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ABSTRACT
A network of myenteric interstitial cells of Cajal in the corpus of the stomach serves
as its “pacemaker”, continuously generating a ca. 0.05 Hz electrical slow wave, which
is transmitted to the brain chiefly by vagal afferents. A recent study combining
resting-state functional MRI (rsfMRI) with concurrent surface electrogastrography
(EGG), with cutaneous electrodes placed on the epigastrium, found 12 brain regions
with activity that was significantly phase-locked with this gastric basal electrical
rhythm. Therefore, we asked whether fluctuations in brain resting state networks
(RSNs), estimated using a spatial independent component analysis (ICA) approach,
might be synchronized with the stomach. In the present study, in order to determine
whether any RSNs are phase-locked with the gastric rhythm, an individual partici-
pant underwent 22 scanning sessions; in each, two 15-minute runs of concurrent EGG
and rsfMRI data were acquired. EGG data from three sessions had weak gastric sig-
nals and were excluded; the other 19 sessions yielded a total of 9.5 hours of data.
The rsfMRI data were analyzed using group ICA; RSN time courses were estimated
using dual regression; for each run, the phase-locking value (PLV) was computed be-
tween each RSN and the gastric signal. To assess statistical significance, PLVs from
all pairs of “mismatched” data (EGG and rsfMRI data acquired on different days)
were used as surrogate data to generate a null distribution for each RSN. Of a total
of 18 RSNs, three were found to be significantly phase-locked with the basal gastric
rhythm, namely, a cerebellar network, a dorsal somatosensory-motor network, and a
default mode network. Disruptions to the gut-brain axis, which sustains interocep-
tive feedback between the central nervous system and the viscera, are thought to be
involved in various disorders; manifestation of the infra-slow rhythm of the stomach
in brain rsfMRI data could be useful for studies in clinical populations.
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1. Introduction

A network of myenteric interstitial cells of Cajal in the corpus of the stomach serve
as its “pacemaker”, constantly and intrinsically generating a ca. 0.05 Hz electrical
slow wave, which governs gastric peristalsis when there is food or chyme in the stom-
ach, and which is transmitted to the brain chiefly by vagal afferents [1–4]. A recent
study Rebollo et al. [5] combining resting-state functional MRI (rsfMRI) with concur-
rent surface electrogastrography (EGG), in which signals are recorded from cutaneous
electrodes on the epigastrium (abdominal skin over the stomach), reported that brain
activity in 12 regions including somato-motor cortices, dorsal precuneus, and the ex-
trastriate body area was significantly phase-locked to the basal gastric rhythm. This
collection of 12 gastric-synchronized regions, or nodes, was dubbed the gastric network,
and it was suggested that time lags of several seconds between nodes were responsi-
ble for this “delayed connectivity network” not having been previously detected. This
finding suggests that activity in brain resting-state networks (RSNs), estimated using
network source separation techniques, such as the well-established spatial independent
component analysis (ICA) approach, could be partially synchronized with the stom-
ach. To ascertain whether any brain RSNs are synchronized with the gastric rhythm,
we conducted a highly-sampled study in a participant who underwent 22 sessions of
concurrent EGG and rsfMRI data collection, with two 15-minute runs per session,
over a period of seven weeks. The resulting rsfMRI data were analyzed using spatial
ICA to yield 18 RSNs, whose time courses were then tested for phase-locking with the
basal gastric rhythm as determined from the concurrent EGG data. Three RSNs were
found to be significantly phase-locked to the basal gastric rhythm, namely, a cerebel-
lar network (FDR-adjusted p-value = 0.0022), a dorsal somatosensory-motor network
(adjusted p-value = 0.0227), and a default mode network (adjusted p-value = 0.0227).

1.1. Resting-state functional MRI

Resting-state fMRI is a noninvasive neuroimaging method that uses MRI acquisi-
tions originally developed to monitor hemodynamic sequelae of task-evoked changes
in neuronal activity to observe neuronal activity in the brain “at rest” [6–9]. The re-
sulting fMRI data manifest what are generally regarded as spontaneous fluctuations
in intrinsic brain networks, allowing study of brain functional connectivity [10]. This
methodology is popular not only because such data are easy to acquire, but also be-
cause they yield insights into a variety of conditions [7–9, 11–13]. For example, we have
used rsfMRI to study patients with spinal cord injury, where paralysis could interfere
with performance of motor tasks [14]. However, an important limitation of rsfMRI is
that inter-regional synchrony of MRI time courses can result not just from synchronous
neural events, but also from a variety of physiological sources [15] including cardiac
pulsations [16, 17], respiration [18–20], and head motion [21, 22].

