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Abstract

Wright’s inbreeding coefficient, FST, is a fundamental measure in population ge-

netics. Assuming a predefined population subdivision, this statistic is classically

used to evaluate population structure at a given genomic locus. With large numbers

of loci, unsupervised approaches such as principal component analysis (PCA) have,

however, become prominent in recent analyses of population structure. In this study,

we describe the relationships between Wright’s inbreeding coefficients and PCA for

a model of K discrete populations. Our theory provides an equivalent definition of

FST based on the decomposition of the genotype matrix into between and within-

population matrices. Assuming that a separation condition is fulfilled, our main

result states that the proportion of genetic variation explained by the first (K − 1)

principal components can be accurately approximated by the average value of FST

over all loci included in the genotype matrix. This equivalent definition of FST can be

used to evaluate the fit of discrete population models to the data. It is also useful for

computing inbreeding coefficients from surrogate genotypes, for example, obtained

after correction of experimental artifacts or after removing genetic variation associ-

ated with environmental variables. The relationships between inbreeding coefficients

and the spectrum of the genotype matrix not only allow interpretations of PCA re-

sults in terms of population genetic concepts but extend those concepts to population

genetic analyses accounting for temporal, geographical and environmental contexts.
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Introduction

Defined by Sewall Wright and Gustave Malécot, the fixation index or inbreeding co-

efficient, FST, measures the amount of genetic diversity found between populations

relative to the amount within populations [1, 2]. Used as a measure of population

differentiation, FST is among the most widely used descriptive statistics in population

and evolutionary genetics [3, 4, 5, 6, 7]. Inbreeding coefficients were originally defined

for the analyses of allelic frequencies at a single genetic locus. With the amount of

data available to present-day or ancient population genomic studies, principal compo-

nent analysis (PCA) and model-based estimation algorithms, such as STRUCTURE,

have emerged as alternative ways to describe population structure from multilocus

genotype matrices [8, 9, 10, 11, 12].

Assuming that the columns of the genotype matrix are either centered or scaled,

PCA computes the eigenvalues and eigenvectors of the sample covariance matrix.

The first eigenvectors – or axes – summarize the directions which account for most of

the genetic variation, and the eigenvalues represent the variances of projected samples

along the axes. Eigenvalues and eigenvectors can be computed efficiently by using

the singular value decomposition (SVD) of the column-centered data matrix [13].

PCA has been considered very early in human biology, and has become a popular

method to study the genetic structure of populations [14, 15]. Inference from PCA is

justified from the fact that, similarly to STRUCTURE, the projections of individuals

on principal axes reveal their degree of admixture with source populations when these

sources are represented in the sample [10, 16, 17, 18].

Although the relationships between PCA projections and admixture estimates

are well-understood, difficulties to interpret PCA eigenvalues still remain. The main
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contributions in that direction were restricted to models of two-population diver-

gence, and their arguments were based on random matrix theory (RMT)[10, 19] and

coalescent theory [16]. We note that connections between FST and PCA are not only

important for description of population structure, but also in genome scans for se-

lection where the distribution of PCA loadings can be used to detect regions with

signature of divergent selection [20, 21, 22, 23]. Based on RMT, Ref. [10] proposed

a threshold value of FST for two populations with equal sample sizes [10]. Below the

threshold, there should be essentially no evidence of population structure. The coa-

lescent approach relied on a relationship between FST and coalescent time for a pair

of genes from a single subpopulation and that of a pair of genes from the collection

of subpopulations [6]. For a model of divergence between two populations, theoreti-

cal results for coalescent times were used to demonstrate a link between the leading

eigenvalue and FST [16]. Results in Ref.[16] could be extended to simple models of

population structure with explicit formulas for coalescent times [24]. While coales-

cent theory and RMT have provided relationships between FST and PCA in simple

cases, the general conditions under which they are valid and their extensions to more

than two populations are unknown.

In this study, we develop a spectral theory of genotype matrices to investigate the

relationships between PCA and Wright’s coefficients in discrete population models.

Our theoretical framework assumes that the observed genotypes correspond to the

sampling of K discrete populations. Decomposing the genotype matrix as a sum

of between and within-population matrices, we extend the results obtained in [10,

16, 19, 25]. Our main result states that the mean value of FST over loci is equal to

the squared norm of the between-population matrix. Under a separation condition
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bearing on the between and within-population matrices, the sum of the first (K − 1)

eigenvalues of scaled PCA approximates the mean value of FST over loci. To describe

residual variation not explained by the discrete population model, we rely on RMT

to approximate the eigenvalues of the within-population matrix [10, 26]. A corollary

of the theory is an alternative definition of inbreeding coefficients that allows us to

extend FST to adjusted or surrogate genotypes, such as genotype likelihoods and other

modifications of allele counts [27]. To illustrate the new definition, we compute FST

for ancient human DNA samples after performing correction for genomic coverage

and for distortions due to difference in sample ages [28]. In a second application, we

compute FST for Scandinavian samples of Arabidopsis thaliana after removing genetic

variation associated with environmental variables taken from a climate database [29,

30].

