10
Gper 1.07 0.08 9 1.24 0.07 10 1.16 0.11 10
Pgr 1.55 0.55 9 2.92 0.36 10 2.61 0.45 10
Nr3c1 0.91 0.19 9 1.47 0.08 10 1.50 0.12 10
Ahr 1.04 0.10 9 0.99 0.07 9 0.99 0.06 10
Cyp19a1 2.14 0.80 9 11.93 6.99 10 2.96 0.97 10
Srd5a1 1.21 0.15 9 1.06 0.12 10 1.14 0.10 10
Star 3.28 2.44 9 1.17 0.32 10 2.83 1.72 10
Hsd17b1 2.94 1.94 9 1.63 0.50 10 7.74 5.87 10
Esrra 1.02 0.07 9 1.06 0.08 10 1.05 0.13 10
Esrrb 1.09 0.10 9 1.09 0.15 10 1.30 0.18 10
Esrrg 0.95 0.12 9 0.82 0.06 10 0.86 0.07 10
Oxt 0.93 0.18 9 5.74 2.23 10 4.50 1.75 10
Oxtr 2.44 1.25 9 3.21 1.00 10 2.39 0.91 10
Avp 0.93 0.16 9 4.40 2.01 10 2.87 1.04 10
Avpr1a 0.83 0.13 9 1.20 0.11 10 1.10 0.14 10
Kiss1 2.75 1.10 9 6.38 1.78 10 5.00 1.35 10
Kiss1r 1.01 0.11 9 1.05 0.12 10 1.09 0.12 10
Crh 1.02 0.32 9 0.65 0.20 10 0.58 0.16 10
Crhr1 1.05 0.11 9 1.26 0.11 10 1.14 0.12 10
Gnrh1 1.04 0.19 9 1.82 0.37 10 1.42 0.22 10
Bdnf 1.03 0.11 9 0.80 0.11 10 1.03 0.19 10
Igf1 1.03 0.08 9 1.13 0.13 10 1.30 0.09 10
Igf1r 1.13 0.07 9 1.20 0.07 10 1.26 0.07 10
Egr1 1.29 0.37 9 1.17 0.10 10 1.13 0.16 10
Mc3r 1.23 0.32 9 2.26 0.29 10 1.63 0.31 10
Tac3 0.98 0.17 9 1.22 0.37 10 1.31 0.25 10
Gabbr1 0.84 0.11 9 1.11 0.07 10 1.10 0.07 10
Drd1 1.11 0.30 9 1.70 0.20 10 1.68 0.29 10
Drd2 1.05 0.13 9 1.15 0.13 10 0.99 0.12 10
Grin1 0.98 0.14 9 1.21 0.13 10 1.45 0.31 10
Grin2b 1.05 0.18 9 1.31 0.20 10 1.29 0.11 10
Gad1 0.80 0.14 9 1.17 0.42 10 0.81 0.17 10
MeCP2 1.01 0.07 9 1.05 0.07 10 0.97 0.06 10
Dnmt3a 0.99 0.06 9 1.06 0.03 10 1.22 0.18 10
Dnmt3b 0.92 0.08 9 0.98 0.08 10 1.08 0.11 10
Hdac2 1.02 0.06 9 1.13 0.04 10 1.15 0.07 10
Hdac4 0.99 0.07 9 1.18 0.07 10 1.24 0.11 10

DMSO PCB VIN
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Foxp1 1.09 0.06 9 1.22 0.05 10 1.19 0.06 10
Foxp2 1.10 0.22 9 1.50 0.23 10 1.32 0.14 10
Per2 1.00 0.09 9 1.07 0.08 10 1.02 0.04 10
Arntl 1.00 0.06 9 1.01 0.03 10 0.99 0.04 10