1.2. Resting-state brain networks

Resting-state fMRI originated from the observation that when the motor cortex peak
voxel — the location with the highest fMRI activity during a motor task — was used
as a seed to compute a map of temporal correlations from data acquired during rest,
that the resulting resting-state network strongly resembled the motor task-activation
map [6].
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Independent component analysis is an exploratory data analysis approach that at-
tempts to recover statistically independent sources from signals (data) that are mod-
eled as mixtures of those sources [23]. The application of spatial ICA to fMRI data
is broadly justified by the neurobiological principle of modularity, or the idea that
different parts of the brain do different things. ICA was first applied to task fMRI
data [24, 25], and then to rsfMRI [26–28], where it has become well-established [9, 13].

1.3. Visceral rhythms

The gut-brain axis, including neural, endocrine, and immune communication, is in-
volved in the bidirectional interoceptive feedback between the central nervous system
and the viscera. The brain monitors, and influences, the infra-slow rhythms gener-
ated in the viscera that control peristalsis. Even when the stomach is empty of food,
electrical waves are constantly generated by myenteric interstitial cells of Cajal in the
corpus of the stomach [1–4], with a normogastric period of about 20 seconds, or a
frequency of approximately 0.05 Hz. Intestinal peristalsis is governed by ganglia of the
enteric nervous system. These rhythms are communicated to the brain chiefly by the
vagus nerve, and also the pelvic nerves of the parasympathetic nervous system, and
the splanchnic nerves of the sympathetic nervous system.

1.4. Electrogastrography

Electrogastrography (EGG) uses cutaneous electrodes, placed on the epigastrium (ab-
dominal skin lying above the stomach), in order to detect the gastric electrical slow
wave [29–31]. Thus, EGG is similar to electrocardiography (ECG) and electroen-
cephalography (EEG) in using surface electrodes to detect underlying bioelectrical
signals. A chief difference is that EGG signals are much lower frequency than the cor-
responding signals from heart and brain, as the normogastric frequency in adults is
approximately 0.05 Hz, or a period of 20 seconds. In the clinic, EGG is chiefly applied
to patients with suspected motility disorders, such as indicated by recurrent episodes
of nausea and vomiting. Recently there appears to be interest in applying EGG to
psychophysiological research [32].

1.5. Concurrent rsfMRI and electrogastrography

A recent study Rebollo et al. [5] combined rsfMRI with concurrent EGG. Rebollo et al.
[5] reported significant synchronization between the gastric rhythm and activity in a
novel brain “gastric network” comprised of 12 nodes including somato-motor cortices,
dorsal precuneus, and the extrastriate body area, with consistent inter-regional phase
shifts or time lags. Because of these time lags, of several seconds between nodes, the
novel gastric network was dubbed a delayed connectivity network, and the authors
suggested that these delays were the reason that it had not been detected earlier us-
ing analytical approaches that look for inter-regional synchronization without such
delays (but see [33]). An earlier report from the same group, using concurrent magne-
toencephalography (MEG) and EGG, used a causal analysis to infer that the gastric
rhythm was modulating regional cortical alpha-wave activity, presumably primarily
via vagal afferent transmission [34].
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1.6. Are any resting-state networks synchronized with the stomach?

Are any brain networks significantly phase-locked with the basal gastric rhythm? That
is the question the present study addresses, in the context of brain resting state net-
works (RSNs) estimated using spatial ICA. To answer this question, we calculated the
phase synchrony between each RSN time-course and concurrent EGG data using the
phase-locking value (PLV). To assess statistical significance of these PLV values, we
calculated PLVs for all pairs of “mismatched” data (EGG and rsfMRI data acquired on
different days) to use as surrogate data in order to estimate the null distribution of PLV
for each RSN. Comparing the matched and mismatched PLV distributions, we found
that three brain networks were significantly phase-locked to the basal gastric rhythm:
a cerebellar network (FDR-adjusted p-value = 0.0022), a dorsal somatosensory-motor
network (adjusted p-value = 0.0227), and a default mode network (adjusted p-value
= 0.0227).

2. Materials and methods

2.1. Experimental procedure

A healthy male volunteer, age 58, provided written informed consent to participate
in a study approved by the Johns Hopkins Medicine Institutional Review Board. The
participant was free of digestive, psychiatric, or neurological disorders, and had a
body mass index (BMI) of 26. Twenty-two sessions were performed over a span of
seven weeks. Data from three sessions were excluded due to weak gastric signals; data
from the remaining 19 sessions were used for the analyses reported here. Scanning
was typically performed on Mondays, Wednesdays, and Fridays. Sessions began at
9:00 AM; at 5:30 AM prior to each session, the subject breakfasted on multigrain
cereal and yogurt, with coffee. The 3.5 hour period between breakfast and the session
was intended to provide for gastric emptying [35]. The initial image acquisition was
performed on 1 July 2019, and the last image acquisition was performed on 15 August
2019. Session dates are reported in Table 1.