Results and Discussion

Partitioning of genetic variation. Consider a sample of n unrelated individuals

for which a large number of loci are genotyped, resulting in a matrix, X = (xi`), with

n rows and L columns. For haploids, we set xi` = 0, 1, and for diploids xi` = 0, 1, 2 to

count the number of derived alleles at locus ` for individual i. Dealing with autosomes,

we simplify our presentation by considering a sample of diploids as being represented

by a sample of haploids having twice the original sample size. For unphased data, we

take a random phase. Although not a necessary condition, the loci are assumed to

be statistically independent, or obtained after an LD-pruning algorithm applied to

the genotype matrix [20, 31]. Our main assumption is that individuals are sampled

from K predefined discrete populations with no admixed individuals. Among other

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.07.329755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329755
http://creativecommons.org/licenses/by-nc-nd/4.0/


models, examples of discrete population models underlying our assumptions include

Wright’s island models and coalescent models of divergence [32, 6, 33]. Application

to the F -model [33] will be described afterwards.

To analyze population structure, PCA is performed after scaling or centering the

genotype matrix. The transformed matrix is denoted by Z. Scaled PCA computes

the eigenvalues, ρ2k(Z), of the empirical correlation matrix. Unscaled centered PCA

computes the eigenvalues, σ2
k(Z), of the empirical covariance matrix [9, 26]. The

eigenvalues are ranked in decreasing order, and ρ2k(Z)/L is usually interpreted as the

proportion of variance explained by the kth axis of the PCA. PCA can be performed

via the SVD algorithm. In this case, the eigenvalues of scaled (or centered) PCA

correspond to the squared singular values of the scaled (or centered) matrix divided

by
√
n [9, 26].

To establish relationships between PCA and inbreeding coefficients, we decompose

the centered matrix into a sum of two matrices, Z = ZST + ZS, corresponding to

between and within-population components. The decomposition is done as follows.

At a particular locus, let i be an individual sampled from population k. The genotype,

xi`, is drawn from the binomial distribution, bin(d = 1, pk`), where pk` is the derived

allele frequency in population k at locus `. The coefficient of the centered matrix,

zi`, is equal to zi` =
∑

j 6=k cj(pk` − pj`) + (xi` − pk`), where ck = nk/n, represents

the proportion of individuals from population k. In this formulation, the between-

population matrix, ZST, has general term zsti` =
∑

j 6=k cj(pk` − pj`), repeated for all

individuals in population k. The within-population matrix, ZS, has general term

zsi` = xi`− pk`. A very similar decomposition holds for the scaled matrix as well (See

Box 1 for notations).
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Spectral analysis: Inbreeding coefficients and PCA eigenvalues. For sam-

ples from K discrete populations and FST defined according to Wright [1] and Nei

[4, 34], our main result states that the mean value of FST across loci can be computed

from the singular values of the between-population scaled matrix. Similar relation-

ships are also established for DST and for the unscaled matrix. Key arguments for

those results are provided in Methods and in Supplementary Information. More pre-

cisely, let K ≥ 2 and Z be the scaled genotype matrix. Let us define ZST and ZS as

in the previous section and scale each column with
√
P (1− P ). The mean value of

FST across loci can be computed from the singular values of the between-population

matrix as follows

E [FST] =
K−1∑
k=1

ρ2k(ZST)/L . (1)

The mean value of FST across loci can be approximated from the (K − 1) leading

eigenvalues values of the PCA,

E [FST] ≈
K−1∑
k=1

ρ2k(Z)/L , (2)

if (and only if) the following separation condition holds

ρ2K−1(ZST) > ρ21(ZS) , (3)

where ρK−1(ZST) is smallest non-null singular value of ZST/
√
n and ρ1(ZS) is the

largest singular value of ZS/
√
n. For the centered genotype matrix, the separation
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condition can be formulated as

σ2
K−1(ZST) > σ2

1(ZS) , (4)

and we have

E [DST] ≈ 2
K−1∑
k=1

σ2
k(Z)/L . (5)

The average value of FST is given by equation (1) regardless of the separation con-

dition. Separation conditions (3) and (4) can be evaluated by computing the SVD

for the between and within-population matrices. The computational cost of those

operations is similar to the computational cost of a PCA of the genotype matrix

(of order O(n2L)). All conclusions remain valid when genotypes are conditioned on

having minor allele frequency greater than a given threshold.