POA-Female

Mean SEM N Mean SEM N Mean SEM N
Esr1 1.23 0.32 9 2.04 0.27 10 1.27 0.30 10
Esr2 0.98 0.07 9 1.03 0.11 10 0.78 0.11 10
Ar 1.03 0.08 9 1.18 0.06 10 1.09 0.11 10
Gper 1.01 0.05 9 1.08 0.08 10 1.03 0.07 10
Pgr 1.11 0.16 9 1.47 0.14 10 1.16 0.20 10
Nr3c1 0.97 0.04 9 1.01 0.03 10 0.98 0.04 10
Ahr 1.00 0.06 9 1.14 0.07 10 1.15 0.05 10
Cyp19a1 1.23 0.26 9 1.51 0.16 10 1.02 0.29 10
Srd5a1 1.06 0.09 9 1.04 0.09 10 1.06 0.04 10
Star 1.02 0.07 9 1.09 0.07 10 1.09 0.11 10
Hsd17b1 1.06 0.12 9 1.11 0.07 10 1.27 0.10 10
Esrra 0.98 0.08 9 0.97 0.10 10 1.01 0.05 10
Esrrb 0.93 0.07 9 1.06 0.07 10 1.06 0.06 10
Esrrg 0.99 0.07 9 0.97 0.04 10 1.26 0.13 10
Oxt 1.00 0.28 9 0.39 0.16 10 0.42 0.13 10
Oxtr 0.98 0.06 9 1.06 0.06 10 0.99 0.07 10
Avp 1.57 0.51 9 0.93 0.57 10 1.13 0.38 10
Avpr1a 1.07 0.12 9 1.10 0.07 10 1.25 0.12 10
Kiss1 2.14 0.87 9 2.64 1.00 10 1.50 0.76 10
Kiss1r 1.04 0.07 9 1.15 0.10 10 1.17 0.04 10
Crh 1.00 0.19 9 1.12 0.16 10 0.69 0.17 10
Crhr1 1.03 0.06 9 1.07 0.06 10 1.06 0.07 10
Gnrh1 1.57 0.53 9 1.56 0.20 10 2.38 0.79 10
Bdnf 1.06 0.08 9 1.47 0.12 10 1.24 0.11 10
Igf1 1.16 0.16 9 1.31 0.12 10 0.99 0.14 10
Igf1r 1.01 0.07 9 1.07 0.07 10 1.05 0.04 10
Egr1 1.02 0.08 9 0.91 0.08 10 1.04 0.09 10
Mc3r 1.04 0.11 9 0.93 0.03 10 0.94 0.08 10
Tac3 1.24 0.19 9 1.89 0.30 10 1.44 0.23 10
Gabbr1 1.00 0.04 9 1.00 0.03 10 1.02 0.04 10
Drd1 0.96 0.09 9 0.96 0.15 10 1.19 0.07 10
Drd2 1.00 0.11 9 1.02 0.11 10 1.17 0.11 10
Grin1 1.00 0.05 9 1.12 0.04 10 1.11 0.05 10
Grin2b 1.04 0.06 9 4.26 2.18 10 2.60 1.53 10
Gad1 1.03 0.07 9 1.03 0.07 10 1.08 0.07 10

DMSO PCB VIN
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MeCP2 0.97 0.07 9 0.91 0.06 10 0.91 0.04 10
Dnmt3a 0.98 0.06 9 1.10 0.07 10 1.10 0.05 10
Dnmt3b 1.04 0.05 9 0.98 0.11 10 1.20 0.12 10
Hdac2 1.03 0.05 9 1.10 0.04 10 1.03 0.08 10
Hdac4 0.94 0.05 9 1.00 0.04 10 1.02 0.03 10
Foxp1 0.98 0.04 9 1.01 0.05 10 1.13 0.05 10
Foxp2 0.98 0.16 9 0.85 0.13 10 0.70 0.10 10
Per2 0.96 0.05 9 1.07 0.06 10 1.06 0.07 10
Arntl 0.98 0.04 9 0.98 0.03 10 0.98 0.04 10