Table 1. Session dates. Excluded sessions are crossed out using strikethrough.
Mon Tue Wed Thu Fri

Week 1 7/1/2019 7/3
Week 2 7/8 7/12
Week 3 7/17 7/19
Week 4 7/22 7/24 7/25 7/26
Week 5 7/29 7/30 7/31 8/2
Week 6 8/5 8/7 8/8 8/9
Week 7 8/12 8/13 8/14 8/15

2.2. Magnetic resonance imaging

MRI was performed using a 3 Tesla Philips dStream Ingenia Elition scanner, oper-
ating at 45 mT/m with a slew rate of 200 mT/m/s. A multi-slice SENSE-EPI pulse
sequence [36, 37] was used to acquire two resting state fMRI (rsfMRI) runs during
each scanning session; the participant remained in the scanner between runs. Each
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run was acquired using the following acquisition parameters: acquisition time = 15
min, TR/TE = 2000/30 ms, number of dynamics = 450, field of view = 240 × 240
mm2, 3-mm isotropic spatial resolution, 36 axial slices collected sequentially in increas-
ing slice order with a 1-mm gap, SENSE acceleration factor = 2, and flip angle = 71°.
Respiratory rate was simultaneously measured using a pulse oximeter. The participant
was instructed to rest comfortably while remaining still, and no other instruction was
provided. The subject’s eyes were closed for the rsfMRI acquisitions. A T1-weighted
(T1w) Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE) struc-
tural run was acquired during the third session (on July 12) using the following acqui-
sition parameters: acquisition time = 5 min, TR/TE/TI = 10/6/842 ms, field of view
= 212 × 212 mm2, resolution = 1.1 × 1.1 × 1.2 mm3, 120 axial slices collected, SENSE
acceleration factor = 2, and flip angle = 8°). The T1w images were subsequently used
to align and normalize the fMRI images.

2.3. Electrogastrography

The gastric rhythm of the participant was monitored using MRI compatible elec-
trogastrography (EGG) equipment (BIOPAC MP160 system; BIOPAC Systems Inc,
USA). Acquisition parameters and placement of cutaneous electrodes, similar to those
described by Rebollo et al. [5], are summarized here.

For preparation, intended electrode locations were marked on the participant’s epi-
gastrium (see Fig 1(a)), then the marked regions were rubbed and cleaned with alcohol
to remove dead skin, and electrolyte gel was applied. Three sets of bipolar electrodes
were then placed in two rows over the abdomen. EGG was then acquired at a sampling
rate of 200 Hz with a low-pass filter of 1 Hz and no high-pass filter.

Figure 1. Electrogastrography electrode placement and representative data. (a) Electrode placement. (b)
Representative EGG signal time course. (c) Representative signal spectrum (Fourier transform of the detrended
EGG signal shown in part (b)). (d) Gastric signal after detrending and bandpass filtering.

Prior to the acquisition of any MRI data, five minutes of EGG data were acquired
with the participant lying outside the tunnel of the scanner. This was to acquire a
reference EGG signal with a frequency content free of the effect of the static magnetic
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field and gradient pulses. Once the participant was placed inside the scanner, EGG
data were recorded concurrently with rsfMRI data.

2.4. Data analysis

2.4.1. RsfMRI preprocessing

Preprocessing of the rsfMRI data set was performed using the Analysis of Func-
tional NeuroImages (AFNI) software (version AFNI 20.1.06) [38]. The preprocessing
pipeline included: 1) despiking, 2) slice timing correction, 3) motion correction, 4) co-
registration, 5) normalization, 6) segmentation, and 7) spatial smoothing using a 6 mm
(i.e., twice the nominal acquisition voxel size) full-width at half-maximum Gaussian
kernel.

2.4.2. RsfMRI independent component analysis

The Group ICA of fMRI Toolbox (GIFT) software (http://trendscenter.org/
software/gift/; version v4.0b) [39] was used to perform group independent com-
ponent analysis (GICA) [40]. Two steps of principal component analysis (PCA) data
reduction were performed for group level analysis, where individual session data were
first reduced to 84 principal components. The reduced data were then concatenated
in the temporal direction and further reduced to 42 principal components. Estimation
of the number of independent components (i.e., 42) was guided by order selection us-
ing the minimum description length (MDL) criterion [41]. The dimensionality of the
individual session PCA data reduction (i.e., 84) was set by doubling the estimated
component number, to ensure robust backreconstruction [42, 43].

The spatial distribution (i.e., grey matter vs. white matter and cerebral spinal fluid)
and temporal frequency power distribution of 42 ICs were manually assessed using the
aggregate spatial maps and time courses, and 22 ICs were eliminated as represent-
ing non-neuronal sources such as head motion, respiration, and cardiac pulsations.
Two additional ICs were rejected due to low similarity measures calculated using the
ICASSO toolbox [44]. This process identified the remaining 18 ICs as functional RSNs,
which are shown in Fig 2.