Besides an interest in connecting population genetic theory to approaches adopted

in analysis of recent genomic data, the results in equations (1), (2) and (5) have

several important consequences. Firstly, failure to verify the separation condition

may be an indication of an insufficient sample size or that the data disagree with

the way the K populations were predefined. Potential sources of departures from

the conclusion may also include incorrect assignment of individuals to populations,

admixed individuals or spatial structure. Regarding the experimental design, the

result confirms that the influence of uneven sampling and MAF thresholding on

PCA are similar to their effects on FST [16, 31, 35]. Secondly, equation (2) clarifies

the debate over the definition of FST across loci, and supports the definition of FST as

an average of ratios rather than a ratio of averages [36, 37]. Thirdly, our result also

clarifies the connection between PCA and drift statistics considered in analysis of
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demographic history of populations in Ref. [38, 39]. To formulate this link, consider

the covariance matrix of the random vector z, defined by zk =
√
ck(pk − P ), for

all k = 1 to K. The covariance matrix can be obtained from the drift statistics

F2 et F3 [38, 39], as Λj,k =
√
cjck E[(pj − P )(pk − P )] =

√
cjck F3(P ; pj, pk), for

j 6= k, and Λk,k = ckE[(pk − P )2] = ckF2(P ; pk) otherwise. The value E[DST] can be

approximated by (twice) the trace of the Λ matrix, and the eigenvalues are functions

of the F2 et F3 statistics. For the F -model [33], the eigenvalues of Λ can be analysed

formally for small numbers of populations (Supplementary Information).

Approximation of residual variation from RMT. For discrete population

models such as F -models, approximations of singular values for the within-population

(residual) matrix can be obtained from RMT [10, 40, 41, 42, 43]. Verifying condition

(3), the leading eigenvalue of the within-population matrix can be approximated as

(1 − FST) × (1/
√
L + 1/

√
n−K)2 for scaled PCA. A similar approximation can be

obtained for centered PCA after replacing the term (1−FST) by the variance of coeffi-

cients in the within-population matrix. For two populations with equal sample sizes,

the separation condition writes as FST/(1− FST) > (1/
√
L+ 1/

√
n− 1)2, defining a

new threshold for FST below which population structure cannot be detected. If there

truly is a single population represented in the total sample, then FST for two equal

size samples should be of order (1/
√
L + 1/

√
n− 1)2. Those thresholds provide an

informal test for a K population model to describe the data in an appropriate way.

Single population models. In a series of simulations of single population models,

we first investigated whether RMT predictions accurately approximated the leading

eigenvalue of scaled PCA. The results supported that the leading eigenvalues of PCA
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were accurately predicted by RMT in F -models without population structure (Sup-

plementary Figure S1). Then we investigated whether condition (3) could be verified

when there was no structure in the data, and two population samples were (wrongly)

defined from a preliminary structure analysis. We ran two-hundred simulations of

single population models (n = 100 and L ≈ 10, 000), and, for each data set, we

partitioned the samples in two groups according to the sign of their first principal

component. This procedure maximized the likelihood of detecting artificial groups,

leading to an average FST ≈ 1.1%. For those artificial groups, we computed the non-

null singular value of the between-population matrix, ZST/
√
n− 1, and the leading

singular value of the within-group matrix, ZS/
√
n− 1. For the simulations, the

separation condition was never verified, rejecting population structure in all cases

(Supplementary Figure S2A). For smaller sample sizes (n = 10 and L ≈ 1, 000), the

separation condition was erroneously checked in 21% simulations, indicating that we

had less power to discriminate among artificial groups with small sample sizes (Sup-

plementary Figure S2B). Those results were consistent with difficulties reported for

between-group PCA [44].

Two-population models. To check whether the expected values of FST and DST

were obtained from the first eigenvalues of PCA, we performed simulations of F -

models with two populations. For these simulations, the separation condition was

verified in 100% data sets. There was an almost perfect fit of the leading eigenvalue

for centered PCA, σ2
1(Z), with the average value of DST/2 across loci and with the

theoretical value of E[DST]/2 in F -models (Figure 1A, Supplementary Information,

Supplementary Figure S3). There was also an almost perfect fit of the leading eigen-
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value of scaled PCA, ρ21(Z), with the average value of FST across loci (Figure 1C).

