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Abstract
Approaches for systematizing information of relatedness between organisms is important
in biology. Phylogenetic analyses based on sets of highly conserved genes are currently
the basis for the Tree of Life. Genome-scale metabolic reconstructions contain
high-quality information regarding the metabolic capability of an organism and are
typically restricted to metabolically active enzyme-encoding genes. While there are
many tools available to generate draft reconstructions, expert-level knowledge is still
required to generate and manually curate high-quality genome-scale metabolic models
and to fill gaps in their reaction networks. Here, we use the tool AutoKEGGRec to
construct 975 genome-scale metabolic draft reconstructions encoded in the KEGG
database without further curation. The organisms are selected across all three domains,
and their metabolic networks serve as basis for generating phylogenetic trees.

We find that using all reactions encoded, these metabolism-based comparisons give
rise to a phylogenetic tree with close similarity to the Tree of Life. While this tree is
quite robust to reasonable levels of noise in the metabolic reaction content of an
organism, we find a significant heterogeneity in how much noise an organism may
tolerate before it is incorrectly placed in the tree. Furthermore, by using the protein
sequences for particular metabolic functions and pathway sets, such as central carbon-,
nitrogen-, and sulfur-metabolism, as basis for the organism comparisons, we generate
highly specific phylogenetic trees. We believe the generation of phylogenetic trees based
on metabolic reaction content, in particular when focused on specific functions and
pathways, could aid the identification of functionally important metabolic enzymes and
be of value for genome-scale metabolic modellers and enzyme-engineers.

Introduction 1

Phylogenetic trees have been important in systematizing information in biology for 2

several centuries [1]. While the mathematical construction of these trees has not 3

changed significantly over the years, the biological basis used for generating the 4

phylogenetic trees has changed radically, especially during the last decades and years 5

due to the fast development in sequencing technology [1–3]. This research field is still 6

not settled, as exemplified by the recent change from using 16/18 S rDNA to a selection 7

of conserved (ribosomal) proteins/genes still a topic for research [2–4]. 8
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Additionally, whole genome and genome-scale data approaches allowed by the rapid 9

development in computational methods and computation hardware are broadening the 10

species tree among all taxa [5–7], for example by gaining an increased resolution by 11

reducing statistical errors due to too few comparisons [8]. One rising challenge is that 12

this may lead to an increase in systematic errors [8]: Further errors can occur since 13

genes may mutate due to evolutionary pressures, genes with unrelated functions may 14

introduce artifacts into the process of generating the tree of life [3], or genes can be 15

rearranged, nucleotides substituted or even parts of genes (for example introns) lost [9]. 16

Depending on the research question under investigation, exactly these changes and 17

differences might be highly interesting. Currently, there exists several approaches to 18

integrate more sequencing data into phylogeny determinations, as for example the use of 19

whole-genome-scale phylogeny [10]. Here however, we will focus on using genome-scale 20

metabolic reconstructions as the foundation for determining phylogenetic trees based on 21

metabolic capability. 22

A genome-scale metabolic reconstruction consists of as many as possible metabolic 23

reactions that are encoded in an organism’s genome, thus representing the organism’s 24

capabilities by its metabolic repertoire: Based on the presence of a gene in the genome, 25

the organism can (in theory) perform a certain biochemical reaction and convert 26

involved metabolites. The standard genome-scale metabolic model does not include 27

information whether the respective proteins are expressed in the organism or not. While 28

more advanced approaches that expand these models with a variety of ’omics data to 29

include such information is also possible, they have only been implemented for a limited 30

set of organisms so far [11–14]. 31

Lineage information is highly relevant when creating genome-scale metabolic models: 32

Particularly in the process of model curation, it provides an important aid in the 33

identification of possible gaps using genomic information from closely related 34

organisms [15–17]. However, lineage information is also quite useful in determining 35

potential horizontal gene transfers in models for Bacteria and fungi [10,18,19]; for 36

example the sequences of Staphylococcus aureus, Streptococcus pyogenes, Escherichia 37

coli K-12, and Bacillus subtilis indicate horizontal/ lateral gene transfers [20–23]. In 38

this way, phylogeny can be of high relevance not only for curating a genome-scale 39

metabolic model, but in particular for metabolic- and cell engineering. 40

When an organism is removed from its natural environment, adaptations will change 41

the genes encoding active metabolic enzymes. In yeast, for example, entirely different 42

pathways are expressed in anaerob versus aerob conditions. Traditional phylogenetic 43

analyses would likely identify the adapted yeast strain as an unevolved yeast even after 44

thousands of generations, since they are based on the use of highly conserved and stable 45

genes. Due to changes in environmental selective pressures, mutations could accumulate 46

in inactive metabolic genes [24,25]. These mutations could render such enzymes less 47

effective, causing a fitness disadvantage or even lethality when the organism is 48

transferred back into the original environment [24–26]. We are then left with the 49

curious situation where the adapted organism is considered by conserved genes to be 50

identical to its origin, yet unable to live in its perceived natural habitat. 51

Mutations that allow adaptation to the new environment also occur in active genes 52

(such as regulatory genes or genes coding for metabolic enzymes) to support evolution 53

towards maximal growth fitness only after a few hundred generations [27–29]. 54

Additionally, the organism could increase its metabolic repertoire through horizontal 55

gene transfer from other organisms already present in the new environment. The 56

additional and mutated genes may lead to artifacts in whole genome comparisons [3], 57

potentially further complicating such analyses. In contrast to using whole-genome 58

sequence-data or conserved genes to determine the similarity between a pair of 59

organisms, the occurrence of a metabolic reaction depends on genome annotation, which 60
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is based on the detected level of sequence similarity. Consequently, binary comparison of 61

presence of metabolic capability is independent of the immediate genetic sequence, and 62

therefore, not subject to these mentioned artifacts. 63

The KEGG database (Kyoto Encyclopedia of Genes and Genomes [30–32]) has in 64

the past been used as a starting point for calculating organism-distance measures that 65

are based on metabolic capability [33]. The resulting phylogenetic tree showed good 66

correlation with evolutionary distances between the organisms [33]. This allows for 67

comparing distant organisms across domains and offers to improve model building and 68

curation for distant organisms or a poor data basis [34]. 69

When engineering a pathway for increased production of specific compounds, 70

typically closely related organisms are consulted for genome-scale reconstruction 71

curation, but also for selecting a source organism for inclusion of such reactions. 72

Knowledge about a previous horizontal gene transfer can allow for easier metabolic 73

engineering if transformations from this strain are already known to work in vivo. It 74

may also provide actionable knowledge for model curation, specifically in identifying 75

and solving gaps in pathways when not based on conserved genes but instead metabolic 76

functionality. An example application of such a systematic approach is the 77

computational tool CoReCo, which is designed to generate gap-less genome-scale 78

metabolic models by integrating data using a probabilistic framework [34]. 79

While methods based on tallying the presence or absence of metabolic functions can 80

be computationally quite efficient, there is also much insight to be gained in explicitly 81

analyzing metabolic enzyme similarities. To determine the changes and similarities 82

among taxa, we present a method that uses purely evidence-based genome-scale 83

metabolic reconstructions generated by AutoKEGGRec that only rely on the 84

well-established KEGG database without any further curation [14]. In addition to a 85

network-based binary comparison, we also conducted comparisons based on enzyme 86

sequences of reactions present in each genome-scale metabolic reconstruction to 87

investigate clustering among the organisms. This allows for highly specific comparisons 88

based on single or a set of pathways, such as central carbon-, nitrogen-, or 89

sulfur-metabolism, to a more non-specific whole-organism comparison using all the 90

metabolic reactions to identify not only common reactions but conserved proteins across 91

organisms. 92

Results and Discussion 93

Starting from a set of 975 organisms (see Supplementary table 7 for details on the 94

organisms) selected from the KEGG database currently consisting of 6, 758 organisms, 95

we investigate the penetration of metabolic reactions, i.e. how is the metabolic 96

reaction-set of an organism comprised of reactions that are unique to that organism or 97

reactions that are used by many organisms. Note that, our selection consists of 134 98

