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Abstract

Evolution of drug resistance to anticancer, antimicrobial and antiviral therapies is
widespread among cancer and pathogen cell populations. Classical theory posits strictly
that genetic and phenotypic variation is generated in evolving populations
independently of the selection pressure. However, recent experimental findings among
antimicrobial agents, traditional cytotoxic chemotherapies and targeted cancer therapies
suggest that treatment not only imposes selection but also affects the rate of adaptation
via altered mutational processes. Here we analyze a model with drug-induced increase
in mutation rate and explore its consequences for treatment optimization. We argue
that the true biological cost of treatment is not limited to the harmful side-effects, but
instead realizes even more profoundly by fundamentally changing the underlying
eco-evolutionary dynamics within the microenvironment. Factoring in such costs (or
collateral damage) of control is at the core of successful therapy design and can unify
different evolution-based approaches to therapy optimization. Using the concept of
evolutionary rescue, we formulate the treatment as an optimal control problem and
solve the optimal elimination strategy, which minimizes the probability of evolutionary
rescue. Our solution exploits a trade-off, where increasing the drug concentration has
two opposing effects. On the one hand, it reduces de novo mutations by decreasing the
size of the target cell population faster; on the other hand, a higher dosage generates a
surplus of treatment-induced mutations. We show that aggressive elimination strategies,
which aim at eradication as fast as possible and which represent the current standard of
care, can be detrimental even with modest drug-induced increases (fold change ≤10) to
the baseline mutation rate. Our findings highlight the importance of dose dependencies
in resistance evolution and motivate further investigation of the mutagenicity and other
hidden collateral costs of therapies that promote resistance.
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Author summary

The evolution of drug resistance is a particularly problematic and frequent outcome of
cancer and antimicrobial therapies. Recent research suggests that these treatments may
enhance the evolvability of the target population not only via inducing intense selection
pressures but also via altering the underlying mutational processes. Here we investigate
the consequences of such drug-induced evolution by considering a mathematical model
with explicitly dose-dependent mutation rate. We identify, characterize and exploit a
trade-off between decreasing the target population size as fast as possible and generating
a surplus of treatment-induced de novo mutations. By formulating the treatment as an
optimal control problem over the evolution of the target population, we find the optimal
treatment strategy, which minimizes the probability of evolutionary rescue. We show
that this probability changes non-monotonically with the cumulative drug concentration
and is minimized at an intermediate dosage. Our results are immediately amenable to
experimental investigation and motivate further study of the various mutagenic and
other hidden collateral costs of treatment. Taken together, our results add to the
ongoing criticism of the standard practice of administering aggressive, high-dose
therapies and stimulate further clinical trials on alternative treatment strategies.

Introduction

The formation of cancer and emergence of antimicrobial resistance (AMR) are notorious
examples of fast paced evolution. Modern medicine has developed various drugs to
target cancer and pathogen cell populations with the aim to drive them to extinction
using aggressive, high-dose therapies. However, these treatments frequently fail due to
drug resistance, a phenomenon where the drug loses its desired pharmacodynamical
effects. The emergence of drug resistance is the consequence of evolution which
continues also during the treatment. Indeed, the administration of treatment represents
a major switch point in the evolutionary trajectories of these populations, initiating a
rapid phase of human-induced evolution.

The most desirable consequence of this human-induced evolution is the decay of the
drug-sensitive target population. The key question in such a situation is whether
adaptive evolution can happen fast enough to save the population from extinction. If
the population is saved, we say that an evolutionary rescue has occurred [1]. Introduced
first in the field of conservation biology, where the objective has been to design the most
efficient intervention programs to save endangered species from going extinct, the
concept of evolutionary rescue can be readily applied also to the study of drug
resistance [2, 3] with the opposite goal in mind.

Evolutionary rescue can occur either by standing variation or by de novo mutation.
Rescue by standing variation corresponds to the intrinsic resistance model in which the
population is sufficiently diverse to contain individuals that can survive in the changed
environment. Rescue by de novo mutation, on the other hand, corresponds to the
acquired resistance model in which (partially-)resistant individuals are created by
mutational processes after the initiation of therapy. The deeply rooted paradigm of
administering treatment as aggressively as possible to maximize cell kill [4] has its origin
in the somatic mutation theory of drug resistance [5], where it is assumed that rescue
mutations arise spontaneously and independently of the treatment. The rationale of
such aggressive elimination therapies is then to maximize the probability of cure by
eradicating the population as fast as possible thus minimizing the rescue window during
which mutations can occur and save the population.

However, the gain of population decay, comes necessarily with a cost, which realizes
as collateral damage at various scales. The most obvious examples of such damage are
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the clinical side-effects of the treatment, which often result from the off-target exposure
to the drug. For example, traditional anticancer therapies hit also healthy tissues while
antimicrobial agents negatively affect the natural gut microbiome. The detrimental
side-effects experienced by the patient yield a toxicity constraint which have led to the
maximum tolerated dose (MTD) paradigm [6], where treatment is predominantly
administered at the highest cumulative dose possible given the toxicity constraint.

Recent research and experimental evidence suggest that the true biological cost of
the treatment is not limited to the harmful side-effects, but instead realize even more
profoundly by fundamentally altering the underlying eco-evolutionary dynamics within
the microenvironment. The harsh selection pressure induced by the treatment not only
leads to the decay of the sensitive cells, but it can also enhance the growth opportunities
of the pre-existing or emerged resistant cells, a well-known phenomenon of competitive
release [4, 7]. In these cases, aggressive chemotherapy only accelerates the population’s
evolution towards treatment resistance as by removing the competing sensitive cells the
resistant cells have even more resources to reoccupy the niche leading to relapse.

This problem has then motivated various authors to suggest so-called containment
strategies which use the minimal amount of control to keep the population burden in
check while deliberately maintaining sensitive cells to competitively suppress the growth
of the existing resistant cells as a form of ecological control [8–11]. Competitive release
represents an important ’ecological collateral damage’ of treatment, which promotes the
emergence of drug resistance and leads to treatment failure. Besides the altered
competition dynamics, beneficial rescue mutations may become enriched in the
off-target species and promote the emergence of AMR by means such as horizontal
gene-transfer [12].