MEA-Female

Mean SEM N Mean SEM N Mean SEM N
Esr1 1.13 0.16 9 1.21 0.16 10 0.93 0.16 10
Esr2 1.48 0.38 9 2.02 0.33 10 1.59 0.52 10
Ar 1.12 0.13 9 1.22 0.07 10 1.10 0.10 10
Gper 0.99 0.09 9 1.35 0.11 10 1.25 0.12 10
Pgr 1.08 0.09 9 1.15 0.08 10 1.02 0.05 10
Nr3c1 1.02 0.11 9 1.06 0.08 10 1.06 0.12 10
Ahr 1.08 0.10 9 1.19 0.06 10 1.17 0.03 10
Cyp19a1 1.30 0.29 9 1.63 0.27 10 1.25 0.36 10
Srd5a1 1.01 0.15 9 1.01 0.16 10 1.07 0.12 10
Star 1.19 0.20 9 1.41 0.15 10 1.50 0.15 10
Hsd17b1 0.97 0.11 9 1.00 0.12 10 1.32 0.16 10
Esrra 1.02 0.12 9 1.18 0.14 10 1.18 0.10 10
Esrrb 1.04 0.13 9 1.13 0.11 10 1.08 0.08 10
Esrrg 0.91 0.06 9 1.05 0.11 10 1.05 0.10 10
Oxt 3.15 1.37 9 1.83 0.70 10 4.78 1.72 10
Oxtr 1.26 0.26 9 1.30 0.14 10 1.18 0.20 10
Avp 1.32 0.38 9 0.92 0.35 10 1.69 0.64 10
Avpr1a 1.08 0.08 9 1.05 0.06 10 0.96 0.05 10
Kiss1 1.06 0.32 9 2.85 0.45 10 1.68 1.12 10
Kiss1r 1.18 0.12 9 1.39 0.13 10 1.32 0.09 10
Crh 0.95 0.10 9 1.09 0.11 10 1.06 0.12 10
Crhr1 1.05 0.15 9 0.99 0.11 10 1.09 0.19 10
Gnrh1 1.42 0.31 8 2.09 0.18 10 1.89 0.36 10
Bdnf 1.04 0.10 9 0.81 0.10 10 0.87 0.10 10
Igf1 0.98 0.07 9 1.04 0.08 10 1.09 0.10 10
Igf1r 0.97 0.06 9 1.02 0.05 10 0.94 0.03 10
Egr1 1.05 0.05 9 0.90 0.04 10 1.00 0.06 10
Mc3r 1.56 0.45 9 1.80 0.49 10 1.79 0.70 10
Tac3 1.32 0.28 9 0.80 0.10 10 1.26 0.21 10
Gabbr1 1.06 0.06 9 1.12 0.06 10 1.09 0.08 10

DMSO PCB VIN
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Drd1 1.61 0.37 9 1.38 0.26 10 1.26 0.12 10
Drd2 1.14 0.20 9 0.89 0.23 10 0.97 0.20 10
Grin1 1.05 0.06 9 1.06 0.04 10 1.07 0.06 10
Grin2b 1.04 0.06 9 1.02 0.06 10 1.02 0.07 10
Gad1 1.11 0.10 9 1.08 0.09 10 1.06 0.09 10
MeCP2 1.04 0.06 9 1.17 0.09 10 1.16 0.08 10
Dnmt3a 1.00 0.09 9 1.10 0.08 10 1.01 0.07 10
Dnmt3b 0.98 0.12 9 1.05 0.13 10 1.18 0.13 10
Hdac2 1.00 0.04 9 1.12 0.06 10 1.03 0.05 10
Hdac4 0.98 0.06 9 1.04 0.04 10 1.06 0.05 10
Foxp1 1.03 0.09 9 1.10 0.11 10 1.12 0.10 10
Foxp2 1.61 0.47 9 1.39 0.35 10 0.97 0.21 10
Per2 1.00 0.05 9 1.07 0.08 10 1.05 0.11 10
Arntl 1.07 0.10 9 1.07 0.05 10 1.01 0.06 10

VMN-Male

Mean SEM N Mean SEM N Mean SEM N
Esr1 1.24 0.20 10 1.57 0.28 9 1.75 0.49 10
Esr2 1.08 0.06 10 1.12 0.11 9 1.05 0.09 10
Ar 1.23 0.10 10 1.42 0.13 9 0.99 0.10 10
Gper 1.05 0.06 10 1.18 0.10 9 1.10 0.09 10
Pgr 1.66 0.22 10 2.08 0.29 9 2.47 0.56 10
Nr3c1 1.15 0.10 10 1.36 0.09 9 1.34 0.15 10
Ahr 0.99 0.10 10 1.02 0.09 9 1.07 0.09 10
Cyp19a1 23.68 14.16 10 3.89 1.13 9 4.81 1.47 10
Srd5a1 1.18 0.08 10 1.17 0.09 9 1.53 0.19 10
Star 1.10 0.32 10 0.79 0.06 9 1.01 0.34 10
Hsd17b1 3.79 2.73 10 0.87 0.14 9 1.00 0.20 10
Esrra 1.02 0.11 10 1.06 0.08 9 1.15 0.10 10
Esrrb 1.02 0.08 10 1.10 0.14 9 1.24 0.07 10
Esrrg 0.91 0.11 10 0.78 0.09 9 0.96 0.11 10
Oxt 5.07 2.16 10 1.42 0.49 9 4.67 2.35 10
Oxtr 2.09 0.50 10 4.13 1.52 9 3.63 1.15 10
Avp 4.54 1.89 10 5.56 3.72 9 2.77 0.70 10
Avpr1a 1.00 0.12 10 1.14 0.14 9 1.00 0.18 10
Kiss1 1.41 0.59 10 2.39 1.02 9 3.52 1.21 10
Kiss1r 1.16 0.11 10 1.02 0.11 9 1.02 0.11 10
Crh 0.84 0.20 10 0.82 0.33 9 0.97 0.25 10
Crhr1 1.13 0.10 10 1.10 0.13 9 1.04 0.10 10
Gnrh1 0.86 0.08 10 1.46 0.21 9 1.52 0.30 10
Bdnf 0.91 0.17 10 1.00 0.24 9 1.10 0.19 10
Igf1 1.07 0.09 10 1.11 0.14 9 1.15 0.10 10