Eukaryota (24.8% of all KEGG Eukaryota), 773 Bacteria (13.1%) and 68 Archaea 99

(20.3%). Our selected set of organisms implement a total of RT = 6, 154 different 100

metabolic reactions (see Materials and Methods section for further details). If the 101

metabolic reaction sets are dominated by common reactions, a binary presence or 102

absence test as basis for generating organism-distance measures will provide low 103

resolution in differentiating between organisms. 104

Defining a reaction present in less than 10% of the organisms as low penetration 105

(LP), more than 90% as high penetration (HP), and presence in 35− 65% as medium 106

penetration (MP), we find that an average organism is composed of 7± 7% LP, 25± 5% 107

MP, and 14± 6% HP reactions. Note, that more than half (58%) of the reactions 108

present in the data set of 975 organisms are counted as LP reactions (3, 571). We 109

hypothesize that the LP reactions are associated with highly specialized biochemical 110
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Fig 1. Pathway association among most frequently shared reactions. The 78
reactions found in at least 925 of the 975 organisms are associated with 176 different
KEGG pathways. Note that, six of these high-penetration reactions have no pathway
assignment in the KEGG database.

functions not associated with central pathways. Similarly, it seems reasonable to assume 111

that HP reactions are part of central pathways. 112

To gain a better understanding of the biochemical functions associated with the HP 113

reaction set, we analyzed their KEGG pathway association (see Supplementary table 6 114

for details). Focusing on an HP subset of reactions, those present in at least 925 of the 115

organisms, we find that these 78 reactions are associated with 176 KEGG pathways, of 116

which 64 reactions are in the four enzymatic classes transferase (29), ligase (23), 117

isomerase (7), and oxidoreductase (5). In Fig. 1 we give a more detailed overview of the 118

pathway association for these 78 reactions. 119

Note that, many reactions are associated with multiple pathways in KEGG, and 120

surprisingly, six of the HP reactions are not assigned to any KEGG pathway. Most of 121

the HP reactions are connected with central carbon metabolism and nucleotide- and 122

amino acid synthesis, the central elements for living organisms, in support of our 123

centrality hypothesis. However, we do find exceptions to this: The KEGG reactions 124

R03596 (937 organisms, oxidoreductase, selenocompound metabolism pathway), 125

R09372, oxidoreductase (937 organisms, no assigned enzyme group, selenocompound 126

metabolism pathway), R04771 (945 organisms, transferase, no assigned pathway), and 127

R04773 (965 organisms, ligase, selenocompound metabolism and metabolic pathways) 128

are not in central carbon metabolism pathways. These reactions all contain 129

selenium-based-compounds. Selenium is an element appearing in Eukaryota , Bacteria, 130

and Archaea [35–37]. Specifically, Nancharaiah and Lens [37] show a 16S rRNA 131

phylogentic tree of selenium oxyanion-respiring microorganisms, including Pseudomonas, 132

Bacillus, and Clostridium strains showing the diversity to their selected organisms. For 133

the current selction of 975 KEGG organisms, selenium is an essential component for a 134

subset of Eukaryotes and Bacteria as they are selenium-reducing. These organisms use 135

selenium oxyanions as electron acceptors reducing it to insoluble and nontoxic selenium 136

used in further pathways [37]. We observe however, that for most of the 975 organisms, 137

selenium is neither essential nor significantly beneficial, yet in fact 96.1% of the 138

organisms contain multiple selenium metabolizing reactions. 139

Next, we investigate the level of shared pathway association between LP and HP, 140

finding that 2,794 (78.4%) of the LP reactions are not associated with metabolites 141

found in HP reactions. Furthermore, 1,295 (36.3%) of the LP reactions are not assigned 142

to any KEGG pathway at all (see Materials and Methods for details), in contrast to 143

only 27 (18.5%) of the reactions from the HP reaction set, in support of our centrality 144

hypothesis. These results highlight the importance of a functional-capability focus when 145

implementing organism clustering. We therefore conclude that organism-fingerprint 146

based phylogeny taking advantage of high-specificity (LP reactions) in combination with 147

HP and MP reactions generates a divers yet accurate spectrum across all species. 148

In Fig. 2, we show the histogram of shared reactions among the 975 organisms (black 149

symbols). We note that there is only 12 reactions that are common to all the 975 150

organisms, and total of 146 present in 90% or more of the organisms. In fact, the largest 151

number of reactions are used in only a few organisms, with 375 reactions appearing in 152

only a single organism. 153

As a contrast to the empirical data, we generate 106 randomly selected reaction sets 154

for each of the 975 organisms and calculate the expected reaction penetration in each of 155

the random organism draws. Fig. 2 shows that the number of shared reactions for the 156

random sets (red) is quite different from the empirical results in the low and high range: 157

October 3, 2020 4/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.07.329516doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329516
http://creativecommons.org/licenses/by/4.0/


Fig 2. Reaction penetration in the organism set. Data from empirical networks
from KEGG (black) are plotted against 106 randomly generated organism reaction sets
(red), together with the standard deviation curve (blue). A) Histogram of shared
reactions (the number of organisms in which a reaction is used) among the 975 KEGG
organisms with a bin size of 5. B) and C) show a magnification of panel A) in the LP
and HP ranges, with bin size of unity.

Fig 3. Phylogenetic tree using binary fingerprint comparison from KEGG.
Using KEGG 975 organisms, the resulting tree displays a clear separation between the
domains, splitting into groups such as plants, fish, birds, mammals and fungi. The red
circle marks the edge of the terrabacteria group to others, such as proteobacteria.
Figure created with [38].

In the empirical set, we find a significantly larger number of LP and HP reactions 158

(panels B and C). For the random sets, we instead find that the largest number of 159

reactions is present in approximately half of the available organisms (MP). Here, it is 160

also quite rare for reactions to be present in only a few or many of the organisms. In 161

Fig. 2, panel C clearly indicates the importance of shared reactions in the empirical 162

bio-chemical reaction networks, which we will further exploit for the phylogenetic 163

analysis. 164

Fingerprint-based network comparison 165

We generated a phylogenetic tree using a binary metabolic network comparison 166

approach by using a presence / absence test on all reactions for each pair of organism in 167

the set of 975 organisms (Fig. 3, see Materials and Methods for details). As expected, 168

we notice that the domains are separated into Eukaryota (purple), Bacteria (blue), and 169

Archaea (green). However, we also discovered some misplaced organisms (black band) 170

that were placed at the root of the tree, leading us to question the approaches and the 171

stability of the network. To study the robustness of the resulting phylogenetic tree to 172

perturbations in the particular reaction content, we conducted a sensitivity analysis by 173

introducing a fixed level of random reactions ζ into each organism (see Materials and 174

Methods for details). The results for the level of whole-tree comparisons in Tab. 1 show 175

that the one-percent-level perturbation of the reaction network generates highly similar 176

trees when conducting the perturbation experiment 106 times (see Materials and 177

Methods for details). Note that we use the ζ = 0 tree as our reference (correct 178

placement) in the comparisons. 179

Fig. 4 shows a histogram of the probability of correct placement of 180

tree-neighborhoods for the 975 individual organisms. For the ζ = 0.01 level of 181

randomness, we find that 83.9% of the organisms have an unchanged neighbourhood 182

over the 106 instances, and only 5 organisms show less than a 80% chance of correct 183

placement. Increasing the level of randomness to ζ = 0.025, we find a slight reduction in 184

the fraction of always correctly placed organism to 80.5%. However, increasing to 185

ζ = 0.05% this has dropped significantly to 52.1%, and with ζ = 0.10 we find that only 186

40.1% of the organisms are always correctly placed. 187

Table 1. Sensitivity analysis of phylogenetic tree. Introducing a fixed level of
random reactions ζ results in trees that showed a similarity K(ζ) to the unperturbed
tree (K(0)).