In addition to the extensive ecological consequences, the treatment may also induce
changes to the intrinsic dynamics of the target cells other than Darwinian selection.
Such ’evolutionary collateral damage’ can realize, for example, by the treatment
enhancing the evolvability of the population. Classical theory, based on the famous
Luria-Delbrück experiments [13] and somatic mutation theory of drug resistance, posits
strictly that genetic and phenotypic variation is generated independently of the
selection pressure. In contrast, recent experimental evidence suggests that the therapies
themselves may affect the way variation is generated. Studies in bacteria demonstrate
that stress alone can increase the genome-wide mutation rate as adaptation to a
changing environment (adaptive mutability), driven by switch to more error-prone DNA
repair mechanisms [14]. Recently, similar findings were reported also in cancer in the
context of targeted cytostatic therapies [15,16]. Higher levels of reactive oxygen species
(ROS) during the treatment may serve as another mechanism which increases the
mutation rate [17]. These are examples of fundamentally random drug-induced effects,
where only the probability of acquiring mutations changes as a function of dose. On the
other hand, conventional genotoxic chemotherapies may also cause specific drug-induced
mutations, such as the reported distinct mutational signatures of platinum-based
therapies [18].

Secondly, the treatment can also increase the phenotypic mutation rate directly as
certain resistance mechanisms can be activated even without the need for a mutation
using epigenetic regulation in a post-adaptive manner. Cancer cells – especially
stem-like cancer cells – can exhibit diverse phenotypic plasticity, dynamically
responding to changes in their environment. Cells can enhance their survival via
life-history trade-offs by reallocating resources normally devoted to proliferation [19].
Such quiescent, drug-tolerant cells can act as a reservoir from which permanently
resistant cells can emerge via further genetic mutations, or alternatively, revert back to
active proliferation upon treatment discontinuation [20].

Finally, the phenotypic mutation rate can also change due to the dose-dependency of
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the required mutational targets [21]. Higher levels of stress can decrease the phenotypic
mutation rate as the number of mutational targets required for the resistant phenotype
may increase. Alternatively, fewer mutational targets may be needed to become
selectable as the proportion of beneficial mutations may increase as the selection
pressure becomes harsher. This may promote the emergence of drug resistance by
gradual step-wise adaptation, especially in drug-sanctuaries [22]. All these findings
provide compelling evidence that the genotypic/phenotypic mutation rate, and hence
the rate of adaptation to the stressful environment, is strongly dose-dependent.

The outlined collateral damage occurring at various scales ranging from the whole
patient to the microenvironment of the target cells greatly complicate the combat
against drug resistance and require the integration of ecological and evolutionary
dynamics into therapy design. Eco-evolutionary control has to further factor in the
underlying biological mechanism of control [23]. Therapy is often based on biomolecular
interactions, such as drug–target or antibody–antigen binding [24]. The biophysics of
molecular binding dictate a finite control leverage, for an example, as seen in the
Hill-function type pharmacodynamics which cause a saturation of the drug’s effect.
However, the different collateral damage caused by the drug do not saturate in general,
but can keep increasing with the dosage, or saturate at a different concentration. These
observations point to a great scope in designing treatments using eco-evolutionary
control theory [23].

Majority of previous treatment optimization models have focused on optimizing the
delivery mode with respect to some toxicity constraint (see e.g. [25]). The “second-wave”
of treatment optimization has focused on the issue of competitive release and the
investigation of various containment strategies [11,26]. Here we investigate the
consequences of evolutionary collateral damage, as realized by drug-induced resistance
evolution, on treatment selection using the rigorous methods of optimal control
theory [27] (see Fig. 1).
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Fig 1. Drug-induced mutations realise an evolutionary collateral cost of
therapy. A Before therapy the target cell population (blue circle) is well-adapted to its
microenvironment. B Initiation of control (drug therapy) drastically changes the growth
conditions of the target population pushing it below zero level of growth (light blue
plane). At the same time opportunities to adapt to the new conditions create a
selection pressure for resistance to evolve. Furthermore, the therapy can change the
mutational wiring both qualitatively and quantitatively (red mesh). The effect of
therapy on the mutational processes represent an evolutionary collateral damage of
control, which can expedite the emergence of resistance (red arrow and circle). C The
treatment eliminates the sensitive cell population (blue) during the rescue window but
an evolutionary rescue can occur if a resistant mutant (red squares) manages to
successfully establish. Here we derive optimal treatment strategies that minimise the
probability of evolutionary rescue while taking into account drug-induced mutations.

Only few previous theoretical studies of drug resistance have explicitly accounted for
dose-dependent mutation rates [28,29]. Liu et al. find that the optimal delivery mode of
the MTD-strategy is robust against changes in the mutation rate in a model for
targeted cytostatic cancer therapy. Greene et al. on the other hand show that the
dose-dependent mutation rate may have a significant impact on which delivery mode is
preferable. In contrast, we solve the optimal elimination strategy, which minimizes the
probability of an evolutionary rescue, and demonstrate the potential to improve
treatment outcomes by reducing the total cumulative dosage administered.

We identify and exploit a trade-off, where increasing the dosage on the one hand
reduces de novo mutations by decreasing the target population size faster, but at the
expense of simultaneously generating a surplus of treatment-induced mutations. By
simulating virtual treatments in silico, we show that the probability of cure changes
non-monotonically as a function of the drug concentration and is maximized at an
intermediate dosage. Our results highlight the importance of dose-dependencies in
resistance evolution and help to redefine the precise evolutionary objectives of the
treatment, providing a framework for systematic therapy optimisation.

Results

Dose-dependent mutation rate introduces a trade-off between
mutation intensity and target population decay

Here we set the therapy optimisation problem by formulating the specific control
objectives that we want to achieve while factoring in the eco-evolutionary dynamics of
the target population. We further demonstrate how drug-induced mutations affect
realising these goals.
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Figure 1C provides a schematic example of an evolutionary rescue: first, the
population rapidly declines as the treatment eradicates sensitive cells. Cells can however
acquire mutations that reduce their sensitivity to the drug. The emergent resistant cells
are strongly favoured by natural selection but can nevertheless be lost due to stochastic
extinction [30]. If resistant cells manage to establish, they will soon repopulate the
tumor niche and rescue the population from extinction.

We use the term rescue window for the initial treatment period during which
sensitive cells can acquire mutations and the population can be rescued. We model the
acquisition of rescue mutants by a time-inhomogeneous Poisson process during the
rescue window, where the rate of gaining a new mutant at time t is given by the
product of the (sensitive) cell population size S(t, u(t)) and the phenotypic mutation
rate µ(u(t)). Both of these factors depend on the drug concentration u(t), as we
explicitly take into account drug-induced effects.

