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Genomic organization is critical for proper gene regulation and
based on a hierarchical model, where chromosomes are seg-
mented into megabase-sized, cell-type-specific transcriptionally
active (A) and inactive (B) compartments. Here, we describe
SACSANN, a machine learning pipeline consisting of stacked
artificial neural networks that predicts compartment annota-
tion solely from genomic sequence-based features such as pre-
dicted transcription factor binding sites and transposable ele-
ments. SACSANN provides accurate and cell-type specific com-
partment predictions, while identifying key genomic sequence
determinants that associate with A/B compartments. Mod-
els are shown to be largely transferable across analogous hu-
man and mouse cell types. By enabling the study of chromo-
some compartmentalization in species for which no Hi-C data
is available, SACSANN paves the way toward the study of 3D
genome evolution. SACSANN is publicly available on GitHub:
https://github.com/BlanchettelLab/SACSANN
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Introduction

High-throughput chromosome conformation capture (Hi-
C) provides a population estimate of intra- and inter-
chromosomal Interaction Frequencies (IF) for all loci pairs
of a genome (1). The output of a Hi-C experiment is typ-
ically stored in a set of intra- and inter-chromosomal IF
matrices, whose rows and columns correspond to genomic
bins of a fixed size (e.g., 50 kb). Lieberman-Aiden et al.
(2009) (1) discovered mammalian genomes are segmented
into two types of megabase-sized compartments: i) A(ctive)
compartments, which have been linked to euchromatin and
are gene rich, transcriptionally active regions; and ii) B (in-
active) compartments, associated with heterochromatin and
repressed gene expression. Contacts between genomic re-
gions belonging to the same compartment are generally more
frequent than those involving pairs of regions from differ-
ent compartments, resulting in the typical "plaid pattern”
seen across Hi-C IF matrices. Compartments have also been
shown to be composed of one or more Topologically Associ-
ating Domains (TAD) (2), which are genomic regions whose
loci preferentially interact with each other. Compartment an-
notations can be obtained by a simple Principal Component
Analysis (PCA) (3) of Hi-C IF matrices, where the sign of
the projection onto the first principal component divides the
genome into A and B compartments (1).

A compartments are known to have high GC content and
be enriched in activating chromatin marks (e.g., H3K27ac
and H3K36me3) (1). Dixon et al. (2015) (4) further high-
lighted that compartments are cell-type specific and variable
across cellular differentiation, with about 10% of loci switch-
ing compartment during the differentiation of human Em-
bryonic Stem Cells (hESC) into Neuron Progenitors Cells
(NPC). Overall, up to 36% of all compartments were al-
tered during the differentiation of hESCs into four distinct
cell types (namely NPCs, mesendoderm, mesenchymal and
trophoblast-like cells). Moreover, these compartment alter-
ations were found to correlate with corresponding changes in
gene expression (4). Therefore, compartments are believed to
play a role in cell-type specific gene expression profiles. In
addition, Rao et al. (2014) (5) demonstrated that A/B com-
partments in human cell lines can be further partitioned into
six types of sub-compartments (A1, A2, B1, B2, B3 and B4),
each having its own genomic and epigenomic characteristics.
These A/B sub-compartments and their characteristics have
been suggested to be partially explained by cell-type specific
transcription factor spatial networks (6).

The specific determinants of A/B compartment formation re-
main unclear. Fortin et al. (2015) (7) were able to apply
eigenvector analysis to matrices of epigenetic data correla-
tions and reconstruct compartments. Previous machine learn-
ing studies (8) have demonstrated that A/B compartments can
be accurately predicted from ChIP-seq data using artificial
neural networks. However, both of these methods are de-
pendent on the availability of biochemical data for a given
species and cell type, and provide little insight into the se-
quence encoding of genomic compartmentalization.

In this paper, we describe the supervised machine learning
problem of classifying genomic loci into cell-type-specific
A/B compartments using genomic sequence alone. We hy-
pothesize that machine learning models limited to genomic
sequence (or features derived from) as input will reveal se-
quence determinants of A/B compartment formation. While
epigenetic modifications play an important role in estab-
lishing compartments (7, 8), these marks are deposited in
a sequence-dependent manner. Therefore, the compart-
ment structure in a given cell type is ultimately sequence-
encoded. Although the problem of sequence-based com-
partment prediction has never been addressed, other aspects
of 3D chromatin architecture prediction have been consid-
ered. Nikumbh and Pfeifer (2017) (9) demonstrated that
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long-range chromatin interactions can be predicted using a
genomic sequence-based support vector machine. Whalen et
al. (2016) (10) also showed that candidate enhancers and pro-
moters genetic sequences could be used to predict enhancer-
promoters interactions with ensemble boosted trees. These
results are encouraging for the use of sequence features as
the only inputs to an A/B compartment annotator.