ζ 0.01 0.025 0.05 0.10
K(ζ) 0.980 0.948 0.805 0.670
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Fig 4. Histogram of the probability for correct placement of an organism
using noisy reaction network. For all 975 organisms, 106 instances or each
metabolic network with 1% (black) randomized metabolic reactions, 2.5% (blue), 5%
(purple), and 10% (yellow).

We continue by taking a closer look at three organisms with approximately the same 188

number of metabolic reactions in KEGG and that are correctly placed in the ζ = 0 tree 189

compared to the tree of life (see Tab. 2). Their response to increasing levels of 190

perturbations in their reaction networks is quite dissimilar: While they respond quite 191

similarly to ζ = 0.01 and ζ = 0.025 levels of randomness result, increasing ζ further has 192

drastic effects. Already ζ = 0.05, which on average corresponds to a perturbation of 193

only 76 reactions, the probability for Xanthomonas to be correctly placed decreases to 194

0.83%. For ζ = 0.10, this has dropped to 0.56. In stark contrast, we observe that the 195

highly curated Saccharomyces reaction set is ultra stable. Even at the 10% noise level, 196

the yeast is correctly placed 99% of the time. We argue, that this sensitivity analysis 197

gives an indication about the quality of the reaction network. 198

Furthermore, the correct placement of a specific organism depends on the network 199

size and the percentage of miss-annotated reactions or missing/added reactions: It is to 200

be expected that a selection of 975 organisms across all domains from the (currently) 201

6, 758 organisms in the KEGG database will include some organisms with a low number 202

of annotated reactions. Indeed, some of the incorrectly placed organisms in Fig. 3 are 203

"Candidatus"-organisms that have been characterized but not yet been cultured. The 204

set of 975 organisms contains 37 Candidatus strains, of which 17 are placed incorrectly: 205

Not only are they outside of the expected groupings, but instead they are placed near 206

the root of the tree. Consequently, they contain few reactions that are able to generate 207

close similarity with other organisms. The Candidatus strains make up almost half of 208

the 35 misplaced organisms in Fig. 3, highlighted with a black arc. However, the 209

incorrectly placed strains are only associated with an average of 360± 190 metabolic 210

reactions in the KEGG database, in contrast to the average of 1, 200± 500 for the 940 211

correctly placed organisms (for details see Supplementary table 8). An example of a 212

incorrectly placed Candidatus strain is KEGG ID hcc with the name Candidatus 213

Hodgkinia cicadicola TETUND1. This is an entry with only 71 reactions, of which 0% 214

are LP, 21.1% MP, and 32.4% HP (see Tab. 2). 215

On the opposite end of the spectrum among incorrectly placed organisms is the 216

organism with the KEGG ID loki, an Archaea within the Asgard group according to 217

taxonomy, a "composite genome assembled from a metagenomic sample" from the Arctic 218

Mid-Ocean Spreading Ridge, located 15 km from Loki’s Castle active vent site [39]. It 219

contains 845 reactions, 12.1% of which are LP type, 26.1% MP, and 15.6% HP type, 220

and thus, it is within the expected distribution among LP / MP / HP reactions (see 221

Tab. 2). Note however, 7.9% of its LP reactions are only present in less than 1% of the 222

organisms. These highly specific and unique reactions decrease the potential overlap 223

Table 2. Sensitivity analysis of specific networks. Six organisms of which three
are placed correctly (C) and three incorrectly (N) in Fig. 3. The organisms are specified
by their KEGG codes and are compared by their sensitivity to correct placement and
their reaction-penetration composition.
Organism Placement state # reactions ζ = 0.01 ζ = 0.025 ζ = 0.05 ζ = 0.10 HP MP LP
Xanthomonas campestris (xcc) C 1,520 0.99 0.97 0.83 0.56 9.61 30.9 5.59
Saccharomyces cerevisiae (sce) C 1,523 1.00 1.00 0.99 0.99 9.59 19.9 11.5
Bacillus subtilis (bsu) C 1,518 0.99 0.98 0.95 0.81 9.62 27.4 5.67
Lokiarchaeum sp. (loki) N 845 1.00 1.00 0.76 0.56 15.6 26.1 12.1
Borreliella burgdorferi (bbu) N 309 1.00 0.98 0.56 0.21 29.5 19.7 0.32
Candidatus Hodgkinia cicadicola (hcc) N 71 1.00 1.00 1.00 0.65 32.4 21.1 0.00
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with other species which would allow for a similarity-based placement within the tree. 224

We find it reasonable to assume that these strains are missing a large number of 225

metabolic reactions while also containing few strain-representative metabolic reactions, 226

making a high quality binary reaction-presence comparison difficult. Consequently, we 227

cannot expect to place them correctly in the phylogenetic tree. 228

Since most of the organisms contain a balanced mixture of LP, MP and HP 229

reactions, the whole-metabolism comparison is capable of generating a clear separation 230

between Eucaryotes and Procaryotes, and within the domains, a clear separation into 231

families. In Fig. 3 the organism clustering is indicated by colored bands, and the 232

domains Archaea (green), Eukaryota (purple), and Bacteria (blue) are highlighted 233

separately. Within Eukaryota, the phyla are sub-grouped as expected, all fish are placed 234

within actinopterygii (ccar, sasa) and are separated from mammalia (hsa, ggo), within 235

the subgroup of tetrapoda, also placing sauropsida with the selected organisms correct. 236

Next to mammalia, nearly equidistant, are viridiplantae before fungi, where aspergillus 237

(ang) and penicillium (pcs) cluster as expected. Within Archaea, the euryarchaeota are 238

correctly split into stenosarchae and other organisms present in the 975-organism data 239

set. 240

The Bacteria domain is with 773 (79.3%) of the organisms the largest part in our 241

data set. The gram-positive lactobacillaceae - and streptococcaceae-family (lpl and 242

sphy) separate as expected and cluster with closely related organisms within the class of 243

bacilli, where a correct placement of the staphylococcaceae- and bacillaceae-family (sau 244

and bsu) within the bacillales order is achieved. The terrabacteria group is clearly 245

distanced from the other bacteria, marked by a red circle in Fig. 3. The first class in 246

proteobacteria that separates is alphaproteobacteria, followed by the large group of 247

gammaproteobacteria. Separation into xanthomonadales (xcc), pseudomonadales (ppu 248

and pae), oceanospirillales, and enterobacterales (eco and eal), to name a few ,is 249

achieved in high accordance with phylogenetic trees based on conserved genes [40]. Thus, 250

conducting a binary finger-print comparison based on whole-genome metabolic reaction 251

content generates a reliable tree with high accuracy and is computationally fast. 252

However, if we are interested in a function-based comparison between a set of 253

organisms instead of a whole-genome comparison, a more detailed comparison including 254

sequence information is needed: First, we can expect that focusing on a small subset of 255

metabolic reactions will render many pairwise comparisons as either a perfect or a zero 256

match, thus being unable to reasonably discriminate between them. Second, genes 257

transferred into a broad-host-range plasmid can reach not only closely related organisms. 258