Because the growth of resistant cells originates from a single cell, we must use
stochastic population dynamics to model the growth of small populations that have a
considerable extinction risk due to inherent stochastic fluctuations. The stochastic
extinction risk for a simple birth-death process founded by a single resistant (subscript
R) cell is given by q = δR

βR
(see e.g. [31]), where δR and βR are the intrinsic death and

birth rates respectively, leading to the net growth rate rR = βR − δR. For simplicity, we
assume that this stochastic extinction probability is a constant property of the resistant
cell and does not depend on the control variable u directly (by assuming complete
resistance) or indirectly via sensitive cell density (see Materials and Methods). If control
can also be exerted to the resistant cells (partial sensitivity), the optimal control can
further capitalize on this establishment probability.

Now consider an elimination strategy u : [0, T ]→ U = [0, umax], which gives the
desired drug concentration over the treatment period. Here the end-time T is assumed
fixed and we allow it to be long enough so that there are no sensitive cells left at the
end, S(T ) = 0. With these assumptions, the intensity of the Poisson process, or the
total cumulative rate of generating rescue mutations, is given by

nrescue(u) =

∫ T

0

S(t, u(t))µ(u(t))πfdt, (1)

where πf = 1− q is the probability of establishment of a new mutant. This quantity
corresponds to the expected number of successfully established rescue mutants
generated during the treatment period. The probability of an evolutionary rescue by de
novo mutation is then [2]

1− e−nrescue(u). (2)

The exponential term is just the zero class of the Poisson distribution and hence the
complement of this gives the probability that there is at least one cell which survived
the rescue window. A suitable objective of the treatment is then to minimise this
quantity, which is equivalent to maximising the extinction probability of the target
population. Since the probability of establishment is here just a constant, the objective
functional for the optimal control problem reduces to

C(u) =

∫ T

0

S(t, u(t))µ(u(t))dt, u(t) ∈ U , (3)

which corresponds to the expected number of mutant establishment attempts. The
discussed control problem is then to find the optimal elimination strategy, which
minimizes the cost functional above from the space of all (Lebesque integrable)
functions over the treatment period.

Because the probability of gaining mutations is proportional to the population size, a
characteristic feature of the rescue window is that the probability of an evolutionary
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rescue sharply decreases with decreasing population size. This phenomenon corresponds
to the classical somatic mutation theory of drug resistance and justifies the MTD
strategy which aims to minimise the probability of an evolutionary rescue by making
the rescue window as short as possible. Indeed, suppose that the phenotypic mutation
rate µ is independent of the control variable. Then, the MTD solution u ≡ umax is
trivially the optimal treatment strategy and the treatment can be optimised only with
respect to the delivery mode that satisfies the cumulative toxicity constraint. However,
if µ′(u) > 0, then clearly the MTD solution is generally not optimal, because now the
population size can be decreased only at the expense of increasing the mutation rate
leading to an interesting and potentially exploitable trade-off, where the optimisation
can be done also with respect to the cumulative drug concentration.

Figure 2 shows the intensity at which rescue mutations are generated during
treatment. If no treatment is administered (u = 0), the population grows to its carrying
capacity and generates rescue mutants with the constant baseline mutation rate µ0.
When treatment is administered (u(t) > 0), the mutation probability sharply decreases
as the population size decreases. However, the drug-induced effects create a mutational
peak in the beginning, where the probability of rescue mutations rises above the
baseline mutation rate as control is being applied to a large population size. Higher
doses lead to a higher early mutational peak, but the probability of rescue mutations
decreases faster as the sensitive cell population diminishes faster than at lower doses.
Lower doses on the other hand have a lower early mutational peak, but as it takes
longer to eliminate the sensitive cells, the mutation probability decreases more slowly,
thus prolonging the rescue window. The optimal strategy, which minimises the total
cumulative rate of generating rescue mutations (or the area under the intensity curve),
is a trade-off between these opposing treatment effects.

For evolutionary rescue to occur, the time at which the rescue mutation emerges
plays no role. Early and late mutations are considered equally bad if the clinical
objective is to maximise the probability of a complete cure. However, if evolutionary
rescue does occur then the time of mutation is integral in determining the expected
rescue fraction. This is simply because resistant cells that emerge early during the
treatment period can generate much more growth than resistant cells that occur late.
To minimise the expected number of resistant cells at the end of the treatment period,
we need to weigh each mutation by the growth it can generate. Assuming a simple
exponential growth of the resistant cell population at rate rR, the cost functional needs
to be modified with a discount term erR(T−t), which equals to the growth generated by
a resistant cell that emerged at time t. We refer to the problem

Cdiscounted(u) =

∫ T

0

S(t, u(t))µ(u(t))erR(T−t)dt, u(t) ∈ U . (4)

as the discounted control problem and show that the strategy that minimises the
expected number of resistant cells at the end uses even lower doses to further reduce the
early mutational peak.
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Fig 2. Mutation intensity profiles. Each treatment strategy u(t) leads to a
characteristic mutation intensity profile S(t, u(t))µ(u(t)), which gives the probability of
gaining a rescue mutant as a function of time. If no treatment is administered
(u(t) = 0), the population grows to its carrying capacity and generates rescue mutations
at a constant baseline mutation rate (blue). A dose-dependent mutation rate introduces
a trade-off, where treatment can be used to decrease the population size only at the
expense of simultaneously increasing the mutation rate. This creates a sharp mutation
peak at the beginning, when treatment is applied to a large population size. The
optimal treatment strategy, which minimises the probability of an evolutionary rescue,
exploits this trade-off by balancing the early mutational peak such that the area under
intensity profile is minimised.

Intermediate dosages become optimal already with modest
dose-dependency

When the perturbed growth dynamics and the dose-dependent mutation rate are
specified, the optimal treatment strategy, which minimizes the chosen objective, can be
calculated using the methods of optimal control theory. As the cost functional (3)
depends only on the sensitive cells (and there are initially so few resistant cells present
that their competitive effect on the sensitive cells is negligible), we can use deterministic
dynamics to calculate the mutation intensities. Using a logistic growth model with
Hill-type pharmacodynamics and linear dose-dependent mutation rate (Eq. 7, Materials
and Methods) we first solved the optimal control problem (3) using the
Forward-Backward Sweep Method [27], which is based on Pontryagin’s minimum
principle. The optimal control strategy u(t) together with the optimally controlled
trajectories are shown in Fig. 7. Resistance will always emerge when using the
deterministic dynamics, because partial mutations are generated during each time step.
We further performed stochastic population dynamics simulations to gain a more
realistic depiction of resistance evolution, as discussed later.