Single-session maps and time courses for each session were obtained using “GICA1”
back-reconstruction [42, 45].

2.4.3. EGG preprocessing

EGG preprocessing was performed following the pipeline developed by Rebollo et al.,
[5], using the FieldTrip toolbox (http://www.fieldtriptoolbox.org/) [46], Mat-
lab (Natick, MA; version R2018a), and custom code provided by Rebollo et al. [5]
(https://github.com/irebollo/stomach_brain_Scripts). Data were low-pass fil-
tered below 5 Hz to avoid aliasing of higher-frequency signals, e.g., cardiac, and down-
sampled to 10 Hz. To identify the EGG peak frequency (0.033–0.066 Hz) for each
run, we computed the spectral density estimate for each EGG channel over the 900 s
of EGG signal acquired during each fMRI scan using Welch’s method on 200 s time
windows with 150 s overlap. For each run, the spectral peak was identified by looking
for a sharp peak within the normogastric frequency range of 0.033–0.066 Hz. Data
from the EGG channel with the highest spectral peak were then bandpass filtered to
isolate the signal related to gastric basal rhythm (linear phase finite impulse response
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Figure 2. Aggregate spatial maps of the resting state networks (RSNs) of the highly sampled participant.

Group independent component analysis (GICA) was used to estimate the RSNs and obtain the aggregate spatial
maps. The spatial maps of each RSN are shown as subfigures, with representative sagittal, coronal, and axial

views (left-to-right) overlaid on structural images within the Montreal Neurological Institute (MNI) template

space; three RSNs with statistically significant gastric phase-locking are highlighted using yellow boxes. Coordi-
nates (in mm) for each view are indicated below each subfigure. (AUD: auditory, SMOT: somatosensory-motor,

VIS: visual, DMN: default mode network, ATTN: attention, EXEC: executive, SAL: salience, CB: cerebellar,

ven: ventral, dor: dorsal, r: right, l: left).

filter, FIR, designed with Matlab function FIR2, centered at EGG peaking frequency,
filter width ± 0.015 Hz, filter order of 5). Data were filtered in the forward and back-
ward directions to avoid phase distortions and then further downsampled to match
the sampling rate of the BOLD acquisition (0.5 Hz).

2.4.4. Quantification of RSN–EGG synchronization

The RSN time courses were bandpass-filtered using the same filter parameters that
had been applied to the EGG data from the corresponding run. To avoid edge effects,
the first and last 15 volumes (30 s) were discarded from both the RSN and EGG time
courses. The updated duration of the fMRI and EGG signals for which the rest of
the analysis was performed was thus 840 s. The Hilbert transform was applied to the
filtered RSN and EGG time courses to derive their instantaneous phases. The phase-
locking value (PLV) [47] was computed as the absolute value of the time average
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difference in the angle between the phases of the EGG and the fMRI time course
(Equation 1).

PLVxy =

∣∣∣∣∣ 1

T

T∑
t=1

ei(φx(t)−φy(t))

∣∣∣∣∣ (1)

where x and y are the two time series, and T is the number of samples in each time
series. The PLV ranges between the values of 0 and 1, where 0 represents no synchrony,
and 1 represents perfect synchrony. Notably, the PLV measures are independent of
temporal delays and amplitude fluctuations of the input signals. The PLV was averaged
over the whole duration of the recording.

2.4.5. Statistical analysis of RSN–EGG synchronization

We implemented a two-step statistical procedure, based on methodology used by Re-
bollo et al. [5]. We first estimated chance-level phase-locking between brain networks
and the stomach, i.e., PLV expected in the absence of true stomach-RSN synchro-
nization. Then we applied a multiple testing procedure to identify those RSNs in
which measured gastric-brain phase-locking was significantly greater than chance.
Here, chance phase-locking was defined via negative control comparisons based on
the observed data.

Specifically, surrogate data were used to estimate null distributions representing
chance-level PLV. We used mismatched data, i.e., all pairs of EGG and rsfMRI data
acquired on different days. For each RSN, surrogate data were created by calculating
the PLV between that RSN time course and all gastric time courses that were acquired
on different days. As we used data from two runs each on 19 days, this mismatching
approach yields 1,368 surrogate data entries representing a null distribution for PLV
for each RSN.

Comparisons of the observed PLVs to this null distribution yield information on how
likely results were compared to chance-level PLVs. Therefore, in the second step, we
formally tested whether, for each RSN, the empirical PLV differed from chance-level
PLV. For each RSN, we applied a Wilcoxon rank test (since PLVs are clearly non-
Gaussian) to test whether there was a significant mean difference between empirical
PLVs from 38 runs against the surrogate data. To correct for multiple comparisons,
the p-values for the 18 RSNs were adjusted using the Benjamini-Hochburg procedure
[48] with a false discovery rate (FDR) of 0.05, in order to judge which RSNs were
significantly phase-locked with the gastric rhythm.