DMSO PCB VIN
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Igf1r 0.99 0.03 10 1.05 0.05 9 1.29 0.24 10
Egr1 0.88 0.08 10 1.09 0.12 9 0.97 0.11 10
Mc3r 1.32 0.23 10 2.10 0.35 9 1.57 0.38 10
Tac3 1.13 0.25 10 0.75 0.21 9 1.25 0.28 10
Gabbr1 1.00 0.03 10 1.04 0.07 9 1.03 0.05 10
Drd1 1.19 0.10 10 1.75 0.27 9 1.32 0.26 10
Drd2 1.26 0.17 10 1.12 0.13 9 1.32 0.17 10
Grin1 1.13 0.11 10 1.25 0.10 9 1.16 0.18 10
Grin2b 1.24 0.06 10 1.41 0.13 9 1.30 0.16 10
Gad1 0.98 0.12 10 0.99 0.16 9 0.86 0.13 10
MeCP2 1.05 0.05 10 0.99 0.09 9 1.02 0.06 10
Dnmt3a 0.90 0.10 10 1.02 0.08 9 0.96 0.06 10
Dnmt3b 1.10 0.11 10 0.89 0.11 9 0.92 0.08 10
Hdac2 0.92 0.02 10 0.85 0.12 9 1.06 0.06 10
Hdac4 0.88 0.09 10 1.08 0.09 9 1.04 0.09 10
Foxp1 1.11 0.04 10 1.17 0.08 9 1.11 0.06 10
Foxp2 1.63 0.14 10 1.60 0.24 9 1.12 0.16 10
Per2 0.75 0.05 10 0.83 0.06 9 0.73 0.04 10
Arntl 0.92 0.02 10 0.95 0.05 9 0.89 0.05 10

POA-Male

Mean SEM N Mean SEM N Mean SEM N
Esr1 0.78 0.16 10 0.87 0.15 10 1.22 0.24 10
Esr2 0.79 0.12 10 0.75 0.05 10 0.85 0.11 10
Ar 1.04 0.09 10 1.11 0.08 10 1.30 0.15 10
Gper 1.16 0.06 10 1.10 0.08 10 1.06 0.04 10
Pgr 0.84 0.12 10 0.94 0.11 10 1.18 0.15 10
Nr3c1 1.03 0.05 10 1.03 0.02 10 1.06 0.02 10
Ahr 1.19 0.10 10 1.27 0.04 10 1.12 0.06 10
Cyp19a1 1.29 0.35 10 1.54 0.26 10 2.01 0.43 10
Srd5a1 1.16 0.05 10 1.14 0.09 10 1.13 0.07 10
Star 1.13 0.12 10 1.01 0.08 10 1.15 0.10 10
Hsd17b1 1.05 0.10 10 0.98 0.09 10 1.11 0.10 10
Esrra 1.05 0.11 10 1.05 0.06 10 0.96 0.07 10
Esrrb 1.01 0.10 10 0.99 0.06 10 0.98 0.05 10
Esrrg 1.28 0.11 10 1.12 0.13 10 1.05 0.10 10
Oxt 0.68 0.20 10 0.56 0.19 10 0.22 0.06 10
Oxtr 0.87 0.08 10 0.93 0.04 10 1.01 0.06 10
Avp 1.29 0.27 10 1.00 0.20 10 0.56 0.12 10
Avpr1a 1.17 0.08 10 1.15 0.08 10 1.08 0.11 10
Kiss1 0.42 0.22 10 0.28 0.05 10 0.47 0.13 10
Kiss1r 1.30 0.07 10 1.34 0.10 10 1.24 0.07 10