To gain further insights, we solved the same problem using an alternative approach
based on the Hamilton-Jacobi-Bellman equation. The resulting control map u(S, t)
(Fig. 8, Supporting Information) is explicitly time-dependent only at the end of the
treatment period, which is a boundary effect due to the fixed end time. Therefore, the
results are insensitive to the precise time implementation provided the end time T is
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sufficiently large such that sensitive cells can be eliminated during the treatment. In
these cases, we can solve for a closed-loop control law u(S), which depends only on the
current population size (Fig. 9). If the treatment period is shorter, the precise
implementation time becomes important as the optimal treatment strategy will switch
to use no control towards the end.

The time-independent control law can be derived analytically in an implicit form
from the Hamilton-Jacobi-Bellman equation by requiring stationarity (see Supporting
Information). As we set the initial resistant cell population to zero and consider only
elimination strategies, we can separate the sensitive and resistant dynamics so that the
cost functional and the dynamics are independent of the number of resistant cells. For
problem (3) with arbitrary density-dependent growth rate r(S), pharmacodynamics d(u)
and dose-dependent mutation rate µ(u), we derive the following equation (see
Supporting Information)

µ(u)− [r(S)− d(u)− µ(u)]
µ′(u)

d′(u) + µ′(u)
= 0, (5)

which can readily be solved for the control law u(S). Notice that here we assumed
nothing about the precise functional form of the dose-dependent mutation rate µ(u), the
pharmacodynamics d(u) or the density-dependent growth model r(S) except that these
are all differentiable functions with respect to u. The only technical modelling
assumption we have made is that of the log-kill hypothesis, where the control leverage
depends only of the drug concentration and specifically does not depend on the
population size. Therefore, the density dependence realises solely through the assumed
density dependent growth rate r(S), which itself can be approximated to simple
exponential decay during treatment. Hence, the optimal therapy is often close to a
constant dose and lead us to compare simple constant treatment strategies.
Implementing the precise density and time dependencies lead only to marginal
improvements and would be more difficult to realize clinically. However, the relative
gain of the precise density and time implementation increases, when the drug is less
effective (dmax is smaller) and when the pharmacodynamical profile is less steep (the
Hill-coefficient is closer to 1).

Substituting the linear dose-dependent mutation rate and Hill-type
pharmacodynamics (see Fig. 6B) in Eq. 5, we obtained the optimal elimination strategy
as a function of the parameter α, which quantifies the dose-dependency of the
mutations, and compared the cumulative mutation intensities relative to MTD. Fig. 3
displays the optimal constant treatment strategy (the blue 1-isocontour) in the relevant
region of parameter α. Higher doses increase the cumulative mutation intensity or the
expected number of rescue mutants generated. As different drugs have different toxicity
constraints, there is no universal MTD to compare the optimal dose to. Hence, we
regard the MTD as a variable and show few contour lines, where the labels denote the
relative cumulative mutation intensity compared to the optimal. The red background
color denotes the assumed fold change (FC) to the baseline mutation rate for
corresponding α and dose.

We notice that the clinical gain of the optimal treatment depends heavily on the
drug toxicity; the optimal treatment can lead to substantial gains with already modest
drug-induced mutation if the drug is well-tolerated and administered close to, or at, the
pharmacodynamical plateau (here u = 1000). On the other hand, no substantial gains
are achievable even for a highly mutagenic drug if it is also poorly tolerated (i.e., MTD
and optimal dosage are close to each other). Here we concentrated our analysis on the
case α = 10−8, which leads to only modest fold-change of less than 10 (the vertical
dashed line in Figure 3) when compared to the base mutation rate. Following the
dashed line reveals that gains on the order of 25 - 100 % are achievable already well
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below the pharmacodynamical plateau and the maximum dose we considered produces
up to almost 5 times more rescue mutations than the optimal. We further note that the
rescue probability scales exponentially in the amount of rescue mutations generated (see
eq. 2). Therefore, these differences are substantial at the probability level, given that
the intrinsic mutation rate is not too large. Indeed, in extreme cases, applying MTD in
contrast to the optimal intermediate dosage will switch the emergence of resistance from
a rare, mutation-limited, stochastic event to an inevitable outcome.

Fig 3. Optimal therapies substantially reduce the number of resistance
mutations generated compared to MTD. The blue contour levels correspond to
the cumulative mutation intensities (the expected number of rescue mutants) relative to
the optimal constant treatment (the dashed 1-line). For example, the 2-line gives the
cases where the corresponding MTD produces 100 % more rescue mutations than the
optimal dose. The red background color indicates the assumed fold change (FC) to the
baseline mutation rate. We notice that substantial improvements are possible even for
modest fold-changes depending on how well the drug is tolerated. The probability of
evolutionary rescue scales exponentially in the amount of the rescue mutations. We
consider the case α = 10−8 in detail, which corresponds to the cases given by the
vertical dashed line.

Stochastic cell population model demonstrates the efficacy of
intermediate dosage therapy under dose-dependent mutation

To further validate our results we performed stochastic simulations and compared
various constant therapies in terms of rate of successful eliminations and the size of
rescued populations (Fig. 4). The simulations revealed a characteristic bimodal
distribution of the final population sizes after treatment, in which the first mode
corresponds to extinct populations and the second mode to the expected rescue fraction
conditioned on non-extinction. The minimisation of the first mode corresponds to the
cost function defined in Eq. (3), where the probability of an evolutionary rescue is
minimised, whereas the minimisation of the second mode corresponds to the discounted
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cost function Eq. (4). Hence, both modes can be analyzed and optimised
mathematically using the simpler deterministic dynamics discussed above.

Fig. 4 summarizes the results obtained from stochastic simulation. Fig. 4A displays
the bimodality of the distribution of final population sizes. Each treatment strategy
leads to its own characteristic bimodal distribution. Fig. 4B shows how the zero mode,
that is, the probability of cure, changes as a function of the dose. The different mutation
intensities have a substantial impact on the probability of cure and we notice how
therapies close to the optimal treatment strategy outperform and lead to substantially
better expected treatment outcomes. Similarly Fig. 4C shows an interesting
non-monotonic dose response in the expected rescue fraction of target populations that
survive from the therapy. The solution of the discounted problem uses even less control
in the beginning to shift the expected mutation time to later time points. This of course
comes at the expense of increasing the total cumulative mutation rate, and hence,
decreases the probability of a cure. This might be acceptable if the probability of
evolutionary rescue is in any case high. However, treatment attempting for a cure is
always riskier in the sense that if evolutionary rescue does occur, the rescue mutations
take likely place very early on thus leading to relapse more quickly. Therefore, it is the
baseline expectation of the likelihood of evolutionary rescue which should ideally guide
the treatment choice and the precise evolutionary objectives of the treatment.