2.4.6. Phase-locking of gastric signals between different runs

To shed light on the variability of the subject’s gastric rhythm, we computed the PLV
of the gastric rhythm from different runs. Specifically, we compared the distribution of
PLVs computed from runs from the same day, to the distribution of PLVs computed
from runs from different days. We then used the Wilcoxon rank test to compare the
same-day and different-day gastric-gastric PLV distributions.
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2.4.7. Quantification of gastric contributions to rsfMRI signals

To estimate the magnitude of the manifestation of the infra-slow gastric rhythm in RSN
time courses, we calculated the proportion of the rsfMRI signal variance, or perecent
variance accounted for (P.V.A.F), that could be explained by the EGG signal. P.V.A.F
here is represented by the R-squared R2 of the corresponding linear regression after
adjusting for any phase delays between the two signals.

First, we assumed that the instantaneous phase difference ∆ψ = ψ(EGG) −
ψ(rsfMRI) i.i.d. follows a von Mises distribution p(∆ψ|µ, κ) ∝ exp(κ cos(∆ψ − µ)),
which is a typical circular distribution used to model phase differences [49]. Then
we performed maximum likelihood estimation for the positional parameter µ as the
over-all phase difference between two signals.

Second, we adjusted such phase difference by multiplying the Hilbert transformation
of the rsfMRI signal by exp(iµ̂) for µ̂ the MLE of µ above. Then we calculated as the
P.V.A.F. the R2 between EGG signal regressing on the real part of this new signal. This
definition of P.V.A.F takes phase-locking into consideration and makes any necessary
adjustment to align signals before regression.

3. Results

We found 18 RSNs, as shown in Fig 2.
Electrode pair 2 (as illustrated in Fig 1(a)) consistently gave the best gastric signals.

The subject’s gastric rhythm was within the normogastric range, at 0.048 ± 0.001 Hz.
For each RSN, we calculated its PLV with respect to gastric phase for each scan,

and also the similar PLV, but for mismatched data pairs acquired on different days.
For each RSN, we compared the distribution of measured PLVs with the distribution
of mismatched PLVs using the Wilcoxon rank test. These results are shown in Fig 3
and tabulated in Table 2. The table gives the uncorrected p-values as well as p-values
adjusted for multiple comparisons using the Benjamini-Hochberg method [48] for a
FDR of 0.05.

Table 2. Phase locking value (PLV) between resting state networks (RSNs) and elec-
trogastrography (EGG) signals.

RSN PLV mean PLV std. dev. Mismatched PLV mean Mismatched PLV std. dev. Uncorrected p-value FDR-adjusted p-value Fractional gastric variance

AUD1 0.1882 0.1056 0.1709 0.0935 0.1852 0.2578 0.0111
AUD2 0.1995 0.1040 0.1725 0.0860 0.0439 0.0987 0.0266
AUD3 0.1791 0.0806 0.1567 0.0808 0.0330 0.0944 0.0064

SMOT ven 0.1854 0.0941 0.1729 0.0891 0.1862 0.2578 0.0038
SMOT dor1 0.2061 0.0758 0.1697 0.0845 0.0029 0.0227 0.0150
SMOT dor2 0.1947 0.0855 0.1705 0.0855 0.0367 0.0944 0.0057

VIS a 0.1939 0.1078 0.1711 0.0815 0.1619 0.2578 0.0338
VIS b 0.1978 0.1288 0.1775 0.0911 0.3636 0.4090 0.0420

DMN a 0.1746 0.0882 0.1719 0.0892 0.4351 0.4607 0.0242
DMN b 0.1990 0.0857 0.1612 0.0856 0.0038 0.0227 0.0291
DMN c 0.1987 0.1085 0.1639 0.0849 0.0346 0.0944 0.0185

ATTN ven1 0.1860 0.1078 0.1705 0.0920 0.1504 0.2578 0.0071
ATTN ven2 0.1920 0.0812 0.1651 0.0845 0.0178 0.0802 0.0139
ATTN dor 0.1620 0.0804 0.1634 0.0834 0.4773 0.4773 0.0201
EXEC r 0.1797 0.0996 0.1645 0.0822 0.2523 0.3159 0.0071
EXEC l 0.1689 0.0885 0.1603 0.0854 0.2633 0.3159 0.0079