The second largest eigenvalues were accurately predicted by RMT both for centered

and for scaled PCA (Figure 1 B-D). To detail those results for particular values of

drift coefficients, we performed additional simulations for F1 = F2 = 7%, also inves-

tigating the distribution of eigenvalues of the residual matrix (Figure 2). In a sample

of n = 200 individuals and L ≈ 85, 500 SNPs, the first PC axis explained 3.11% of

total genetic variation, corresponding to the average of FST across loci (3.11%, Figure

2A). The separation of between and within-population components was verified, and

the second eigenvalue (0.536%) was very close to its prediction from RMT, given by

(1−ρ21(Z))× (1/
√
L+1/

√
n− 2)2 = 0.537% (Figure 2A). The distribution of empiri-

cal residual eigenvalues, corresponding to within-population variation, was accurately

modelled by the Marchenko-Pastur probability density function (Figure 2B). With

a smaller sample of n = 20 individuals in each sample and L ≈ 12, 500 SNPs, the

leading axis explained 5.24% of the total genetic variation, still matching the value

of FST across loci (5.23% Figure 2C). The Marchenko-Pastur density remained an

accurate approximation to the bulk spectrum of residual eigenvalues (Figure 2D).

To provide evidence that the relationships between PCA eigenvalues and FST could

be verified by real data, we computed them for pairs of human population samples

from The 1000 Genomes Project [45]. At the exception of the CEU-IBS samples, the

separation condition was verified in all pairwise comparisons. The leading eigenvalue

of scaled PCA was accurately approximated by E[FST], and the leading eigenvalue of

the residual matrix was accurately approximated by RMT (Table 1).

Next, we studied the relationship between leading eigenvalues and sample size,

for L = 100 loci and L = 100, 000 loci (Supplementary Figure S4). For smaller
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number of loci (L = 100) and smaller samples (n ≤ 80), the data failed to verify

the separation condition in some simulations. In those cases, population structure

was not correctly evaluated by FST. The separation condition was verified in about

35% cases for n = 10 and in about 95% cases for n ≈ 80. For the larger number of

loci (L ≥ 100000) or for larger sample sizes (n ≥ 100), the separation condition was

verified in all cases, and the leading eigenvalue converged to the theoretical value of

E[FST] for an infinite sample size. As for between-group PCA, the results suggest

exaggerated differences among groups when sample sizes are very small relative to

the number of loci [46].

Three-population models. We performed simulations of three-population F -

models to check whether the data agreed with theoretical predictions for the leading

eigenvalues, λ1, and for DST and FST. With random drift coefficients (n = 100,

L = 20000), the separation condition was verified in all simulated data sets. An

almost perfect agreement between λ1 + λ2 and the mean value of DST/2 (unscaled

PCA) or FST (scaled PCA) was observed (Supplementary Figure S5 AC). The lead-

ing eigenvalue of unscaled PCA exhibited a small but visible bias with respect to the

value predicted for λ1 (Supplementary Figure S5 B). The third eigenvalue of scaled

PCA was close to the approximation provided by RMT (Supplementary Figure S5

D). To study cases in which the separation condition was not verified, we consid-

ered smaller number of genotypes (L ≤ 1000) and lower values of drift coefficients

(Fk ≤ 10%). For small values of n and L, a significant proportion of simulated

data sets did not verify the separation condition (Supplementary Figure S6). Even

for correctly specified models, those results provided additional evidence of biases in
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analyses of population structure with small data sets.

Ancient DNA data. This paragraph and the next one illustrate how spectral

estimates can be used to evaluate inbreeding coefficients from genotypes obtained

after correction for experimental or environmental effects. First, we studied ancient

DNA samples from early farmers from Anatolia (EFA, n = 23), steppe pastoralists

from the Yamnaya culture (Steppe, n = 15), and Western hunter-gatherers from

Serbia (WHG, n = 31) [17, 47, 48, 49]. To estimate FST from those samples, we

performed adjustment of pseudo-haploid genotypes for genomic coverage and for

temporal distortions created by genetic drift (which were not expected to modify

FST). After genotypes were adjusted for coverage and corrected for distortions due

to differences in sample ages, the resulting values could no longer be interpreted as

allelic frequencies. Estimates of adjusted FST were equal to 4.7% for the EFA – Steppe

paired data set, 5.8% for EFA – WHG, 5.1% for Steppe – WHG (Table 1). Separation

conditions were verified, and there was evidence of population structure in all pairwise

analyses. Although individual PCA scores were impacted by coverage and temporal

distortions (Figure 5), those unwanted effects did not generate substantial bias for

PCA eigenvalues, leaving us with FST estimates that were similar with or without

adjustment.