This allows for fast genetic drift and numerous genotypes since, e.g. organisms sharing 259

an environment will have a chance of sharing genetic material, and eventually, some of 260

this will encode for metabolic reactions that are beneficial in this environment [18]. The 261

binary network comparison will not change notably due to such processes (see Eq. (1)). 262

Similarly for sequence comparisons that take all metabolic reactions into account. We 263

propose that a possible solution to the challenge of conducting a narrow function-based 264

comparison with high discriminatory power is to compare the protein sequences of 265

selected reactions from the draft metabolic reconstructions. In the following, we report 266

the result from such an analysis. 267

Protein-based network comparisons 268

We start by selecting a subset of 21 selected organisms from different regions in the 269

phylogenetic tree (see Fig. 3) to serve as our reference set. By limiting the analysis to a 270

smaller set of organisms, it is more straightforward to study the direct consequences of 271

different versions of the comparison algorithm and to assess consequences of a narrow 272

function focus. Additionally, the computational run-time is significantly faster for 273

sequence comparisons of 21 organisms versus 975. We re-generate the binary-reaction 274
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Fig 5. Reference phylogenetic tree using binary network-based fingerprint
comparisons. For the set of 21 organisms using all reactions, the resulting tree shows
clear separation between the domains. We note that the reaction network of H. pylori is
different from the other Bacteria, and that the carp (Cyprinus carpio) was expected to
cluster with the other fish.

Fig 6. Effect of penalty score using all metabolic reactions in the 21
genome-scale networks. The different panels refer to the penalty score used: (A)
−0.25, (B) −0.1, (C) 0, (D) 0.1, (E) 0.25 and (F) no use of penalty. The color codes
and KEGG IDs of the organisms are shown in Tab. 4.

set comparison-tree for the 21-organism reference set based on Eq. (1) to serve as a 275

gold-standard for the sequence-based analysis with focus on specific (small) sets of 276

metabolic functions. In Fig. 5, we see that the separation between domains and even 277

the smaller groupings can be achieved with a high degree of agreement with the 278

975-organism tree (Fig. 3). Most of the color coded clusters are grouped as in the large 279

phylogenetic tree; even though small differences can be observed. Note that, when 280

comparing the details of Figs. 3 and 5, any observed difference is solely caused by the 281

reduction in number of organisms included in the comparison. 282

As shown in Tab. 4, the number of reactions vary vastly among the set of 21 283

organisms: We find 2,624 biochemical reactions in H. sapiens but only 723 in H. pylori. 284

The number of genes increases significantly, since many organisms have reactions 285

encoded by multiple gene products through enzyme complexes or isozymes. 286

Additionally, each of these genes may include introns or exons, silent mutations and 287

other variations. Consequently we will compare the protein sequences associated with 288

each enzymatic reaction that are available in the KEGG database to reduce a possible 289

error in cross-domain-comparisons. 290

From the KEGG pathways, we first used all available reactions in our 21-organism 291

reference set (see Tab. 4 for details). Due to the possibility that a reaction only appears 292

in one of the organisms in the pairwise comparison, we found it necessary to add a 293

penalty score (see Materials and Methods section for details). We found it further 294

necessary to implement a solution for multiple enzymes in a single reaction, either 295

isozymes or enzyme clusters, as a basis for the pairwise biochemical reaction-comparison. 296

In the following two sections, we discuss the reasoning for and impact of the respective 297

methodologies. 298

Impact of penalty score on the phylogenetic trees 299

Pairwise binary reaction-comparison result in either true or false responses. However, 300

when implementing a sequence-based comparison, we are interested in the possibility of 301

a more graded response to cases where a reaction is only present in one organism. A 302

penalty score is in essence the application of a low similarity score for such cases. This 303

penalty score affects very similar organisms that (a) share many reactions, and (b) have 304

a high sequence similarity the least, similar to organisms that share (a) few reactions 305

with (b) a low similarity score. 306

We conduct our assessment of possible penalty scores using all available 307

reaction-based enzyme sequences for each pair of organisms (Fig. 6). We find that a 308

clear separation between Eukaryota and Bacteria could be achieved for all values of the 309

penalty score. To evaluate the impact on highly similar organisms, we focus on the two 310

E. coli strains and the E. albertii strain, with KEGG organism IDs eco, elp, and eal 311

respectively. They are all encoded in orange colors in the 21-organism tree figures. The 312

relative distance between eco, elp and eal do not change when varying the penalty score: 313

October 3, 2020 8/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.07.329516doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329516
http://creativecommons.org/licenses/by/4.0/


As expected, eco and elp are always closer related in comparison to eal. The value of 314

their similarity score,〈S(A,B)〉 (see Eq.(7)) changes, which for closely related organisms 315

means a small change in distance in the tree. 316

However, for distantly related organisms the penalty score has a larger impact due to 317

the nature of Eq. (7). This is clearly evident for the green-labeled part of the phylum of 318

proteobacteria. The organisms in the phylum proteobacteria are labeled green and 319

orange, orange for the included family of enterobacteriaceae. While the Pseudomonas 320

strains ppu and pae (green) cluster together with small differences in the tree distance, 321

the response to varying penalty scores for the more distant Xanthomonas (xcc) and 322

Helicobacter (hpy) does not follow a clear pattern. For a penalty score of 0.25, we find 323

hpy clusters outside of Bacteria, whereas for a range of values of −0.25 to 0 it’s grouped 324

with bacilli (black). At a penalty score of 0.1, hpy is similarly distant to all Bacteria. 325

When ignoring the use of a penalty (see Fig. 6 F), hpy clusters again outside of Bacteria. 326

This shows that, for very close organisms the impact of the penalty score is potentially 327

smaller, especially when few reactions are compared. 328

Therefore, depending on the question asked, we believe it prudent to (a) either 329

ignore the use of a penalty, or (b) use a penalty score that has minimal impact on the 330

similarity score between closely related organisms while at the same time modifies 331

cluster assignments among more distantly related organisms to be more aligned to "true 332

functional similarity". 333

Taking these considerations into account, we found a penalty score of 0.25 be a good 334

choice for the 21-organism sequence alignment analysis. The reasoning is based on the 335

fact that, we achieve a high similarity with the tree based on conserved genes, even 336

though hpy is placed away from the other proteobacteria and barely more similar to 337

bacilli. However, the overall distances are more reasonable when comparing distantly 338

related organisms. This is exemplified with the black labeled bacilli being more similar 339

at a penalty score of 0.25. Additionally when focusing on specific functionality, we are 340

not generating trees with the intent of comparing them to those resulting from 341

conserved genes-comparisons. Instead, our reference tree is that in Fig. 5. 342

Multiple enzyme comparisons for a single reaction 343

Even though similarities at the whole-organism level (whole genome comparisons) are of 344

high interest, specific functional similarity is of high relevance in e.g. the field of 345

metabolic engineering. Sequence similarities for a narrowly selected set of metabolic 346

reactions, functionalities, and pathways can generate important insight into complex 347

relationships based on horizontal gene transfer or mutations. Many reactions included 348

in a genome-scale metabolic network are encoded by multiple genes where the enzymes 349

are isozymes or complexes catalyzing the metabolic reactions. 350

For the cases with several genes encoding a single metabolic reaction, we generated 351

all pair-wise sequence comparisons between two organisms (see Materials and Methods 352

section for details). The largest similarity score, independent of sequence size or number 353

of sequences present, was selected. While this approach could lead to a high similarity 354

score caused by a small part of a protein complex (possibly not even part of the active 355

site), the final similarity score between two organisms is based on the average of all 356

protein similarity comparisons (Eq. (7)). Thus when comparing many reactions, the 357

impact of the alignment-score from a single protein is smaller than in case of just a few 358

reactions. Since only the highest similarity is used, we argue that even small amounts of 359

reactions generate accurate measurements. 360
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Fig 7. 21 organisms compared by different reactions present in the genome-scale
metabolic reconstructions. A) is a comparison based on all reactions in the network, B)
refers to all shared reactions, C) is the TCA set, D) is based on the DNA metabolism
set, E) compares the pyruvate metabolism set, and F) is with the glycolysis set. The
color code and the KEGG IDs of the organisms are shown in Tab. 4, the KEGG
reaction IDs are listed in the Supplementary material.