We conducted the simulations assuming that the emergence of resistance is relatively
high but still mutation-limited by setting the effective baseline mutation rate at the
start of therapy to S(0)µ0 = 0.1. If the effective baseline mutation rate is even higher,
meaning that the emergence of resistance is not mutation-limited, then evolutionary
rescue occurs with very high probability in any case, and the relative role of the
drug-induced mutations are negligible. However, we would like to emphasize that the
viability of any elimination strategy relies on mutation limitation, and in these cases,
the drug-induced effects become crucially important, and the optimised treatments may
lead to substantial improvements as demonstrated in Fig. 4.
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Fig 4. Non-monotonic dose responses. Nsim = 2000 constant therapies were
simulated for each dose while recording the final population sizes. A Example of a
bimodal distribution of the final population sizes using the optimal constant dose
u = 104.5 that minimises the rescue probability (cost function Eq. 3). The zero mode
corresponds to the proportion of extinct populations (cure) and the second mode
corresponds to the expected rescue fraction conditioned on non-extinction. Each dose
leads to its own characteristic bimodal distribution. B The proportion of extinct
populations N(T ) = 0 plotted as a function of dose. The probability of cure displays
non-monotonicity and is maximised in the neighborhood of the optimal dose u = 104.5
(dashed line) as expected corresponding to cost function given in Eq. 3. C The expected
rescue fractions N(T )/K conditioned on non-extinction (extinct populations were
excluded) plotted as a function of dose. The expected rescue fraction is minimised at
u = 60 (dashed line), which is the minimising solution of the discounted cost function
Eq. 4.
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Discussion

MTD therapies are widespread, because the chance of a complete cure is assumed to be
maximised by such a regime. This logic dates back to the classical somatic mutation
theory of drug resistance, which assumes that resistant cells arise spontaneously at a
constant rate irrespective of the treatment. In these cases, the probability of an
evolutionary rescue is indeed minimised by eradicating the sensitive cells as fast as
possible. Therefore, the MTD paradigm constitutes the optimal treatment strategy
when resistance is conferred primarily by de novo mutation.

The results obtained herein demonstrate that the situation changes drastically if
there are even modest drug-induced effects present. This leads to an interesting trade-off
where the population size can be decreased only at the expense of simultaneously
increasing the mutation rate. In such cases, the MTD strategy actually increases the
likelihood of an evolutionary rescue and thus treatment outcomes may be substantially
improved by treatment optimisation. Therefore, it will be of great importance to
properly investigate the various mutagenic and other resistance promoting properties of
different anti-cancer and antimicrobial therapies in experimental and clinical settings
while paying particular attention to dose-dependent mutation rates in vivo.

Our main focus was to solve the optimal elimination strategy, which minimises the
probability of an evolutionary rescue, in the case of dose-dependent mutation rates.
Recently, however, the objective of eliminating the tumor burden has been challenged
and so-called containment strategies have been proposed to specifically avoid the
competitive release of the resistant cells. Such paradigm shift in treatment may greatly
improve treatment outcomes especially in those situations where there is high
abundance of pre-existing resistant cells and a complete cure cannot be expected. First
proofs of concept have already been made by Gatenby and colleagues in preclinical
mouse models and advanced metastatic cancers [32, 33] and recently also in the context
of antimicrobial resistance [26]. Based on these findings, Hansen et al. argue that all
viable treatment strategies must trade-off between minimising mutations (to prevent the
emergence of new resistant cells) and maximising competition (to suppress the growth
of the existing resistant cells).

To put our results into a wider context, consider Fig. 5 which illustrates this
fundamental trade-off between the two alternative evolutionary pressures that can be
induced by treatment. So far, the discussion of treatment optimisation has exclusively
concentrated on the blue trade-off curve (or Pareto-frontier in the language of
multi-objective optimisation), in effect assuming that MTD strategies minimise
mutations. The key result obtained here is that this is not generally true when there are
drug-induced effects present as the optimisation must then be performed on a
completely different trade-off curve. Neglecting the effects of drug-induced resistance
can lead to situations where the MTD strategy lies well below the correct trade-off
curve and is thus a particularly detrimental strategy as it fails on both aspects. Using
the methods presented here, one can identify the optimal mutation-minimising solution
and thus potentially gain substantial improvements. Furthermore, the insights gained
while studying the discounted problem may be useful also in the context of containment
strategies, where partial elimination is sought while lowering the tumor burden to an
acceptable level. Thus, when the clinical objective shifts from cure to resistance
management, an initial elimination strategy which minimises the expected number of
resistant cells becomes a rational objective.

For the case of AMR evolution, our result that intermediate dosage therapy is
optimal is particularly interesting as it may also reduce detrimental off-target species
effects, such as enriching for resistance in off-target species [12] or compromising
community resilience and functioning [34]. Such effects are prevalent in bacterial
communities and possibly important to the AMR problem as a whole [12]. As stated
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Fig 5. Trade-offs in treatment optimisation. Every treatment strategy is
necessarily a trade-off between preventing acquired resistance, by decreasing the
population size, and suppressing pre-existing resistance, by allowing intercellular
competition. The rate at which the population size can be decreased is constrained from
above by the toxicity constraint as well as by finiteness of control leverage and, on the
other hand, from below by the population burden constraint, which forces to apply
control to stabilize the population size at some acceptable level. When no drug-induced
effects are present (α = 0), the optimal treatment strategy is found somewhere on the
blue Pareto-frontier; the arrow points to the direction where the cumulative drug
concentration increases and the optimal elimination strategy (the green point) is given
by the MTD-strategy. However, if drug-induced effects are present (α > 0), the
optimization must be done on a completely different, yellow Pareto-frontier, which
exhibits a bifurcation point after which increasing the cumulative drug concentration
becomes detrimental with both respects. In these cases, the optimal elimination
strategy (the green point) is reached at intermediate dosages at the bifurcation point,
which can be identified using the methods presented here. Hence substantial
Pareto-improvements (represented by the green arrow) may be achieved by switching
from the MTD-strategy to the optimized treatments.

above, intermediate dosages may also be optimal in containment strategies [26], which
may be useful in chronic infections prevalent owing to factors such as antimicrobial
tolerance [35] and biofilms [36] as features of the pathogen population and
immunocompromised conditions in the patient. Our findings therefore contribute to an
emerging body of evidence showing an increasing scope of utility for intermediate
dosages in antimicrobial therapy.