Genetic differentiation explained by environmental factors. To provide a

second illustration of the use of spectral estimates of inbreeding coefficients, we

studied the role of environmental factors in shaping population genetic structure

in plants [29]. For 241 swedish accessions of Arabidopsis thaliana taken from The

1,001 Genomes database [30], population structure was first evaluated by using a
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spatially explicit Bayesian algorithm. The individuals were clustered in two groups

located in southern and northern Sweden (Figure 6A). For the groups estimated by

spatial analysis, the mean value of FST across loci was equal to 7.8%. This value

was larger than the largest eigenvalue of the within-population matrix, equal to 4.9

%. The proportion of variance explained by the first PCA axis was equal to 8.5%,

greater than FST (Figure 6). An explanation for this result is that a two-population

model did not fit the data accurately, and PCA axes capture spatial genetic variation

unseen by a discrete population model. After correction for environmental variation,

the leading eigenvalue of the PCA was equal to 6.5% (Figure 6C). The eigenvalue

of the between-population matrix – which defines FST for surrogate genotypes – was

equal to 5.2%. The second and subsequent eigenvalues of PCA were equal to 4.9%,

3.2%, 2.3%, and were unaffected by environmental variables (Figure 6B). These val-

ues agreed with the eigenvalues of the residual matrix, equal to 5.1%, 3.3%, 2.6%

(Figure 6B). The results provided evidence that environmental factors had an im-

pact on the differentiation between northern and southern populations, but had less

influence on other axes of genetic variation. For the first axis, the relative propor-

tion of variance explained by environment was important, around 33%, suggesting

that environmental conditions played a major role in driving south-north population

divergence in Scandinavian A. thaliana.

Conclusions. Assuming a model with K discrete populations, our study estab-

lished a relationship between Wright’s inbreeding coefficient, FST, and the (K − 1)

leading eigenvalues of scaled PCA. A similar relationship was established between

Nei’s among-population diversity, DST, and the leading eigenvalues of unscaled PCA.
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Those relationships justify the use of PCA to describe population genetic structure

from large genotype matrices. They extend results obtained from coalescent theory

for two divergent populations in Ref. [16] to any discrete population model. By

introducing a separation condition, they increase the accuracy of previous results,

clarifying for which sample sizes and number of loci they could be valid. The separa-

tion condition compares the smallest eigenvalue of the between-population matrix to

the leading eigenvalue of the residual matrix, and can be checked numerically with

a computing cost similar to PCA. Simulations of discrete population models showed

that the separation condition could be violated when the sample size or the number of

loci is not large enough. In those simulations, we found that leading eigenvalue of the

residual matrix was well predicted by RMT. RMT also provided a threshold value of

FST, θ = (1/
√
L+ 1/

√
n− 1)2 below which there is no evidence of population struc-

ture for two or more populations. The threshold differs from θ = 1/
√
nL proposed

in Ref. [10], and it was better supported by simulations of single population mod-

els. In addition to connecting PCA of genotype matrix to inbreeding coefficients and

related quantities, our results have several implications for the analysis of adjusted

genotypes, providing statistics analogous to FST for those data. Adjusted genotypes

arise in many applications, such as ancient DNA, to correct for biases due to techni-

cal or sampling artifacts, or ecological genomics where it allows evaluating the part

of population differentiation explained by environmental variation. The proposed

estimates of inbreeding coefficients are thus of great importance to the understand-

ing of the demographic history of populations and their adaptation to environmental

variation.
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Methods

Population subdivision. Genomic samples for n unrelated individuals sampled

from K discrete populations genotyped at a particular locus are considered. We use

the term locus as a shorthand for single-nucleotide polymorphism (SNP), although

most of our analyses could include non-polymorphic sites. At this locus, a reference

allele and a derived allele are observed. The frequency of the derived allele in popu-

lation k is equal to pk. The derived allele frequency in the total sample is equal to

P =
∑K

k=1 ckpk, where ck = nk/n represents a sample proportion. Our treatment of

FST is similar to the original definitions of Wright [1] and Nei [4, 34] with consid-

eration of unequal population sample sizes. Setting HS = 2
∑K

k=1 ckpk(1 − pk) and

HT = 2P (1−P ), Wright’s inbreeding coefficient is defined as FST = DST/HT, where

DST = HT −HS [4].