Whole-genome metabolic protein sequence similarity tree 361

The phylogenetic tree resulting from a similarity calculation using our 21-organism 362

reference set based on sequence comparisons is shown in Fig. 7A. It includes all 363

reactions present in the genome-scale metabolic network with a penalty score of 0.25. 364

To further facilitate comparisons with the corresponding binary network-based 365

fingerprint (Fig. 5), we have provided a side-by-side rendering in Supplementary figure 366

1. In Fig. 7A, Eukaryota and Bacteria separate as expected when using the metabolic 367

enzyme sequence comparison for the whole metabolic network. In contrast to the binary 368

network fingerprint (Fig. 5), the selected E. coli strains share a higher similarity than 369

salmon and pike, including E. albertii. The reason is that essential genes in bacteria are 370

more conserved than nonessential genes [18,41]. This illustrates the power of the 371

approach utilizing potentially shared protein sequences for metabolic similarity. The 372

higher reproduction cycle of microorganisms, including the possibility of exchange of 373

genetic material and thus functionality from other organisms in the same environment, 374

allows for a fast adjustment to new or changing environments. The conserved 375

essentiality is also expressed by the fact that many metabolic reactions are encoded by a 376

single gene in Bacteria, in contrast to more complex organisms which encode metabolic 377

functionality often by multiple genes, compare Tab. 4. 378

All strains meet the expected distance, even within the proteobacteria, where the 379

orange marked family of enterobacteriaceae clusters in close proximity. Proteobacteria 380

and bacilli are as distant as expected, however H. pylori clusters outside yet still within 381

Bacteria. Note, that hpy has the smallest reaction network in this dataset of 21 382

organisms, reducing possible reaction overlap with other organisms. Streptococcus is 383

with its 760 reactions similar in size, yet the metabolic overlap with the other organisms 384

is larger (see Fig. 6 for more details). 385

Consequently, we argue, that including a higher resolution using active enzyme 386

sequences improves the computationally fast and good functioning approach of binary 387

metabolic network fingerprinting further. Not surprisingly, however, comparing all 388

sequences for all organisms is significant more computational demanding. 389

Consequence of specific metabolic functions on the phylogenetic trees 390

While comparing the whole genome-scale metabolic network on a protein sequence-basis 391

can reveal similarities on an organism-level, we are particularly interested in similarities 392

of metabolic reaction subsets i.e. implementation of metabolic function. This includes 393

organism-specific functionality or analysis of conserved pathways such as the TCA cycle. 394

As a proof of concept, here we have selected several sets of metabolic reactions based on 395

the HP data set (see Materials and Methods section for details on the selected reaction 396

sets). Note, that their selection is inspired by the HP data set, but driven by the KEGG 397

pathways making some of the reactions absent in all organisms. We use the penalty 398

score of 0.25 which imposes a high dissimilarity (penalty) on the respective missing 399

reaction. 400

In Fig. 7, panels B to F, we show the phylogenetic trees resulting from the selected 401

reaction sets. In panel B we used the protein sequences for the set of 203 metabolic 402
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Table 3. Similarity score K(A,B) from the pairwise comparison of phylogenetic trees
shown in Fig. 7.

A) all reactions B) all shared C) TCA set D) DNA set E) pyruvate set F) glycolysis set
A) all reactions 1.0 0.45 0.35 0.45 0.25 0.25
B) all shared 1.0 0.40 0.40 0.30 0.35
C) TCA set 1.0 0.35 0.25 0.35
D) DNA set 1.0 0.25 0.30
E) pyruvate set 1.0 0.20
F) glycolysis set 1.0

reactions shared between all of the 21 organisms, which represents 28% of the H. pylori 403

metabolic reactions, further emphasizing the importance of these reactions. The figure 404

shows that the orca whale is closer related to the human than to the gorilla. 405

Furthermore E. coli K12 MG1655 and S. enterica are more similar than E. albertii and 406

E. coli P12b, in sharp contrast to previous findings and the common understanding of 407

the Tree of Life. Although the similarity among mammals is lower than expected using 408

traditional comparisons, this similarity analysis is solely based on the protein sequences 409

of the 203 KEGG metabolic reactions shared in the 21-organism reference set. Here, the 410

choice of penalty score has no effect, since all the reactions and therefore at least one 411

protein sequence, is available for all pair-wise sequence alignments. 412

Using protein sequences from metabolic reactions present in the TCA cycle 413

(Fig. 7C), we find that the separation between Bacteria and Eukaryota is disturbed by 414

S. pyogenes (spy), which is the second smalles organism with its 760 metabolic reactions. 415

Within the Bacteria, only the family of enterobacteriaceae clusters as expected. The 416

TCA set also generates high relative similarity between human and gorilla. The relative 417

distance to the orca whale thus is more in accordance with traditional clustering. 418

In Fig. 7D, we show the phylogenetic tree resulting from the protein sequence 419

comparison of a set of DNA-metabolism reactions, also based on the HP reaction set. 420

This reaction set also contains all reactions shared among all 975 organisms. While we 421

observe that all distances increase, the relative sub-groupings do not change as Bacteria 422

and Eukaryota are separated as expected. The clade of euteleostomi as well as the 423

family of enterobacteriaceae and class of bacilli form clusters, which are as expected with 424

the exception that salmon and carp switched their relative similarity to pike. Note that, 425

the other organisms in the class of gammaproteobacteria (xcc and hpy) are not placed 426

with the other gammaproteobacteria but instead share similarities with all Bacteria. 427

In contrast when we use a metabolic reaction set based on pyruvate metabolism 428

(Fig. 7E), we find the largest relative dissimilarity of all the compared reaction sets 429

(panels B-F). Surprisingly, the expected determination of domains is still achieved. The 430

phylogenetic tree displayed in panel F is based on a set of only seven metabolic 431

reactions from glycolysis that are present in most metabolic networks. Similar to panel 432

E, the relative distance of all organisms is high compared with the other reaction sets. 433

Note that, in several of the figure panels the distance of multiple organisms are nearly 434

identical, e.g. in panel 3 for Escherichia and the mammals. This result suggests that 435

that the protein sequences for these organisms in the chosen metabolic reaction sets are 436

equally distant to each other. 437

For a more quantitative analysis of the phylogenetic tree similarities, we calculated 438

the similarity K(A,B) between all pairs of phylogenetic trees in Fig. 7 based on a 439

branch comparing approach (further details in Materials and Methods section and 440

Ref. [42]). We find some interesting patterns from this network comparison (see Tab. 3). 441

Panels E and F have a low similarity (≤ 0.35) with the other panels. Compared to the 442

all reactions panel (A), the score of 0.25 for E and F respectively is the lowest, and 443

panels D and B share a similarity of 0.45 with A. We conducted this tree similarity 444

analysis as an indication for the over all organism similarity to evaluate large 445
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dissimilarities. These dissimilarities show reaction sets that vary in sequence similarity 446

that the tree is re-ordered and some organisms cluster differently. 447

Close organisms were expected to cluster closely, which is achieved for many groups. 448