The approach taken here has many advantages. We presented a way of formulating
the precise objectives of the treatment in evolutionary terms, which provides an
interesting theoretical framework for further treatment optimisation avenues. We
specifically considered the effects of drug-induced resistance, an often neglected cost of
treatment, and highlighted the importance of these effects. The results obtained provide
a qualitative insight that is potentially exploitable by treatment optimisation. Finally,
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the predicted non-monotonic dose responses of the target populations are also
immediately amenable to experimental investigation, where a lot of future study is
needed to gain a better quantitative knowledge of the modes and extent of drug-induced
effects.

When interpreting the more quantitative predictions made by our work, care must
be taken, as they depend on parameter values and more implicit modelling choices (see
Materials and Methods for more discussion). For instance, this is the case for the linear
dose-dependent mutation rate, where we currently lack extensive data on the dose
dependency. This choice was however justified as a plausible and fairly conservative one,
motivated by the previous literature (e.g. [14]). Similar qualitative results are likely to
be observed for any monotonically increasing dose dependency as nothing in the
derivation of Eq. 5 hinges on this particular choice. Also the assumptions related to the
growth dynamics and other more implicit assumptions of the dynamical model can be
revisited when needed without excessively complicating the solution of optimal controls.
Indeed, the purpose of our work was to analyse a minimal model to study the effect of
drug-induced mutation instead of providing the most realistic and comprehensive
description of the underlying processes. The provided analytical approach can be used
to generalise our results to a wide class of models. Given the wide-spread use of MTD
therapies, these results may be important and worth of further investigation even if they
only apply only to certain drugs.

There remain many outstanding questions for future research related to the topics
discussed. Firstly, to be able to design and implement the optimal mutation minimising
treatment strategies, we need to have an adequate quantitative understanding of the
dose dependency of the mutation rate. Secondly, in the case of containment strategies
we need to be able to better characterise and quantify the intercellular competition to
which all containment strategies rely on. Thirdly, it is clear that we need to carefully
assess and identify those situations where containment strategies would most likely
perform better than elimination strategies and how to use both with each other. Finally,
identifying and factoring into therapy optimisation the various, as of yet unknown or
unquantified, costs of control represent a major goal and unifying principle going
forward.

Materials and Methods

Dynamical model for drug resistance

Consider the problem of finding the optimal elimination strategy that minimises the
probability of evolutionary rescue by de novo mutation in the case of drug-induced
resistance. First, consider the following general dynamical model for drug resistance:{

dS
dt ≡ Ṡ = rS(N)S − dS(u,N)S − µS(u)S + µR(u)R; S(0) = S0

dR
dt ≡ Ṙ = rR(N)R− dR(u,N)R+ µS(u)S − µR(u)R; R(0) = R0.

(6)

S(t) and R(t) are the state variables denoting the population densities for the sensitive
and resistant cells, respectively. The functions rS(N) and rR(N) are the unperturbed
growth rates at which sensitive and resistant cells, respectively, grow in the absence of
treatment. The growth rate can be different for the sensitive and resistant cells, for
example, due to the fitness cost that results from maintaining the resistance mechanism.
Constant growth rates lead to the exponential growth model (which is suitable only for
small populations) while common density-dependent choices, which depend on the total
population size N(t) := S(t) +R(t) via competitive interactions, include logistic
ri(N) = ri(1− N

K ) and Gompertz ri(N) = ri log(KN ) growth models, where K is the
assumed common carrying capacity and i ∈ {S, R}.
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The function di(u,N) models the pharmacodynamics of the drug dictating how the
obtained concentration of the drug, which is represented by the control variable u,
translates into cell death. Some drugs can also be cytostatic in nature, meaning that
they decrease the birth rate instead of increasing the death rate, which can have
important consequences [37] but nevertheless leads to the same mean-field growth as
above. Finally, the pharmacodynamical effect may additionally depend on the total
population size N . By definition, we concentrate on cases where
dS(u,N)� dR(u,N) ≥ 0 meaning that resistant cells have a selective advantage during
treatment.

Finally, the function µS(u) is the phenotypic mutation rate at which sensitive cells
become resistant. Importantly we allow this rate, too, to explicitly depend on the
dosage u. Furthermore, note that we do not distinguish between the precise cause
(genetic and non-genetic) of the change in phenotype, but only consider the transition
between the two compartments. Reversible adaptive (epigenetic) changes can be
modelled by adjusting the µR term.

To demonstrate the qualitative impact of the dose-dependent mutation rate, consider
the following simple model with logistic growth, Hill-type pharmacodynamics and linear
dose dependency:{

Ṡ = rS(1− S −R)S − dmax

(
1− 1

1+(u
h )k

)
S − (µ0 + αu)S; S(0) = 1

Ṙ = rR(1− S −R)R+ (µ0 + αu)S; R(0) = 0.
(7)

This model follows closely the scaled dynamical model (i.e. K = 1) used by Greene et al.
but includes more realistic non-linear pharmacodynamics. Now the cost function of eq.
(3) can be minimised with respect to the dynamics (7) with two alternative methods
based either on Pontryagin’s Minimum Principle (see e.g [25,38]) or the
Hamilton-Jacobi-Bellman (HJB) equation (see e.g. [38, 39]).

Pontryagin’s minimum principle leads to a system of ordinary differential equations
that must be solved with mixed boundary conditions, for example, by using the
Forward-Backward Sweep Method [27]. The HJB approach on the other hand requires
the solution of a partial differential equation for the cost-to-go function, which comes at
a higher computational cost. We solve the optimal control problem using both these
methods and furthermore provide some analytical insights to the optimal treatment
strategy using the stationary profile obtained from the HJB solution.

Stochastic simulation

To further demonstrate the qualitative impact of the dose-dependency, we performed a
stochastic simulation of different constant therapies ranging from low to high
concentrations. Each dosage yields its characteristic intensity profile at which rescue
mutants are being generated. We show how this connects to the mutational profile and
the resulting distribution of rescue fractions that survive treatment.