DMSO PCB VIN
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Crh 0.73 0.20 10 0.65 0.20 10 0.44 0.09 10
Crhr1 1.07 0.07 10 1.05 0.06 10 1.05 0.05 10
Gnrh1 1.17 0.12 10 0.83 0.19 10 1.13 0.20 10
Bdnf 1.06 0.08 10 1.11 0.08 10 1.10 0.05 10
Igf1 0.80 0.08 10 0.90 0.08 10 0.90 0.09 10
Igf1r 1.05 0.09 10 1.01 0.06 10 0.94 0.05 10
Egr1 0.76 0.07 10 0.93 0.08 10 0.89 0.11 10
Mc3r 0.78 0.06 10 0.95 0.07 10 0.99 0.02 10
Tac3 0.90 0.07 10 0.78 0.08 10 1.03 0.12 10
Gabbr1 1.06 0.07 10 1.08 0.04 10 0.92 0.10 10
Drd1 1.19 0.16 10 1.23 0.11 10 0.91 0.09 10
Drd2 1.12 0.11 10 0.93 0.11 10 0.89 0.11 10
Grin1 1.09 0.07 10 1.13 0.04 10 1.06 0.05 10
Grin2b 2.19 1.19 10 1.83 0.78 10 5.22 4.11 10
Gad1 1.05 0.09 10 1.05 0.05 10 1.02 0.06 10
MeCP2 1.05 0.18 10 0.92 0.06 10 0.85 0.04 10
Dnmt3a 1.09 0.08 10 1.09 0.05 10 1.06 0.05 10
Dnmt3b 1.29 0.07 10 1.22 0.09 10 1.09 0.11 10
Hdac2 0.99 0.05 10 1.03 0.04 10 1.02 0.06 10
Hdac4 1.01 0.07 10 0.99 0.04 10 0.94 0.03 10
Foxp1 1.16 0.06 10 1.18 0.05 10 1.07 0.06 10
Foxp2 0.75 0.16 10 0.64 0.13 10 0.50 0.06 10
Per2 0.93 0.07 10 1.02 0.07 10 0.95 0.07 10
Arntl 0.97 0.04 10 1.00 0.03 10 0.98 0.03 10

MEA-Male

Mean SEM N Mean SEM N Mean SEM N
Esr1 1.27 0.16 10 1.24 0.12 10 1.07 0.14 10
Esr2 2.69 0.54 10 2.43 0.33 10 2.21 0.47 10
Ar 1.29 0.15 10 1.26 0.10 10 1.21 0.15 10
Gper 1.08 0.08 10 0.97 0.09 10 0.95 0.10 10
Pgr 1.32 0.12 10 1.17 0.09 10 1.02 0.09 10
Nr3c1 0.91 0.07 10 0.93 0.08 10 0.89 0.07 10
Ahr 1.03 0.08 10 1.25 0.08 10 1.11 0.08 10
Cyp19a1 2.30 0.43 10 2.20 0.34 10 1.84 0.36 10
Srd5a1 0.84 0.11 10 1.01 0.12 10 1.04 0.18 10
Star 1.24 0.11 10 1.30 0.11 10 1.14 0.11 10
Hsd17b1 0.81 0.10 10 0.79 0.09 10 0.88 0.10 10
Esrra 0.84 0.08 10 1.01 0.06 10 0.99 0.11 10
Esrrb 0.83 0.07 10 0.94 0.06 10 1.05 0.11 10
Esrrg 0.86 0.11 10 0.89 0.06 10 0.87 0.08 10
Oxt 2.12 0.56 10 2.32 0.77 10 1.40 0.54 10