The smallest set of reactions compared here was seven (glycolysis set), the largest 21 449

reactions (TCA set). Comparing the relative distances between these two plots shows a 450

clear difference: While the small number of reactions leads to a large difference for even 451

very close organisms such as the two E. coli strains, the large set of reactions shows a 452

very high similarity. The pairwise comparison of the two E. coli strains, a similarity of 453

0.73 in A, 0.78 in B, 0.58 in C, and 0.53 in F thus shows the clear pattern: In A all 454

reactions are used which also includes a penalty score for the binary reaction difference. 455

Additionally dissimilar enzyme sequences via the average organism similarity influence 456

the scores. In panel B only reactions are compared which are present in all strains. This 457

leads to a pure sequence similarity based comparison and thus to closer organisms 458

within E. coli. 459

The distances between organisms in the phylogenetic trees of panels C to F is a direct 460

result of the particular selection of metabolic reaction sub-sets, or specific metabolic 461

functions. A consequence of smaller reaction sets is that some of the chosen metabolic 462

functions are not or only partly present in a given organism set. The difference can be 463

seen when comparing the pike (els) to E. coli K-12 MG1655 (eco) for the TCA set 464

shown in panel C. Firstly, the organisms differ in the presence of four reactions: KEGG 465

reaction IDs R00344, R00432, R00709, and R01197. R01197 is the only reaction present 466

in eco but not in els. For these reactions, the penalty score is used in the comparison. A 467

closer inspection shows that the more complex organism, els, has a larger repertoire of 468

alternative reactions for the succinate:CoA ligase, the enzyme catalyzing this reaction. 469

The biochemical transformation of succinly-CoA to succinate is an important 470

reaction in the TCA cycle and encoded via the different enzymatic reactions with 471

KEGG reaction IDs R00405, R00432, R00727, and R10343. Reaction R00405 allows for 472

ATP production in eco and els. reactions R00432 and R00727 are responsible for GTP 473

and ITP respectively in the pike. In fact, they are present in all selected 21 Eukaryota. 474

This shows the higher metabolic versatility of the Eukaryota in this central 475

succinate:CoA ligase reaction. Reaction R10343 has no involvement of any energy 476

equivalent and is present in neither of these two organisms, however in is included in 477

pae, ppu and xcc. Thus, for the similarity analysis of eco and eal, this reaction has no 478

impact. The difference of eal and eco is consequently based on the four binary reaction 479

differences that are included with a penalty score of 0.25 and on the sequence 480

differences for the remaining 17 reactions. 481

We have shown, that the analysis of selected reactions generates a set-specific 482

similarity. We find that the similarity strongly depends on the reactions and thus varies 483

for the reaction sets. The reaction distribution within the family of enterobacteriaceae is 484

so similar that they cluster together in all panels in Fig. 7. We notice however, a clear 485

increase in their relative distances (height of the branches in the phylogenetic trees). 486

For eco and eal, this is based on the direct sequence difference and variation in reaction 487

availability. The large difference in panel E indicates huge variation amongst all 488

organisms for this reaction set. We find that the analysis of reaction sets together with 489

whole-genome metabolic comparison can increase the knowledge for specific organisms. 490

We would expect phylogenetic trees resulting from specific metabolic function 491

comparisons to differ from the expected Tree of Life in both distance and clustering. 492

However, these trees are not intended to serve as replacements for the Tree of Life. 493

Instead, they have a role as knowledge basis for engineering purposes when combining 494

reaction sets of multiple organisms. 495
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Conclusion 496

Here, we have developed and analyzed an organism-clustering method based on 497

genome-scale metabolic capability. We used the previously published Matlab function 498

AutoKeggRec [14] to generate 975 genome-scale metabolic draft reconstructions based 499

on the KEGG database. This reaction set represents various phlya from all domains of 500

life. We find a strong similarity between the binary metabolic network-based fingerprint 501

organism-clustering and the Tree of Life, in agreement with previous studies [33]. When 502

using all available KEGG metabolic reactions for the organisms, we would expect that 503

the resulting phylogenetic tree should have strong similarities with the accepted Tree of 504

Life. Incorrectly placed organisms within the phylogenetic tree share a small overlap of 505

metabolic reactions with other organisms. That is caused by two factors: Their small 506

metabolic reaction network due to incomplete or significantly missing reaction 507

annotations, or a large number of highly specialized metabolic reactions combined with 508

a small number of more common metabolic reactions. We observed a similar effect when 509

reducing the number of organisms from 975 to 21, as some relationships were changed. 510

When analyzing the binary genome-scale networks’ similarities, we find that 511

high-specificity reactions (LP reactions) and the more common MP reactions generate 512

an accurate placement of the organisms in the hierarchical clustering of organisms. 513

Furthermore, a correct placement of an organism also depends on the presence of HP 514

reactions, since without these the organisms tend not to be grouped within their 515

expected domains. 516

Within the HP reaction set we find universal reactions in central pathways that 517

metabolize amino acid and nucleotide based compounds besides selenium processing 518

reactions. The HP reaction set is thus associated with an ubiquitous central metabolism 519

across all organisms. Further analysis generating a metabolic core network based on 520

these data, curating and gap filling them, can increase the fidelity of similarity analyses 521

founded on genome-scale metabolic reaction information on a systems level. 522

Additionally, it can help in the process of curating similar and new organismal 523

metabolic networks as well as revising annotations for existing ones. 524

In contrast, we find that the LP reactions which are shared between only a few 525

organisms consist of 58% of the 6, 154 metabolic reactions present in the data set of 975 526

organisms. Since 78.4% of these reactions do not share metabolites with HP reactions 527

and 36.3% are not associated with a pathway in the KEGG database, we conclude that 528

these reactions are highly specialized metabolic reactions. However, since the LP 529

reactions are quite abundant in the data set, they play an important role in 530

combination with the MP reactions to achieve correct placement among closely related 531

organisms. For example, the KEGG reaction ID R00025 is present in fungi, bacilli, and 532

in parts of the proteobacteria, not in neopterygii, mammalia, or enterobacteriaceae. 533

When combined with other reactions clustering for Eukaryota and Prokariota, this 534

reaction can contribute to the difference between enterobacteriaceae and 535

pseudomonadales on a binary level. In contrast, it will not provide the ability to 536

differentiate between E. coli and S. entericia since it’s not present for these organisms. 537

In order to improve the resolution of the comparisons, we implemented a protein 538

sequence-similarity measure with the possibility for selecting smaller reaction sets and 539

pathways composed of specific reactions. 540

Using the protein sequence data, we find a higher level of agreement between the 541

resulting phylogenetic tree and the tree of life for the reduced data set. The additional 542

data within the enzymatic reaction sequences can therefore compensate for the small 543

overlap in diverse organisms. We found differences in clustering when applying the 544

similarity analysis to various reaction selections based on the HP reaction set. 545

Consequently, we hypothesize that using the protein-sequence based similarity analysis 546

focused on specific metabolic reaction subset may aid in the identification of 547
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Table 4. The 21 chosen organisms in this study grouped according to order. This table
also lists their KEGG IDs, number of registered metabolic reactions, number of genes,
average number of genes per metabolic reaction, organism name and the associated
coloring scheme.
Order ID No. reactions No. genes average genes per reaction organism color
Mammalia hsa 2624 9672 3.69 Homo sapiens red

ggo 2603 9949 3.82 Gorilla gorilla gorilla red
oor 2569 7984 3.11 Orcinus orca red