The stochastic simulation consists of simulating the system given in eq. (7) for a
range of constant doses and different initial conditions S0, corresponding to different
effective baseline mutation rates. For each dose, Nsim = 2000 virtual treatments were
administered while recording mutation events and final numbers of sensitive and
resistant cells. Unlike the deterministic system, the stochastic birth and death process
allows the population to go extinct (a cure). By calculating the proportion of extinct
populations for each dose we can estimate the probability of evolutionary rescue and its
dose-dependency. Furthermore, by recording the mutational events and stochastic
extinctions, we can verify that the stochastic extinction risk is indeed approximately
independent of the dose as assumed in cost function of Eq. (3).
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For the stochastic system, we need to explicitly specify the birth and death rates and
how the carrying capacity is realized (parameter θ). The event propensities for the
Gillespie algorithm are

βS =
(
bS − (bS − θS)(S +R)/K

)
S

βR =
(
bR − (bR − θR)(S +R)/K

)
R

δS =
(
dS + (θS − dS)(S +R)/K + d(u)

)
S

δR =
(
dR + (θR − dR)(S +R)/K

)
R

µ =
(
µ0 + αu

)
S

(8)

where the events are defined as

S
βS−−→ S + 1

S
δS−→ S − 1

R
βR−−→ R+ 1

R
δR−−→ R− 1

S,R
µ−→ S − 1, R+ 1.

(9)

A

S

S+1

S−1

R+1

R−1

R

β(N) β(N)

δ (N)+d(u)

δ(N)

μ(u)

R

R

B

S

S

Fig 6. Schematic illustration of the model. A. A minimal model for drug
resistance distinguishes sensitive (S) and resistant (R) cells, which follow their own
birth-death processes. A treatment can be used to target sensitive cells, but sensitive
cells can become resistant via rescue mutations. B. Specification of dose-dependent
death and mutation rates. We analyse a Hill-type pharmacondynamics and linear
dose-dependent mutation rate, but any pharmacodynamics with finite control leverage
and monotonically increasing mutation rate will lead to qualitatively similar results
reported here. The dashed lines denote the growth inhibitory drug concentration.

Parameter values that were used in this study are given below in Table 1. We note
that the key parameter α that sets the drug induced mutation rate slope was selected so
that it covers an order of magnitude (see Figure 3 and e.g. [14]). The key elements to
observe the discussed trade-off are finiteness of control leverage (with molecular binding
based control this is generally true) and monotonically increasing dose to intrinsic
mutation rate dependency. The other parameters are chosen such that, the therapy can
enforce the sensitive population to decay while the resistant cell can grow once
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established. These rates then set a sufficient time T that ensures that in most cases the
sensitive population has been eradicated and the resistant population, if established,
occupies a substantial part of the released niche. As discussed earlier the product S0µ0

fixes to what degree the evolution of resistance is mutation limited. If that product is
large to begin with there is not much help in optimising the therapy induced mutations.
In such a case the objective of the treatment should move away from eradication.

Table 1. Table of parameters used. ([t]=unit of time, [u]=unit of drug
concentration, [N ]=unit of population density)

Symbol: Meaning: Value:

µ0 baseline mutation rate 10−6/[t]
α slope coefficient of µ(u) 10−8/([u] · [t])
bS intrinsic birth rate of sensitive cells 0.8/[t]
dS intrinsic death rate of sensitive cells 0.3/[t]
rS intrinsic growth rate (βS − δS) of sensitive cells 0.5/[t]
bR intrinsic birth rate of resistant cells 0.5/[t]
dR intrinsic death rate of resistant cells 0.1/[t]
rR intrinsic growth rate (βR − δR) of resistant cells 0.4/[t]
dmax maximum death rate by treatment 1.0/[t]
umax maximum drug concentration 103 · [u]
k Hill-coefficient of d(u) 2.3
h drug concentration yielding 50 % of dmax 40 · [u]
T fixed end-time of treatment cycle 35 · [t]
K scaled carrying capacity 1 · [N ]
S0 initial population density of sensitive cells 0.99 · [N ]
R0 initial population density of sensitive cells 0.00 · [N ]
θS carrying capacity parameter for sensitive cells 0.8 · [t]
θR carrying capacity parameter for resistant cells 0.5 · [t]

Code availability

The codes used are available from github.com:
https://github.com/mustonen-group/drug-induced-mutation/
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Supporting Information

Solving the optimal controls using Pontryagin’s minimum
principle

Consider the optimal control problem

min
u∈U

∫ T

0

S(t, u(t))µ(u)dt, U = [0, umax] (10)

with µ(u) = µ0 + αu(t), subject to the dynamics{
Ṡ = f = rS(1− S+R

K )S − d(u)S − µ(u)S; S(0) = 1

Ṙ = g = rR(1− S+R
K )R+ µ(u)S; R(0) = 0.

(11)

where d(u) = dmax

(
1− 1

1+(u
h )k

)
fixing the pharmacodynamics of the drug. The problem

can be solved with two alternative methods based either on Pontryagin’s minimum
principle or Hamilton-Jacobi-Bellman equation. The Pontryagin’s minimum principle is
based on the variational approach and proceeds by defining the Hamiltonian as

H = L(t, S, u) + λ1f + λ2g, (12)

where L(t, S, u) := S(t, u(t))µ(u) is the Lagrangian cost functional and the multipliers
(costate variables) satisfy the following equations:λ̇1 = −HS = −µ(u)− λ1

(
rS(1− 2S+R

K )− d(u)− µ(u)
)
− λ2

(
µ(u)− rR R

K

)
;

λ̇2 = −HR = λ1rS
S
K − λ2

(
rR(1− 2R+S

K )
)
,

(13)

with boundary conditions
λ1(T ) = 0 = λ2(T ). (14)

The optimal control strategy uopt(t) is found by studying the function

Hu(t) = S(t)
(
α− λ1

(
d′(u) + α

)
+ λ2α

)
, (15)

whose roots, should they exist, determine the singular controls. (If no roots exists, then
the optimal control reduces to so-called bang-bang controls.) Using the parameters given
in Table 1, two separate roots appear; the first root can be excluded using the
Legendre-Clebsch condition (Huu < 0). The candidate optimal control u∗(S,R, λ1, λ2)
must then be iterated using e.g. the Forward-Backward-Sweep Method [27], where the
state variables are first solved forward in time using dynamics (11) and then the
multipliers are solved backwards in time using dynamics (13) with the updated variables.