SAL 0.1952 0.0831 0.1785 0.0902 0.0923 0.1846 0.0095
CB 0.2093 0.1002 0.1539 0.0791 0.0001 0.0022 0.1124

AUD: auditory, SMOT: somatosensory-motor, VIS: visual, DMN: default mode net-
work, ATTN: attention,EXEC: executive, SAL: salience, CB: cerebellar
ven: ventral, dor: dorsal, r: right, l:left
std. dev.: standard deviation, FDR: false discovery rate
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Figure 3. Gaussian kernel density estimates (i.e., smoothed histograms) of PLV between resting-state net-
works and gastric signals recorded concurrently (cyan) and on different days (coral). P-values from Wilcoxon

rank tests have been adjusted for multiple comparisons using a FDR of 0.05.
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Three networks were significantly phase-locked with the basal gastric rhythm: A
cerebellar network (CB; adjusted p-value = 0.0022), a dorsal somatosensory-motor net-
work (SMOT dor1; adjusted p-value = 0.0227), and a default mode network (DMN b;
adjusted p-value = 0.0227). The fraction of (gastric band-passed) RSN signal variance
that could be accounted for by the gastric rhythm, using linear models, was about
1.5 percent and three percent for the two cortical RSNs that were significantly phase-
locked with the gastric basal electrical rhythm, and about 11 percent for the cerebellar
network.

Distributions of phase-locking values between pairs of gastric signals from different
runs are presented in Fig 4.

Figure 4. Gaussian kernel density estimates of PLV for pairs of gastric signals from the same day (cyan) and
different days (coral). The Wilcoxon rank test p-value was 0.00665.

4. Discussion

In this study, eleven hours of concurrent resting state fMRI / surface electrogastrogra-
phy (EGG) data were acquired in 22 sessions over seven weeks. Three sessions resulted
in EGG data with weak gastric signals and were excluded; the 9.5 hours of data from
the remaining 19 sessions were analyzed using spatial ICA, yielding 18 resting state
brain networks (RSNs). Three of the RSNs were then found to be significantly phase-
locked with the basal gastric rhythm as estimated from the EGG data, namely, a
cerebellar network (FDR-adjusted p-value = 0.0022), a dorsal somatosensory-motor
network (adjusted p-value = 0.0227), and a default mode network (adjusted p-value
= 0.0227).
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4.1. What is your stomach saying to your brain?

Evidence that rsfMRI signals are widely regarded as spontaneous is provided by a
Google scholar search for “’spontaneous fluctuations’ and rsfMRI”, which returns over
5,000 citations (as of June 2020). In light of the findings of Rebollo et al. [5], and
of the present study, it may be useful to examine the concept of spontaneity in the
context of resting-state functional neuroimaging. The sense of “spontaneous” that ap-
plies here appears to be the third definition given by the Oxford English Dictionary
[50]: “Of natural processes: Occurring without apparent external cause; having a self-
contained cause or origin.” These fluctuations are indeed spontaneous; the context in
which they are self-contained must include the stomach, and presumably other organs
of the body, as well. This is consistent with the principle of interoceptive cognition,
the view that the brain’s home in the body is fundamental to its function [51–53],
or that, to quote the title of a recent review: “Visceral signals shape brain dynamics
and cognition” [54]. In other words, by enlarging our scope beyond the central ner-
vous system and considering the entire (organismic) nervous system—including the
enteric nervous system— brain fluctuations and the gastric rhythm are similarly seen
as spontaneous manifestations of intrinsic networks.

In the present study, an effort was made to establish a similar gastric state at each
experimental session, using a fixed schedule and fixed breakfast. Researchers have
probed the effect of gastric state, including overnight fasting, on rsfMRI outcomes
[55, 56]. Concurrent EGG would allow future studies in this area to benefit from
measures of how gastric state affects stomach-brain synchronization.

In the present study, we acquired fMRI data only in the “resting” state. Researchers
have used fMRI to measure brain responses to hedonic/gustatory stimuli such as pho-
tographs of food [57] and the the ingestion of small samples (“sips”) of fluid delivered
during scanning [58, 59]. Concurrent EGG would allow future studies in this area to
benefit from measures of how such stimuli affect the stomach’s rhythm, and stomach-
brain synchronization.

How much data per person would be needed for concurrent fMRI/EGG studies
in clinical populations? The RSN-stomach PLV values in Table 2 and Fig 3 can be
interpreted as providing an estimate of the precision of such measures, in terms of mean
and standard deviation PLV. It appears that the relative precision of our significant
phase-locking estimates that would be derived from a single 15-minute scan, would be
on the order of plus-or-minus 30 percent, which is relatively modest. However, we do
not know how the inter-session variability of other participants would compare to that
of ours; similarly, we cannot speculate about the inter-individual variability of these
measures in various populations of interest.

4.2. Measuring synchronization using the phase-locking value

How should synchrony be quantified? A recent review lists no fewer than fifteen mea-
sures of “brain functional connectivity through phase coupling of neuronal oscillations”
[60]. In the present study, we followed Rebollo et al. [5], in using the phase-locking value
(PLV) to assess infra-slow stomach-brain synchrony. Here, the PLV has two major ad-
vantages: The PLV is insensitive to variations in amplitude, which is attractive because
we are interested only in the synchrony of stomach and brain fluctuations, regardless of
their amplitude. The PLV seeks only consistent phase offsets (it does not require zero
phase offset), which is attractive because we do not know what lags may be present
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between stomach electrical activity and synchronized but hemodynamically-delayed
brain BOLD signals.