Neopterygii sasa 2504 17553 7.01 Salmo salar blue
els 2507 9613 3.83 Esox lucius blue
ccar 2404 17255 7.18 Cyprinus carpio blue

Fungi ang 1965 4942 2.52 Aspergillus niger CBS 513.88 yellow
sce 1522 3012 1.98 Saccharomyces cerevisiae S288c yellow
pcs 1931 4288 2.22 Penicillium rubens Wisconsin 54-1255 yellow

Proteobacteria pae 1716 3244 1.89 Pseudomonas aeruginosa PAO1 green
ppu 1606 2866 1.78 Pseudomonas putida KT2440 green
xcc 1523 2640 1.73 Xanthomonas campestris pv. campestris ATCC 33913 green
hpy 723 925 1.28 Helicobacter pylori 26695 green
eco 1743 2737 1.57 Escherichia coli K-12 MG1655 orange
elp 1714 2743 1.6 Escherichia coli P12b orange
eal 1610 2571 1.6 Escherichia albertii KF1 orange
sty 1634 2623 1.61 Salmonella enterica subsp. enterica serovar Typhi CT18 orange

Bacilli sau 1131 1660 1.47 Staphylococcus aureus subsp. aureus N315 black
bsu 1520 2408 1.58 Bacillus subtilis subsp. subtilis 168 black
lpl 993 1684 1.7 Lactobacillus plantarum WCFS1 black
spyh 760 1049 1.38 Streptococcus pyogenes HSC5 (serotype M14) black

functionally important mutations and adaption-relevant gene transfers across species, 548

families or even phyla. 549

Materials and Methods 550

In the following, we describe the two different approaches employed to generate the 551

metabolic-network based phylogenetic trees. Both methods are based on the availability 552

of draft genome-scale metabolic reconstructions from KEGG, using the AutoKEGGRec 553

function [14]. This function runs in Matlab and interfaces with the COBRA toolbox 554

3.0 [43] for genome-scale metabolic modelling. Briefly described, AutoKEGGRec will 555

access the KEGG database using identifiers for organisms and generate genome-scale 556

draft reconstructions based on only the genetic information. This starting point will 557

typically be subject to automatic as well as manual curation, gap-filling and 558

improvements based on additional information in the standard model-creation steps [17]. 559

In this work we only used data available in the KEGG database. 560

Calculations and figure generations were performed in Matlab 2017b: The Matlab 561

functionseqlinkage was used with the default setting ’average’ for an unweighted pair 562

group method average (UPDMA) clustering of the pairwise comparisons [44]. To create 563

the figures the function plot was used with the Type-setting ’square’. 564

Using AutoKEGGRec, we downloaded the full reaction table for 975 selected 565

organisms. The provided KEGG organism codes (see Tab. 4 for 21 organisms and 566

Supplementary Table 1 for the N = 975 organisms) were used as input for 567

AutoKEGGRec, and a community draft model as well as individual draft models were 568

generated. Furthermore, we used the AutoKEGGRec option to generate the 569

organism-reaction-gene matrix (ORG), which is used as the knowledge-base for this 570

work (see Ref. [14] for further details). The total number of reactions covered by the set 571

of N organisms is RT = 6, 154 out of 10, 995 reactions present in the KEGG database 572

(56.2%). 573

Note, that the 21 organisms are largely a subset of the 975 selected KEGG 574

organisms chosen based on distribution and their prominence. The color code given in 575

Tab. 4 for the organisms is consistent throughout the manuscript. 576
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Binary metabolic network comparison 577

The first method for generating phylogenetic trees is based on using the 578

organism-reaction-gene (ORG) matrix generated by AutoKEGGRec by transforming it 579

into a binary matrix where a unit entry indicates that the given reaction is present in 580

the organism, and a zero entry when it is absent, refer to Tab. 5. Therefor this is a 581

whole-network comparison of the organisms, resulting in a metabolic functional 582

similarity. We use this binary matrix as the starting point for an all-to-all pair-wise 583

comparison between the organisms by calculating the Jaccard index [45] J(A,B) 584

between the pair of rows corresponding to organisms A and B: 585

J(A,B) = |A
⋂
B|

|A
⋃
B|
. (1)

We illustrate the procedure with the following example: The similarity of the two 586

organisms A and B is calculated following Eq. (1) and using the toy data shown in 587

Tab. 5 as 588

J(A,B) = |R01, R06, R07, R11|
|R01, R02, R05, R06, R07, R08, R10, R11| = 4

8 = 0.5. (2)

For improved calculation speed, only reactions occurring in at least one organism were 589

included, and empty KEGG reactions were removed. The pair-wise similarity scores 590

were stored in a matrix, saved as a Newick-formatted file, and visualized in either 591

Matlab or iOTL [38]. 592

Sensitivity analysis 593

We investigate the sensitivity of our results to inaccuracies in reaction-associations with 594

organisms by performing a random sampling analysis. In this way, we can assess the 595

effect of varying levels of incorrect assignment of reactions to organisms on our 596

conclusions, i.e. the consequence of incorrect loss and acquisition of reactions. First, we 597

generate an instance of each network for each of the 975 organism. Second, we introduce 598

the noise-level ζ. The choice of ζ = 0.01 means that, for each reaction in a network 599

instance, there is a 1% chance that it is removed and a randomly (uniformly) selected 600

reaction not assigned to the organism is chosen instead. In this way, the number of 601

reactions for each organism stays constant. In the case of E. coli, the network consists 602

of RE = 1, 743 KEGG reactions. With ζ = 0.01, we will remove 17 of these reactions 603

and replace them with the same number drawn from the RT −RE = 9, 252 remaining 604

possible reactions. In our sensitivity analysis, we use ζ ∈ {0.01, 0.025, 0.05, 0.1}. Third, 605

we conduct an all-against-all binary comparison of the metabolic networks using Eq. (1). 606

The topology of the phylogenetic tree TB resulting from level ζ of randomness in 607

metabolic reactions is compared to the reference (ζ = 0) tree TA by counting interior 608

branches that return the same partitions. Defining F (ξ;TA, TB) ∈ {0, 1} as a binary 609

Table 5. Example binary representation of the transposed of the ORG matrix from
AutoKEGGRec for two organisms, A and B. This matrix is used as input for the binary
network based similarity calculation, the SW align data is the result of the
metabolic-reaction-based protein sequence alignments.
Organism R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11

A 1 1 0 0 1 1 1 1 0 0 1
B 1 0 0 0 0 1 1 0 0 1 1

SR(A,B) 0.87 X 0 0 X 0.93 0.75 X 0 X 0.89
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function that takes the value unity (zero) if the interior tree branch nearest the 610

organism ξ is identical (dissimilar) in trees TA and TB , we have 611

K(TA, TB) = 1
N

N∑
ξ=1

F (ξ;TA, TB), (3)

where the numeric score K(TA, TB) ∈ [0, 1] reflects the level of similarity between trees 612

TA and TB , with unity being identical. The method is described in detail in 613

Refs. [42, 46,47]. Briefly, the approach consists of first calculating a new rooted tree for 614

each organism ξ using the subtree function in Matlab. The getcanonical function ensures 615

a leaf sorted tree. For each leaf (organism), the local similarity is compared with the 616

Matlab function isequal, resulting in the binary score F (ξ;TA, TB) for the nearest 617

branch. This process is repeated a total of L = 106 times for each of the chosen noise 618

levels ζ, resulting in an average similarity score K(ζ) for the L pairwise comparisons. 619