Here, we describe a stacked artificial neural network model
approach to predicting A/B compartments from genomic se-
quenc features called ’Sequence-based Annotator of Chro-
mosomal Compartments by Stacked Artificial Neural Net-
works’ (SACSANN). SACSANN takes as input features de-
rived solely from the genomic DNA sequence of a given
species, enabling compartment annotations for genomes
where only the DNA sequence is available. Our cell-type spe-
cific models achieve high prediction accuracy on both hESC
and mouse Embryonic Stem Cells (mESC), as well as the
cell types of a mouse neuronal differentiation (mESC, NPC,
and Cortical Neurons [CN]). Trained models are shown to be
transferable between the investigated species, where SAC-
SANN learns a set of rules to annotate A/B compartments
from sequence that is applicable to both human and mouse
genomes. In addition, we investigate SACSANN’s input fea-
tures to gain further insights into the underlying sequence de-
terminants and evolutionary processes that may impact A/B
compartment formation.

Results

A/B compartments can be predicted from se-
quence-level features. We developed SACSANN to pre-
dict A/B compartments using features engineered from a ref-
erence genome sequence (Fig. 1). The sequence-level fea-
tures needed to train the model are derived from partitioning
the genome into 100 kb bins and counting the occurrences of
specific computationally-identified genetic elements in each
bin. These include the GC-content as well as computation-
ally predicted binding sites for 334 transcription factors in
human and mouse and 41 (35) families of Transposable Ele-
ments (TE) in human (mouse). We first perform a cell-type
specific feature-selection by retaining the 100 features with
the highest feature importance, based on a random forest pre-
dictor. We then train two stacked artificial neural networks
that classify each input vector as belonging to either an A or
B compartment. SACSANN is trained and evaluated using
chromosome-wise leave-one-out cross-validation.

The entire SACSANN model building procedure (feature se-
lection and training/evaluation) was applied to several A/B
compartment annotations derived from neuronal differentia-
tion Hi-C data. For mouse, we used data published by Dixon
et al. (2012) (2), Fraser et al. (2015) (11) and Bonev et
al. (2018) (12), where the latter two datasets consist of a
complete mouse neuronal differentiation. In human, we used
hESC Hi-C data from Dixon et al. (2012) (2). When avail-
able, both the author’s compartment annotations and those
produced by HOMER (13) were used to train and assess mod-
els independently. We note that we (and the community)
treat compartment annotation as binary (each genomic bin
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is assigned to either the A or B compartment) and there exist
transitional regions whose assignment to A or B is unclear.
SACSANN proved to be accurate across all eight data sets
that were tested (average Area Under the Curve or AUC
score > 80%, see Fig. 2), which indicates that chromosome
compartmentalization is at least partially determined by the
underlying DNA sequence. Model performance is similar
across chromosomes (Sup. Fig. S1). Notably, SACSANN
more accurately predicts A/B compartment annotations pro-
duced by HOMER (average AUC score > 88%) than Fraser
etal. (2015) (11) compartment calls in mESC. Therefore, we
decided to focus on HOMER A/B compartment annotations
for further analyses.

Although HOMER'’s compartment annotation is binary, it is
actually based on the value of the first principal component
(PC1), whose magnitude relates to the clarity of the com-
partment annotation. Bins where the PC1 is close to 0 corre-
spond to regions of poorly defined compartmentalization, and
are often found at transitional bins between compartments A
and B. Indeed, bins where HOMER and SACSANN disagree
tends to have much lower PC1 values than those where they
agree (Sup. Fig. S2) suggesting that many of the "errors"
found in SACSANN predictions may actually be caused by
an uncertain HOMER annotation.

Compartment annotations are supported by biological
evidence. To study the properties of regions correctly and
incorrectly predicted by SACSANN, we labeled each bin as
either A — A (HOMER and SACSANN agree to assign the
bin to compartment A), B - B (HOMER and SACSANN
agree to assign the bin to compartment B), A — B (HOMER
labels the bin as A compartment but SACSANN predicts it
as B), and iv) B — A (HOMER labels the bin as B compart-
ment but SACSANN predicts it as A). Focusing on mESC
(for which epigenetic data is very rich), each genomic bin
was associated with an epigenetic/expression state vector de-
scribing its overall levels of expression from RNA-seq, hi-
stone modifications, and chromatin accessibility (see Meth-
ods). These vectors were then hierarchically clustered, re-
vealing three main clusters (Fig. 3). Clusters 1.1 and 1.2, pri-
marily containing bins assigned by HOMER to the A com-
partment, show high enrichment in H3K36me3, H3K9ac,
H3K27ac, H3K4me3, H3Kme3 and CTCF, with high val-
ues of DNase hypersensitivity and gene expression. Indeed,
A-compartments were previously reported to correlate pos-
itively with active histone marks (H3K36me3, H3K4mel
and H3K27ac), open chromatin/euchromatin and highly ex-
pressed genomic regions (1, 5). Cluster 1.1 is composed
of A — A bins at 97%, whereas cluster 1.2 is composed of
86% such bins. In comparison, Cluster 2 is enriched for bins
assigned by HOMER to the B compartment and depleted for
these marks, which is consistent with the trends observed pre-
viously. Cluster 2 is composed of 76% B — B bins.