DMSO PCB VIN
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Oxtr 1.91 0.27 10 2.02 0.23 10 1.72 0.35 10
Avp 1.31 0.35 10 1.20 0.33 10 1.01 0.43 10
Avpr1a 0.96 0.09 10 1.05 0.06 10 1.06 0.05 10
Kiss1 6.08 1.57 10 5.84 1.22 10 4.94 0.97 10
Kiss1r 1.01 0.08 10 1.24 0.09 10 1.12 0.12 10
Crh 0.81 0.08 10 0.89 0.10 10 0.81 0.10 10
Crhr1 1.08 0.15 10 0.92 0.09 10 1.11 0.15 10
Gnrh1 2.14 0.43 10 1.87 0.18 10 1.46 0.22 10
Bdnf 0.76 0.07 10 0.84 0.07 10 1.01 0.13 10
Igf1 0.90 0.08 10 1.06 0.08 10 0.77 0.07 10
Igf1r 0.87 0.06 10 0.90 0.06 10 0.86 0.05 10
Egr1 0.86 0.06 10 0.85 0.04 10 0.89 0.05 10
Mc3r 1.37 0.40 10 1.27 0.39 10 1.26 0.22 10
Tac3 0.75 0.12 10 0.67 0.05 10 0.87 0.16 10
Gabbr1 0.99 0.06 10 1.08 0.06 10 1.03 0.06 10
Drd1 1.08 0.19 10 0.94 0.08 10 0.94 0.19 10
Drd2 0.63 0.09 10 0.72 0.12 10 0.69 0.10 10
Grin1 1.01 0.04 10 1.11 0.04 10 1.11 0.04 10
Grin2b 0.87 0.07 10 1.08 0.06 10 1.03 0.08 10
Gad1 1.04 0.11 10 1.08 0.07 10 1.03 0.09 10
MeCP2 1.06 0.09 10 1.05 0.09 10 0.87 0.07 10
Dnmt3a 0.84 0.07 10 0.94 0.05 10 0.89 0.06 10
Dnmt3b 1.00 0.10 10 1.05 0.06 10 0.87 0.11 10
Hdac2 1.07 0.06 10 1.02 0.03 10 1.06 0.06 10
Hdac4 0.82 0.04 10 0.91 0.03 10 0.92 0.04 10
Foxp1 1.01 0.04 10 1.16 0.06 10 1.00 0.08 10
Foxp2 1.37 0.29 10 0.81 0.20 10 0.99 0.34 10
Per2 0.83 0.07 10 0.79 0.05 10 0.87 0.03 10
Arntl 0.98 0.07 10 0.92 0.04 10 0.95 0.04 10

bolded numbers indicate significantly different from DMSO after adjusting for multiple comparisons
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Supplementary Table 2. Sex differences in gene expression results

VMN

Mean SEM N Mean SEM N
Esr1 1.39 0.41 9 1.24 0.20 10
Esr2 0.98 0.08 9 1.08 0.06 10
Ar 0.89 0.11 9 1.23 0.10 10
Gper 1.07 0.08 9 1.05 0.06 10
Pgr 1.55 0.55 9 1.66 0.22 10
Nr3c1 0.91 0.19 9 1.15 0.10 10
Ahr 1.04 0.10 9 0.99 0.10 10
Cyp19a1 2.14 0.79 9 23.68 14.16 10
Srd5a1 1.21 0.15 9 1.18 0.08 10
Star 3.28 2.44 9 1.10 0.32 10
Hsd17b1 2.94 1.94 9 3.79 2.73 10
Esrra 1.02 0.07 9 1.02 0.11 10
Esrrb 1.09 0.10 9 1.02 0.08 10
Esrrg 0.95 0.11 9 0.91 0.11 10
Oxt 0.93 0.18 9 5.07 2.16 10
Oxtr 2.44 1.25 9 2.09 0.50 10
Avp 0.93 0.16 9 4.54 1.89 10
Avpr1a 0.83 0.13 9 1.00 0.12 10
Kiss1 2.74 1.10 9 1.41 0.59 10
Kiss1r 1.01 0.11 9 1.16 0.11 10
Crh 1.02 0.32 9 0.84 0.20 10
Crhr1 1.05 0.11 9 1.13 0.10 10
Gnrh1 1.04 0.19 9 0.86 0.08 10
Bdnf 1.03 0.10 9 0.91 0.17 10
Igf1 1.03 0.08 9 1.07 0.09 10
Igf1r 1.13 0.07 9 0.99 0.03 10
Egr1 1.29 0.36 9 0.88 0.08 10
Mc3r 1.23 0.32 9 1.32 0.23 10
Tac3 0.98 0.16 9 1.13 0.25 10
Gabbr1 0.84 0.11 9 1.00 0.03 10
Drd1 1.11 0.30 9 1.19 0.10 10
Drd2 1.04 0.13 9 1.26 0.17 10
Grin1 0.98 0.14 9 1.13 0.11 10
Grin2b 1.05 0.18 9 1.24 0.06 10
Gad1 0.80 0.14 9 0.98 0.12 10
MeCP2 1.01 0.07 9 1.05 0.05 10
Dnmt3a 0.99 0.06 9 0.90 0.10 10
Dnmt3b 0.92 0.08 9 1.10 0.11 10
Hdac2 1.02 0.06 9 0.92 0.02 10
Hdac4 0.99 0.07 9 0.88 0.09 10