PCA and SVD. For a genotype matrix X with L loci, centered PCA computes the

eigenvalues, σ2
i (Z), of the empirical covariance matrix, ZZT/n, where Z = Zc is the

centered matrix, for which the mean value of each column has been substracted from

X [9, 26]. Scaled PCA computes the eigenvalues, ρ2i (Z), of the empirical correlation

matrix, ZZT/n, obtained for Z = Zsc, the matrix for which each column of X is

divided by the square-root of P (1 − P ) [10]. To make the notation less cluttered,

superscripts will be omitted in Zc and Zsc. In order to obtain unbiased estimates,

empirical covariance and correlation matrices are usually divided by (n− 1) instead

of n. To avoid this complication, we kept n in all theoretical analyses (assuming

that n is large), but unbiased estimates were used in all data analyses. Using the

equivalence between PCA and SVD, the eigenvalues of PCA were computed as the
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squared non-null singular values of the matrix Z/
√
n.

Spectral analysis. To make arguments easier to follow, we developed the analysis

of eigenvalues for centered PCA. Extension to scaled PCA does not create mathe-

matical complications but has heavier notations. This paragraph sketches the key

arguments for the main result. More details are provided in Supplementary Infor-

mation. We found that the Hilbert-Schmidt norm of the between-population matrix

ZST is equal to

‖ZST‖2 = nLE

 K∑
k=1

ck

(
K∑
j=1

cj(pj − pk)

)2
 = nL× E[DST]/2 ,

where the mathematical symbol E[Q] denotes the mean value of a quantity Q over the

L loci. For scaled PCA, the squared norm is equal to nL×E[FST]. The matrices ZST

and ZS satisfy orthogonality conditions. When those matrices satisfy the separation

condition (4), the sum of the (K − 1) leading eigenvalues (variances) of Z is close to

‖ZST‖2, which represents the sum of the (K − 1) leading eigenvalues of ZST.

F -models. F -models are models for K discrete populations diverging from an an-

cestral gene pool [33]. In the ancestral gene pool, the derived allele is present with

frequency panc. The K populations diverged from each other and from the ancestral

population with drift coefficient equal to Fk relative to the ancestral pool. Condi-

tional on panc, the allele frequency at a particular locus in population k follows a

beta distribution of shape parameters panc(1 − Fk)/Fk and (1 − panc)(1 − Fk)/Fk.

To create a distribution over the L loci, panc is drawn from a beta distribution with

shape parameters a and b, leading to E[panc] = a/(a + b). The expected ancestral

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.07.329755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329755
http://creativecommons.org/licenses/by-nc-nd/4.0/


heterozygozity, HA, is equal to E[HA] = 2ab/(a + b)(a + b + 1). For F -models, the

expected value of DST can be formulated as E[DST] = E[HA]
∑K

k=1 ck(1− ck)Fk (Sup-

plementary Information). Numerical values for E[FST] are less explicit, but they can

be obtained by using Monte-Carlo simulations.

Simulations of F -models were performed in the R programming language. We

performed simulations of single population models (K = 1) to check whether ap-

proximations derived from RMT appropriately describe the leading eigenvalue of

scaled PCA in the absence of population structure. Simulations of F -models were

performed with a value of the drift coefficient equal to F = 15%. The ancestral

frequency for the derived allele, panc, was drawn from a beta distribution with shape

parameters a = 1 and b = 9, so that E[panc] = 10% (Supplementary Figure S1).

Simulations of F -models were performed with K = 2 to check whether the data

could fit theoretical expectations for DST and FST. Two hundred simulations of F -

models were performed with equal values of the drift coefficients randomly drawn

between 1% and 75% (F1 = F2). The ancestral frequency for the derived allele,

panc, was drawn from a beta distribution with shape parameters a = 1 and b = 4,

so that E[panc] = 20%. The total sample size was equal to n = 100 and the sam-

ple proportion c1 was drawn from a uniform distribution between 10% and 50%.

We also considered three-population F -models with equal sample sizes and ances-

tral allele frequencies distributed according to the uniform distribution, (a = 1 and

b = 1). With the uniform distribution, we found that E[HA] = 1/3, and the non-

null eigenvalues of the between-population covariance matrix could be computed

as λi =
(
F1 + F2 + F3 ±

√
F 2
1 + F 2

2 + F 2
3 − F1F2 − F2F3 − F3F1

)
/54, for i = 1, 2

(Supplementary Information). We had E[DST] = 2(λ1 + λ2). Two hundred simula-
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tions of three-population models were performed with unequal drift coefficients drawn

between 1% and 25%. The total sample size was equal to n = 100 and the number

of loci was equal to L = 20, 000. For values of n between 30 and 300, and number

of loci between 100 and 1000, we performed additional simulations with small drift

coefficients (Fk ≤ 10%) to evaluate the probability that the data verify the separation

condition.