Time-independent control laws from Hamilton-Jacobi-Bellman
equation

Notice that since the Lagrangian cost functional L(t, S, u) does not depend on the
number of resistant cells R, we need not explicitly track them. This is because we
assume resistant cells are initially so rare that the competitive interactions on the
sensitive cell growth is negligible (note that the opposite is not true). If this assumption
would be violated, then the cost functional itself would lose its usefulness and the object
of the treatment should rather focus in the containment and management of the already
present resistance and not its de novo emergence. Consequently, we can concentrate our
analysis on the single state variable S and assume that its dynamics is independent of R.

October 7, 2020 22/26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.07.330134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.330134


A B C

Fig 7. Numerical solution of the optimal control problem of minimising the cost
function of eq. (3) using Forward-Backward Sweep Method with parameter values
specified in Table 1. A Optimal treatment strategy uopt(t) as a function of time. B The
optimally controlled trajectories S(t) and R(t). In deterministic dynamics the
population always experiences an evolutionary rescue. C The dynamics of the
multipliers λ1(t) and λ2(t). The multiplier values can be interpreted as sensitivities of
the optimal cost C(uopt) to the perturbations in the respective state variables; here λ2(t)
is negative throughout the treatment period, because having more resistant cells would
marginally reduce the chosen cost function via competition. Containment strategies
become optimal, when the objective function is such that the multiplier corresponding
to the sensitive cells becomes negative; it is in these cases that the cost of treatment
reduces if there would be more sensitive cells (and therefore more competition) present.

To gain further insight, we then solved the same problem using the alternative
method based on Hamilton-Jacobi-Bellman (HJB) equation. This approach relies on
solving the cost-to-go function J(t, S) from the partial differential equation:

− ∂tJ(t, S) = min
u∈U

(
L(t, S, u) + f(t, S, u)∂SJ(t, S)

)
(16)

with boundary condition
J(T, S) = 0. (17)

By recording the minimizing control at each point, the HJB approach gives a control
map

u∗(t, S) = arg min
u∈U

(
L(t, S, u) + f(t, S, u)∂SJ(t, S)

)
, (18)

from which the optimal control can be read for any conceivable state. The HJB
equation above is for the deterministic version of the control problem that corresponds
to the Pontryagin methods described above. In Fig. 8, we solved numerically a
stochastic version of the problem.

We notice from Fig. 8 that the optimal control is virtually independent of time
except at the very end of the control period, when the control is discontinued. Closer
inspection of this reveals that this is in fact a non biologically relevant boundary effect
created by the fixed end-time corresponding to stopping therapy and letting the target
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Fig 8. The control map obtained from the stochastic Hamilton-Jacobi-Bellman
approach. Here the color denotes the optimal control to be applied at the given
population size and time. The carrying capacity has been scaled to K = 100. Notice,
how the control values start to change in time only at the end of control period, when
t > 20.

population grow again. Consequently, by letting the end-time T to be sufficiently large
so that the sensitive population is almost surely eliminated before the end, then the
optimal treatment becomes time-independent and we can solve for a closed-loop control
u(S) which has only feedback from the current population size. Such stationary solution
can be obtained analytically for the deterministic HJB by setting

− ∂tJ(t, S) = min
u∈U

(
L(t, S, u) + f(t, S, u)∂SJ(t, S)

)
= 0 (19)

and carrying out the minimisation by formally differentiating the terms inside the
brackets with respect to u. This minimization yields condition

∂SJ(t, S) = −Lu(t, S, u)

fu(t, S, u)
, (20)

which can be substituted back to the HJB equation. The stationary profile for the
problem then reads

L(t, S, u)− f(t, S, u)
Lu(t, S, u)

fu(t, S, u)
= 0, (21)

which gives an implicit equation for the optimal control. Furthermore, as the
time-dependence realizes only via the state and control variables, solving the implicit
equation yields a time-independent control law u(S). Indeed, by substituting the
Lagrangian cost functional and the sensitive dynamics, we get

Sµ(u)− S
(
r(S)− d(u)− µ(u)

) Sµ′(u)

−S
(
d′(u) + µ(u)

) =0

µ(u) +
(
r(S)− d(u)− µ(u)

) µ′(u)

d′(u) + µ′(u)
=0.

Notice that here we assumed nothing about the precise functional form of the
dose-dependent mutation rate µ(u), the pharmacodynamics d(u) or the
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density-dependent growth model r(S) except that these are all differentiable functions
with respect to u. Furthermore, notice that as the state variables S cancel out, the only
remaining dependence of the state variable happens via the assumed density dependent
growth model, where we assumed that r(N) ≈ r(S). Thus, we have now derived
equation (5), where the only technical modelling assumption we have made is that of
the log-kill hypothesis, where the control leverage depends only of the drug
concentration and specifically does not depend on the population size.
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Fig 9. Numerical solutions of the time-independent control laws u(S) for the problem
(3) and the discounted problem (4) using the inverse function method. The dashed lines
give the optimal constant doses, respectively. The analytically derived stationary profile
matches the numerical solution, but cannot be applied to the discounted problem due to
the explicit time-dependence.

The analytically derived stationary profile cannot be directly applied to the
discounted problem, because of its explicit time-dependence. However, the same
stationary profile can be obtained numerically more simply if the optimal
time-dependent control eliminates the target population without allowing it to grow in
between. Then S(t) is a monotonically decreasing function and hence there exists an
inverse function S−1 : [0, 1]→ [0, T ] which gives the time at which the population was
at any given size. Now, if indeed time-independent control law u(S) does exist, it must
be unique and thus the optimal control for some population size S′ must satisfy
u(S′) = u(t′) where S(t′) = S′. Then the stationary profile can be obtained using the
inverse function as

u(S′) = u(S−1(S′)).

Applying this inverse function method agrees with the analytically derived stationary
profile and can be used also to the discounted problem (Fig. 9).

Here we have focused on the problem of determining the optimal way of eliminating
the target population, with respect to two biologically meaningful objectives. The
derived optimal treatment strategies were calculated with respect to the simple
constraint that there is maximum concentration umax which can be tolerated at each
time point; however, the cumulative drug concentration was not constrained. Such
constraints can also be easily incorporated to the presented optimal control framework
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by appending the Hamiltonian with an additional state variable, which enforces the
isoperimetric constraint (see e.g. [38]).
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