When conducting the pairwise tree similarity analysis related to Fig. 7, with results 620

reported in Tab. 3, we implemented a non-binary version of F (ξ;TA, TB): We scale each 621

branch similarity by weight factors that are inversely proportional to the selected 622

number of organisms. Each of the N − 1 branch comparisons is scaled by 623

(N − η)/(N − 1), where η denotes the branch number (in increasing sequence). For a 624

tree with four organisms this means the first branch is scaled by (4− 1)/3, the second 625

closest by (4− 2)/3, and the last is scaled by (4− 3)/3. Consequently, we define 626

F (ξ;TA, TB) = 2
N

N−1∑
η

N − η
N − 1 F̃ (η, ξ;TA, TB). (4)

Note that for this situation, F (ξ;TA, TB) ∈ [0, 1], whereas F̃ (η, ξ;TA, TB) ∈ {0, 1} is a 627

binary function. This ensures higher impact of local (dis)similarity in the respective 628

comparisons. 629

Shared pathway association within LP content 630

AutoKEGGRec provides all data linked for a molecule or reaction in KEGG for the 631

models. This includes pathway IDs and links other data base besides the chemical 632

reaction required for the genome-scale reconstruction. We used the chemical reaction 633

linked by the reaction ID to identify KEGG compound IDs in the LP, MP, and HP 634

reaction set. This allows for a fast and easy comparison for these sets, and an 635

association of a compound to another reaction set. For the pathways linked to reactions 636

we use the reaction IDs to scan whether they have pathway information stored. 637

Alignment of metabolic-reaction protein sequences 638

Our second approach is based on aligning the amino-acid sequence(s) corresponding to 639

the KEGG-coded reactions for all pairs of organisms. The enzyme(s) catalyzing each 640

reaction of each organism according to KEGG were stored within the ORG matrix. In 641

Tab. 5, each entry of unity is replaced by the protein sequences linked to this reaction. 642

For each KEGG reaction R, the sequences were aligned using the swalign function 643

in matlab, which performs a local alignment using the Smith-Waterman (SW) 644

algorithm [48] with the default scoring matrix BLOSUM50 for proteins. The swalign 645

function generates the locally aligned sequences and a score as output which was 646

normalized using the SW score of each protein against itself. Consequently, percentual 647

similarities of the protein sequences were generated as an alignment score: 648

SR(Ai, Bj) = swalign(proteinAi proteinBj)
swalign(proteinAi, proteinAi)

, (5)
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Fig 8. Four different reactions (R01-R04) for three different organisms (A-C) are
compared. In reaction R01, a standard comparison with one enzyme in each organism is
shown. Reaction R02 is not present in organism B, resulting in replacing the score with
the penalty. Reactions R03 and R04 show the possibility of multiple proteins for one
reaction (complexes and isozymes) and with the reaction missing in organism B,
respectively. Below each case we show the resulting scores for the respective reaction
comparisons.

with Ai and Bi being individual protein sequences associated with reaction R in the two 649

organisms, and we define the total alignment score SR(A,B) for reaction R as 650

SR(A,B) = max
i,j

[SR(Ai, Bj)]. (6)

Further, we define the average comparison score as 651

〈S(A,B)〉 = 1
nR

∑
R

SR(A,B), (7)

where nR is the number of reactions included in the comparison between organisms A 652

and B. 653

An example calculation is shown in Tab. 6, where the two organisms A and B are 654

compared based on the respective protein sequences of their metabolic reaction R01. 655

For this reaction, each protein of organism A has been locally aligned and normalized to 656

each protein of organism B, resulting in an all-against-all similarity score matrix for the 657

protein sequences associated with R01 in the two organisms. 658

The resulting pair-wise similarity score for organisms A and B based on reaction R01 659

is SR01(A,B) = 0.87, and in general SR(A,B) is calculated for each of the shared 660

reactions as shown in Tab. 5. Reactions, which are present in one organism but not the 661

compared strain, offer the possibility for different scores to include the reaction, a 662

scheme of the three different variants (one-to-one, one-to-many, and one-to-non) is 663

illustrated in Fig. 8. 664

In Fig. 8, reaction R01 illustrates the simplest case of comparisons, where each of 665

the three organisms A, B, and C contain R01, which is encoded with a single enzyme. 666

In contrast for reactions R02 and R04, organism B does not contain this metabolic 667

capability, which excludes a sequence alignment. This is also shown in Tab. 5 with an 668

entry of value X. We suggest that an excluded reaction can be accounted for in the 669

functional similarity scoring in two ways: First, ignoring this reaction for the 670

comparison, thus truly excluding it. Second, setting the comparison score to a scalar 671

value serving as a possible penalty for this reaction comparison. Tab. 7 shows the 672

consequence of different penalty values on the example using the data in Tab. 5. The 673

reactions R03 and R04 in Fig. 8 show the case of multiple sequences for one metabolic 674

function as previously described. 675

Table 6. Example of protein sequence alignment of the shared metabolic reaction R01
of the two organisms A and B. In the two organisms, the metabolic function of R01 is
linked to three and four proteins. The Smith-Waterman algorithm with the BLOSUM50
scoring matrix was used for the pairwise sequence alignment.

Protein B1 Protein B2 Protein B3 Protein B4
Protein A1 0.87 0.48 0.81 0.83
Protein A2 0.65 0.55 0.23 0.78
Protein A3 0.78 0.69 0.55 0.62
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Organisms selected for comparison 676

The 975 organisms used in the comparisons were manually selected amongst Eukaryota, 677

Archaea, and Bacteria based on availability and distribution in the KEGG database. 678

Organism families with many members, e.g. E. coli has 65 different strains stored in the 679

KEGG database, were represented with multiple entries, whereas a strain occurring 680

once might not be selected. This method of including organisms was chosen to evaluate 681

the correct groupings of species, especially with regards to close strains compared to 682

distant strains. A complete listing of the selected organisms’ KEGG IDs can be found 683

in Supplementary Table 1. 684

The further subset of 21 organisms was selected in sets of threes, where two 685

organisms are considered closer related to each other than to the third one based on 686

standard sequence alignments, as shown in Tab. 4. This is illustrated by H. sapiens, G. 687

gorilla, and O. orca: all three are mammals, two are closer related to each other than to 688

the third one. Thus, the 21 organisms cover a large taxa range in the Tree of Life, while 689

at the same time some organisms are very closely related. In Fig. 3, we have highlighted 690

16 of the 21 organisms within the tree of life to illustrate the coverage and distribution 691

of the selected set of 21 organisms. The groupings chosen of different taxa are color 692

coded consistently throughout the manuscript. 693

The access to the KEGG database using AutoKEGGRec to generate the 694

genome-scale metabolic networks and extracting the protein sequences from KEGG was 695

conducted during August 2018. 696

Supporting information 697

Supplementary table 1 Reactions of glycolysis 698

Supplementary table 2 Reactions of the pyruvate metabolism 699

Supplementary table 3 Reactions of the DNA metabolism 700

Supplementary table 4 Reactions of the TCA cycle 701

Supplementary table 5 Listing of reactions shared among all of the 21 702

organisms 703

Supplementary table 6 Listing of reactions used in at least 925 organisms. 704

Supplementary table 7 Listing of 975 organisms 705

Supplementary table 8 Jaccard-Index for misplaced organisms 706

Supplementary figure 1 Side by side comparison of Figure 4 and 5 A 707

Table 7. Consequence of the penalty scores in combination with the example
comparison of organism A and B in Tab. 5. Note that J(A,B) = 0.5 as a contrast.
Penalty value -0.25 -0.1 0 0.1 0.25 ignore penalty
〈S(A,B)〉 0.305 0.38 0.43 0.48 0.55 0.86
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