Females Males

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.335984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.12.335984


Foxp1 1.09 0.06 9 1.11 0.04 10
Foxp2 1.10 0.22 9 1.63 0.14 10
Per2 1.00 0.09 9 0.75 0.05 10
Arntl 1.00 0.06 9 0.92 0.02 10

POA

Mean SEM N Mean SEM N
Esr1 1.23 0.32 9 0.78 0.16 10
Esr2 0.98 0.07 9 0.79 0.12 10
Ar 1.03 0.08 9 1.04 0.09 10
Gper 1.01 0.05 9 1.16 0.06 10
Pgr 1.11 0.16 9 0.84 0.12 10
Nr3c1 0.97 0.04 9 1.03 0.05 10
Ahr 1.00 0.06 9 1.19 0.10 10
Cyp19a1 1.23 0.26 9 1.29 0.35 10
Srd5a1 1.06 0.09 9 1.16 0.05 10
Star 1.02 0.07 9 1.13 0.12 10
Hsd17b1 1.06 0.12 9 1.05 0.10 10
Esrra 0.98 0.08 9 1.05 0.11 10
Esrrb 0.93 0.07 9 1.01 0.10 10
Esrrg 0.99 0.07 9 1.28 0.11 10
Oxt 1.00 0.28 9 0.68 0.20 10
Oxtr 0.98 0.06 9 0.87 0.08 10
Avp 1.57 0.51 9 1.29 0.27 10
Avpr1a 1.07 0.12 9 1.17 0.08 10
Kiss1 2.14 0.87 9 0.42 0.22 10
Kiss1r 1.04 0.07 9 1.30 0.07 10
Crh 1.00 0.19 9 0.73 0.20 10
Crhr1 1.03 0.06 9 1.07 0.07 10
Gnrh1 1.57 0.53 9 1.17 0.12 10
Bdnf 1.06 0.08 9 1.06 0.08 10
Igf1 1.16 0.16 9 0.80 0.08 10
Igf1r 1.01 0.07 9 1.05 0.09 10
Egr1 1.02 0.08 9 0.76 0.07 10
Mc3r 1.04 0.11 9 0.78 0.06 10
Tac3 1.24 0.19 9 0.90 0.07 10
Gabbr1 1.00 0.04 9 1.06 0.07 10
Drd1 0.96 0.09 9 1.19 0.16 10
Drd2 1.00 0.11 9 1.12 0.11 10
Grin1 1.00 0.05 9 1.09 0.07 10
Grin2b 1.04 0.06 9 2.19 1.19 10
Gad1 1.03 0.07 9 1.05 0.09 10
MeCP2 0.97 0.07 9 1.05 0.18 10
Dnmt3a 0.98 0.06 9 1.09 0.08 10

Females Males
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Dnmt3b 1.04 0.05 9 1.29 0.07 10
Hdac2 1.03 0.05 9 0.99 0.05 10
Hdac4 0.94 0.05 9 1.01 0.07 10
Foxp1 0.98 0.04 9 1.16 0.06 10
Foxp2 0.98 0.16 9 0.75 0.16 10
Per2 0.96 0.05 9 0.93 0.07 10
Arntl 0.98 0.04 9 0.97 0.04 10