RMT. For F -models, the probability distribution of eigenvalues were approximated

with asymptotic quantities obtained from random matrix theory, considering large

sample sizes, and keeping the ratio of the number of loci to the sample size, L/n, to

a constant value [40, 19, 43, 41, 26]. For a single population model, the proportions

of variance explained by each principal axis were approximated by the Marchenko-

Pastur probability density function described by

p(x) = L

√
(xM − x)(x− xm)

2xπ
, xm = (1−√γ)2/L ≤ x ≤ xM = (1 +

√
γ)2/L .

With K = 1, the proportion of variance explained by the first principal axis was

approximated by (1/
√
L + 1/

√
n− 1)2. For K > 1, the Marchenko-Pastur density

modelled the bulk distribution of eigenvalues for the within-population (residual)

matrix. Under the separation condition (3), the proportion of variance explained

by the Kth principal axis was approximated by (1 − E[FST])(1/
√
L + 1/

√
n−K)2.

Regarding centered PCA, the largest singular value of the within-population matrix

was approximated by σ2
1(ZS)/L ≈ E[HS]

(
1 +

√
L/(n−K)

)2
/2.
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Ancient DNA analyses. We analyzed 143,081 pseudo-haploid SNP genotypes

from ancient samples of early farmers from Anatolia (n = 23), steppe pastoralists

from the Yamnaya culture (n = 15), and Western hunter-gatherers from Serbia (n =

31). The data were extracted from a public data set available from David Reich

lab’s repository (reich.hms.harvard.edu) [47, 17, 48, 49]. The ancient samples

had a minimum coverage of 0.25x, a median coverage of 2.69x (mean of 2.98x) and a

maximum coverage of 13.54x. Genotypes were adjusted for coverage by fitting a latent

factor regression model with the number of factors equal to the number of sample

minus two [50]. The matrix was then adjusted for distortions due to differences in

sample ages [28], resulting in surrogate genotypes encoded as continuous variables

not interpretable in terms of allelic frequency.

Genomic and bioclimatic data analyses. We studied 241 swedish plant ac-

cessions from The 1,001 Genomes database for Arabidopsis thaliana [30]. A matrix

of SNP genotypes was obtained by considering variants with minor allele frequency

greater than 5% and a density of variants around one SNP every 1,000 bp (167,475

SNPs). The individuals were clustered in groups based on analysis of population

structure accounting for geographic proximity [51]. Global climate and weather data

corresponding to individual geographic coordinates were downloaded from the World-

Clim database (https://worldclim.org). Eighteen bioclimatic variables, derived

from the monthly temperature and rainfall values, were considered as representing

the current environmental matrix. Correction of genotypes for locus-specific effects

of the eighteen environmental variables was performed with a latent factor regression

model implemented in the R package lfmm [50]. For the matrix of centered genotypes,
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Z, and the matrix of bioclimatic variables, Y, the program estimated a matrix of sur-

rogate genotypes, W, by adjusting a regression model of the form Z = YBT +W+ε.

The B matrix contains effect sizes for each bioclimatic variable in the matrix Y, and

ε represents centered Gaussian errors. To keep the latent matrix estimate (W) as

close as possible to Z, we used k = n− 19 = 222 factors to compute W.

Data availability. The data used in our study were publicly available from their

cited reference.
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Tables and Figures

Box 1. Notations

n Sample size
L Number of genomic loci
FST Wright’s fixation index, computed from Nei’s formula

with correction for unequal sample sizes
HS Within population genetic diversity
HT Genetic diversity in the total population
DST Among (or between) population genetic diversity
X Matrix of SNP genotypes for n individuals at L loci
Z Matrix of centered genotypes, X−P, or scaled genotypes,

(X−P)/
√

P(1−P)
ZST An n× L matrix describing between-population data

repeated for individuals from a same population
ZS An n× L matrix describing within-population data
σ2
k(Z)/n Eigenvalues of the empirical covariance matrix (centered

PCA)
ρ2k(Z)/n Eigenvalues of the empirical correlation matrix (scaled

PCA), also equal to L times the proportions of variance
explained by the principal axes

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.07.329755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. FST estimates for populations from The 1,000 Genomes Project

Lead. eigen. FST Lead. eigen. RMT
of PCA∗ across loci res. matrix∗∗ approximation∗∗∗