4.3. Testing for significance of the phase-locking value

To test for the statistical significance of phase-locking, surrogate data were used in or-
der to generate an estimate of the chance distribution of PLV, which would be obtained
in the absence of true stomach-brain synchronization. To generate such surrogate data,
we used all pairs of mismatched data, that is, rsfMRI and EGG data acquired on dif-
ferent days. This appears reasonable because one would not expect today’s brain to be
synchronized with yesterday’s stomach. However, if the gastric basal electrical rhythm
were like a tuning fork, always ringing at a never-changing frequency, then today’s
gastric rhythm would be phase-locked to yesterday’s gastric rhythm. Hence, to the ex-
tent that the gastric rhythm may be unexpectedly stable, then our use of mismatched
data as surrogate data would therefore be overly conservative. In fact, as shown in Fig
4, the subject’s gastric rhythm was sufficiently stable that his average within-day PLV
between the two 15-minute gastric scans was larger than his average between-day PLV
between gastric scans acquired on different days.

Rebollo et al. [5] used mismatched data as surrogate data, but theirs was a group
study of 34 people, each scanned once. So for their study, mismatched data were data
from other people, not from the same person on other days.

To correct for multiple comparisons, we used the Benjamini-Hochberg approach to
adjust p-values using a False Discovery Rate of 0.05 [48]. Using instead the conservative
Bonferroni approach to correcting p-values, then only the cerebellar network would be
judged significantly phase-locked with the stomach; the dorsal somatosensory-motor
network would have a Bonferroni corrected p-value of 0.053, just above the 0.05 thresh-
old. However, that the Bonferroni correction is overly conservative when it comes to
testing time courses derived using spatial ICA can be seen from the fact that such
time courses are generally not independent; indeed, measures of inter-network tempo-
ral correlations are a subject of study [61, 62].

4.4. On gastric phase-locking of cerebellar, dorsal somatosensory-motor,
and default mode networks

We estimated a total of 18 RSNs, which were broadly similar to those reported in
earlier studies that applied ICA to rsfMRI data [9, 13, 26–28, 63]. We found that
three of the 18 RSNs were phase-locked with the stomach. While the role played by
gastric synchronization of brain networks is unknown, the gastric phase-locking of these
three networks appears to be consistent with literature on their involvement in feeding
behavior. In the case of the cerebellum, early evidence was provided by small-animal
experiments, in which electrical stimulation of the cerebellum induced feeding behavior
[64]; a range of evidence now provides support for the role of the cerebellum in eating
[65]. The dorsal somatosensory-motor network includes the primary somatosensory
cortex and the medial wall motor regions, two of the nodes reported by Rebollo et al.
[5]; both of these regions contain body maps, presumably including representations
of the stomach. The default mode network significantly phase-locked with the gastric
basal electrical rhythm is centered on the precuneus, which was a node of the gastric
network reported by Rebollo et al. [5], and has been reported to be involved in appetite
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control in healthy individuals [66], and its disruption in persons with obesity [66] as
well as anorexia and bulemia [67].

4.5. On highly-sampled individual brains

This manuscript reports on a highly-sampled individual brain. The eleven hours of
data we collected is perhaps 40 times as much data per brain as was often seen in the
general task fMRI literature. The approach of acquiring much more data from many
fewer brains appears to have been originally suggested by Savoy [68], and popularized
by Poldrack [69] and a group at Washington University St. Louis [70]. We previously
reported on data from an individual who underwent weekly scans over a multi-year
period [63]. Highly-sampled data have also led to further analyses and publications,
e.g., [71, 72].

4.6. Limitations

A major limitation of the present report is that the eleven hours of data were acquired
from a single person, as part of a highly-sampled individual study design. Hence, it is
not clear how well these results will generalize to the broader population, and it is of
course necessary to scan more people in order to find out.

A limitation of the present report is that experimental procedures, including cuta-
neous electrodes on the epigastrium and mild fasting, may have focused the partici-
pant’s attention on his gastric state. However the participant reported typical wan-
dering thoughts, without a sustained or noticeable focus on hunger.

A limitation of the present report is that by adhering to the same schedule and same
breakfast, our data may be unusually stable with regards to variance over sessions.
Data acquired “in the wild” will presumably manifest more variation.

A limitation of the present report is that we did not acquire any physiological
measures (e.g., blood glucose) on a daily basis, in order to help explain inter-session
variance. It might be advisable to collect such measures in future population-based
studies.