MEA

Mean SEM N Mean SEM N
Esr1 1.13 0.16 9 1.27 0.16 10
Esr2 1.48 0.38 9 2.69 0.54 10
Ar 1.12 0.13 9 1.29 0.15 10
Gper 0.99 0.09 9 1.08 0.08 10
Pgr 1.08 0.09 9 1.32 0.12 10
Nr3c1 1.02 0.11 9 0.91 0.07 10
Ahr 1.08 0.10 9 1.03 0.08 10
Cyp19a1 1.30 0.29 9 2.30 0.43 10
Srd5a1 1.01 0.15 9 0.84 0.11 10
Star 1.19 0.20 9 1.24 0.11 10
Hsd17b1 0.97 0.11 9 0.81 0.10 10
Esrra 1.02 0.12 9 0.84 0.08 10
Esrrb 1.04 0.13 9 0.83 0.07 10
Esrrg 0.91 0.06 9 0.86 0.11 10
Oxt 3.15 1.37 9 2.12 0.56 10
Oxtr 1.26 0.26 9 1.91 0.27 10
Avp 1.32 0.38 9 1.31 0.35 10
Avpr1a 1.08 0.08 9 0.96 0.09 10
Kiss1 1.06 0.32 9 6.08 1.57 10
Kiss1r 1.18 0.12 9 1.01 0.08 10
Crh 0.95 0.10 9 0.81 0.08 10
Crhr1 1.05 0.15 9 1.08 0.15 10
Gnrh1 1.42 0.31 8 2.14 0.43 10
Bdnf 1.04 0.10 9 0.76 0.07 10
Igf1 0.98 0.07 9 0.90 0.08 10
Igf1r 0.97 0.06 9 0.87 0.06 10
Egr1 1.05 0.05 9 0.86 0.06 10
Mc3r 1.56 0.45 9 1.37 0.40 10
Tac3 1.32 0.28 9 0.75 0.12 10
Gabbr1 1.06 0.06 9 0.99 0.06 10
Drd1 1.61 0.37 9 1.08 0.19 10
Drd2 1.14 0.20 9 0.63 0.09 10
Grin1 1.05 0.06 9 1.01 0.04 10
Grin2b 1.04 0.06 9 0.87 0.07 10

Females Males
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Gad1 1.11 0.10 9 1.04 0.11 10
MeCP2 1.04 0.06 9 1.06 0.09 10
Dnmt3a 1.00 0.09 9 0.84 0.07 10
Dnmt3b 0.98 0.12 9 1.00 0.10 10
Hdac2 1.00 0.04 9 1.07 0.06 10
Hdac4 0.98 0.06 9 0.82 0.04 10
Foxp1 1.03 0.09 9 1.01 0.04 10
Foxp2 1.61 0.47 9 1.37 0.29 10
Per2 1.00 0.05 9 0.83 0.07 10
Arntl 1.07 0.10 9 0.98 0.07 10

bolded numbers indicate significant sex difference after adjusting for 
multiple comparisons
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Coefficient Estimate t-value p-value adj. p-value
DMSO -0.00718 -0.106 0.916 0.999
PCB 0.018466 0.294 0.772 0.988
VIN -0.00386 -0.061 0.952 1.000

Behavior PC2 0.047341 0.837 0.411 0.796
PCB x PC2 -0.10677 -1.41 0.172 0.432
VIN x PC2 -0.04574 -0.706 0.488 0.866
DMSO -0.0431 -0.736 0.469 0.850
PCB 0.0741 1.356 0.188 0.465
VIN -0.03248 -0.591 0.56 0.915

Behavior PC2 0.07305 1.487 0.151 0.388
PCB x PC2 -0.03153 -0.48 0.636 0.952
VIN x PC2 -0.01544 -0.274 0.786 0.990
DMSO -0.11861 -2.086 0.0483 0.138
PCB 0.088936 1.678 0.1069 0.288
VIN 0.003025 0.057 0.9552 1.000

Behavior PC2 -0.06209 -1.303 0.2056 0.499
PCB x PC2 -0.02727 -0.427 0.6731 0.965
VIN x PC2 0.066164 1.212 0.238 0.558

Coefficient Estimate t-value p-value adj. p-value
DMSO 0.053823 0.912 0.371 0.604
PCB 0.025393 0.415 0.682 0.899
VIN -0.00613 -0.098 0.923 0.994

Behavior PC2 0.060819 1.492 0.149 0.276
PCB x PC4 -0.06123 -0.649 0.523 0.772
VIN x PC4 -0.14916 -2.068 0.05 0.098
DMSO -0.05868 -1.101 0.28241 0.485
PCB 0.06015 1.088 0.28776 0.493
VIN 0.07725 1.37 0.18378 0.334

Behavior PC4 0.03216 0.873 0.39148 0.630
PCB x PC4 -0.01304 -0.153 0.87977 0.986
VIN x PC4 -0.19943 -3.06 0.00554 0.011

Supplementary Table 3. Gene co-expression, social interaction, and 
preference across treatments.

VMN

MEA

MEA

POA

Treatment

Treatment x Behavior

Treatment

Treatment x Behavior

Treatment

Treatment x Behavior

Treatment

Treatment x Behavior

VMN

Treatment

Treatment x Behavior

Males

Females

Bolded numbers indicate significant effects (p < 0.05) and italicized 
numbers indicate a trend (p <0.1) after adjusting for multiple 
comparisons.
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