CHB-CEU 5.65% 5.65% 0.42% 0.48%

CHB-YRI 8.35% 8.35% 0.36% 0.37%

CHB-IBS 5.42% 5.42 % 0.37% 0.40%

CEU-YRI 7.21% 7.21 % 0.35% 0.37%

CEU-IBS 0.41% 0.38 % 0.37% 0.41%

YRI-IBS 7.27% 7.27 % 0.31% 0.32%

∗ Leading eigenvalue of the PCA
∗∗ Leading eigenvalue of the within-population matrix
∗∗∗ RMT approximation for the leading eigenvalue of the within-population matrix

IBS: Iberian (n = 147), CHB: Han Chinese in Beijing (n = 100), YRI: Yoruba
(n = 158), CEU: Utah residents with European ancestry (n = 104). Number of
SNPs L ≈ 1.3M with minor allele frequency equal to 5%.
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Table 2. FST estimates for ancient Eurasian samples with correction for
genomic coverage.

FST without FST with Lead. eigen. RMT
correction correction res. matrix∗ threshold∗∗

EFA-Steppe 4.8% 4.7% 3.1% 2.8%

EFA-WHG 5.9% 5.8% 3.3% 2.0%

Steppe-WHG 5.2% 5.1 % 3.8% 2.3%

EFA: Early Farmers from Anatolia, WHG: Western Hunter-Gatherers
∗ Leading eigenvalue of the within-population residual matrix
∗∗ RMT threshold for evidence of population structure, θ = (1/

√
L + 1/

√
n− 1)2 ,

L: number of loci, n: sample size
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Figure 1. Comparaison of DST and FST estimates with the leading PCA
eigenvalues in two-population models. (A) Leading eigenvalues of centered
PCA as a function of the mean of DST/2 across loci. (B) Second eigenvalue of
centered PCA as a function of its approximation from RMT. (C) Leading eigenvalues
of scaled PCA as a function of the mean of FST across loci. (D) Second eigenvalue
of scaled PCA as a function of its approximation from RMT, which is given by
(1−ρ21)×(1/

√
L+1/

√
n− 2)2 (approximation of the largest eigenvalue of the residual

matrix). The dashed lines correspond to the diagonal y = x. Simulations of F -models
were performed for n = 100 individuals (inbreeding coefficients between 1% and 75%,
first population sample proportion between 10% and 50%, ancestral frequency was
drawn from a beta(1,4) distribution).
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Figure 2. Screeplots and RMT approximations in two-population models.
(A) Proportion of variance (eigenvalues) explained by PC axes, with a circle symbol
representing the mean of FST across loci for n = 200 individuals and L = 85, 540
SNPs. (B) Histogram of eigenvalues of the residual matrix, ZS/

√
n− 2, for the data

simulated in A. (C) Proportion of variance for n = 40 individuals and L = 12, 650
SNPs. (D) Histogram of eigenvalues of the residual matrix for the data simulated
in C. The dashed lines in PCA scree-plots represent the RMT approximation of the
leading eigenvalue of the residual matrix. The blue curve represents the Marchenko-
Pastur probability density. Simulations of F -models were performed with panc drawn
from a beta(1,9) distribution and F1 = F2 = 7%.
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Figure 3. Correction for coverage in PC plots for pairs of ancient pop-
ulation samples. (A) PCA of unadjusted genotypes. (B) PCA of non-binary
genotypic data adjusted for coverage. Population samples: Early Farmers (salmon
color, n1 = 23), Steppe pastoralists (blue color, n2 = 15), (Western hunter gatherers,
green color, n3 = 31)

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.07.329755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329755
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 15 17 19

56

58

60

62

64

Longitude (°E)

L
a

tit
u

d
e

 (
°N

)

1 2 3 4 5 6

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PC axis

P
ro

p
o

rt
io

n
 o

f 
va

ri
a

n
c
e

1 2 3 4 5 6

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PC axis

P
ro

p
o

rt
io

n
 o

f 
va

ri
a

n
c
e

All SNPs

Adjusted

All SNPs

Adjusted

A
A B

C

Figure 4. Neutral FST for Arabidopsis thaliana in Scandinavia. (A) Geographic
locations of 241 samples and inference of population structure from a spatial method
(Blue color: Southern cluster, Orange color: Northern cluster). (B) Proportion
of variance explained by PC axes before adjustment of genotypes for environmental
variables (blue color) and after adjustment (orange color). (C) Proportion of variance
explained by the first axis of the between-population matrix, and by the first axes of
the residual matrix (five components) before adjustment for environmental variables
(blue color) and after adjustment (orange color). Wright’s coefficients are represented
by the values for the first axis.
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