A limitation of the present report is that, during scanning, we did not acquire other
real-time physiological measures, such as the electrocardiogram. (Although cardiac
events are seen in the raw electrogastrography data, they are in a distinct frequency
range from the infra-slow basal gastric rhythm, and so do not alias into or contaminate
the estimated gastric rhythm.) Future studies might monitor a comprehensive suite
of physiological measures during “rest”, to shed light on activity fluctuations of the
sympathetic and parasympathetic nervous systems. A group from Arhus University
recently announced that they are acquiring rsfMRI data with concurrent “arterial
CO2, respiratory, cardiac, eye tracking, and electrogastrography measures” [73].

A limitation of the present report is that we used only one analytic approach,
spatial ICA, to estimate resting state brain networks. In keeping with the “plurality
and resemblance” framework [74], it would be beneficial to re-analyze the data using
alternative approaches (e.g., atlas-based parcellations or graph-theoretic methods) in
order to understand how the results presented here resemble those obtained using
other analytic approaches to estimating brain networks from rsfMRI data.

A limitation of the present report is that these data cannot be used to infer direc-
tionality or causality. Simply from the EGG and rsfMRI data alone, we cannot tell
whether the stomach is driving the brain, or whether the brain is driving the stomach.
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The role of myenteric interstitial cells of Cajal as the generators or “pacemakers” of
visceral rhythms, which are transmitted to the brain, appears firmly established [1–
4]. In the context of resting-state functional neuroimaging, an earlier study from the

same group at the École normale supérieure (Paris) that contributed the Rebollo et
al. [5] paper, supports ascending directionality: Richter, et al. [34], used concurrent
EGG and magnetoencephalography (MEG); the high time resolution of MEG allowed
causal inference, which indicated that the gastric rhythm was modulating regional
alpha-band brain activity. Rebollo et al. [5] concluded that their results supported
“...the hypothesis that activity in the gastric network is driven by neural activity in
areas directly receiving ascending inputs...” However, the brain is not simply a passive
recipient of visceral rhythms. Rather, “[w]ithin the brain, adaptive control is achieved
through forward models, efference copies and prediction errors wherein viscerosensory
data is continuously compared against expected bodily state to evoke physiological
and mental reactions” [51]. That is, it appears reasonable to surmise that the brain
contains one or more interoceptive representations of the stomach, which model its
rhythm, and that these dynamic models are entrained to the actual stomach rhythm,
using prediction errors. Thus, when several brain regions are found with activity that
is synchronized with the stomach, it may not be clear whether a particular region’s
gastric-synchronized brain signal results from ascending afferent signals, or from an
ongoing brain dynamic model of the stomach. At a very different time scale (and pre-
sumably subserved by very different mechanisms), an analogy with the (ca. 4000-fold
slower) chronobiology of circadian rhythms [75] may be helpful here, as these diurnal
rhythms are not simply driven by external stimuli, but rather are generated internally
by “biological clocks”, which are entrained to the local astronomical day/night cy-
cle. Finally, the success of electrogastrographic biofeedback [76], in which individuals
provided with real-time visual feedback on their gastric rhythm are able to improve
its consistency, demonstrates that the brain can influence the gastric rhythm, and
there has been recent progress in understanding how cortical regions communicate
with the stomach [77]. Clearly, further studies are needed to explore the bidrectional
communication between the viscera and the brain.

4.7. A complementary view: Gastric synchronization as a confound

As mentioned, a fundamental limitation of the general rsfMRI approach is that a
variety of “nuisances” or physiological confounds [15] including cardiac pulsations [16,
17], respiration [18–20], and head motion [21, 22], can lead to inter-regional correlations
that can mask, or be mistaken for, functional connectivity. The manifestation of the
infra-slow gastric rhythm in brain fMRI data could be seen as a similar confound,
consistent with recent guidance that any “neural activity related fluctuations that
are not of interest” shall be regarded as “physiological noise” [78]. Thus, if stomach-
brain synchronization is not celebrated as a window onto the embodied brain in the
organismic nervous system, but instead regretted as a nuisance — if the gastric rhythm
is the new head motion — then the question arises as to its magnitude. The modest
contributions tabulated in Table 2 — less than three percent for the two gastric phase-
locked cortical networks, and about eleven percent for the cerebellar network — suggest
that if the gastric rhythm is seen is a confound, it may not be a serious one.
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5. Conclusion

Of 18 resting-state brain networks estimated from rsfMRI data using the well-
established spatial ICA approach, three were found to be significantly phase-locked
with the basal gastric rhythm, namely, a cerebellar network, a dorsal somatosensory-
motor network, and a default mode network. Disruptions to the gut-brain axis, which
sustains interoceptive feedback between the central nervous system and the viscera,
are thought to be involved in various disorders; manifestation of the infra-slow rhythm
of the stomach in brain rsfMRI data could be useful for studies in clinical populations.
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