Rao et al. (2014) (5) defined a further partitioning of A/B
compartments into six sub-compartment types (Al, A2, B1,
B2, B3 and B4) for the GM 12878 human lymphoblastoid cell
line, where each sub-compartment was found to have its own
genetic and epigenetic characteristics. To see if this distribu-
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tion could be replicated with the previous hierarchical clus-
tering, we studied the sub-clusters of Fig. 3a. Clusters 1.1
and 1.2 were found to be analogs of Rao’s sub-compartment
Al and A2 respectively, and differ in their level of enrich-
ment for the histone marks H3K9ac, H3K27ac, H3K4me3,
and H3K4mel. However, we were not able to retrieve a
similar separation in cluster 2. This might be in part due
to the resolution at which this study was performed (100kb
against 1kb found in (5)) and cell type differences (mESC vs.
GM12878). In addition, the eight available mESC epigenetic
data tracks used for clustering is limited compared to the 20
markers used by Rao et al. (2014) (5).

To further compare the A/B compartment annotations made
by HOMER and SACSANN, we interpreted the epigenetic
state vector clustering (Fig. 3a) as being a third A/B type of
compartment annotation method (Fig. 3b), similarly to the
reasoning in Fortin et al. (2015) (7). 78% of the genomic
bins are found to be annotated consistently by the three meth-
ods. The remaining 22% are almost evenly distributed in the
other domains of the Venn diagrams, which suggests that no
particular method outperforms the others for these genomic
loci.

Compartment establishment rules are transferable
across chromosomes. The organizational principles that
guide compartment formation still remain unclear and we
hypothesize that these principles are broadly shared across
chromosomes. So far in this study, SACSANN models have
been trained using traditional leave-one-out chromosome-
wise cross-validation. To address our hypothesis, we trained
SACSANN on individual chromosomes and then predicted
A/B compartments for the remaining n — 1 chromosomes.
Despite a significant decrease in the quantity of training data,
the resulting AUC scores remain surprisingly high (89.8% vs
89.9% for mESC, 86.8% vs 88.3% for NPC and 76.0% vs
82.5% for CN (Fig. 4)). Based on these results, we postulate
that similar compartment formation rules are shared across
chromosomes.

In mESC, SACSANN models trained on individual chromo-
somes provide accurate predictions, although certain chro-
mosomes (e.g., chrl and chrl3) are found to be slightly
harder to annotate. As neuronal differentiation proceeds to-
ward NPC and CN, overall prediction accuracy decreases,
and certain chromosomes become less useful as training data
or harder to predict on. For example, in CN, chr13 becomes
both a poor training data set and is poorly predicted from
models trained on other chromosomes. We were unable to
identify specific characteristics that may explain this phe-
nomenon. Other chromosomes (e.g., chr3 and chrl8) be-
come harder to predict but remain relatively useful as training
data. One hypothesis for this observation is that SACSANN
is able to learn global A/B compartment rules from individ-
ual chromosomes, but certain chromosomes (like chr3 and
chr18) rely on additional chromosome-specific rules. We re-
late this hypothesis of chromosome-specific rules to the find-
ing by Rao et al. (2014) of sub-compartment B4, present
only on human chr19. We also observe that the correspond-
ing chr19 is poorly predicted in hESC (Sup. Fig. S3). Zhang

Prost etal. | SACSANN

et al. (2018) (14) have also observed similarly poor predic-
tive capability for chr19 as training data for the prediction of
Hi-C contacts in five distinct human cell types.

SACSANN learns cell-type specific compartmentaliza-
tion. Genome compartmentalization is cell-type specific to
a certain degree (1, 4, 12), although different cell types
have the same genome. Different SACSANN models are
trained for each cell type, enabling models to vary in the
way they interpret genomic sequence to make compartment
prediction. To understand the differences between models
trained on different cell types, we studied the extent to which
a model trained on one cell type is applicable to another. Sup.
Fig. S4a shows that a predictor trained on a given cell type
indeed achieves the highest AUC score when tested on that
same cell type, suggesting that SACSANN is able to learn
some cell-type specific compartment properties.
SACSANN’s accuracy was shown to decrease over neuronal
differentiation (Fig. 4 and Sup. Fig. S4a). Accuracy is very
high for bins whose compartment does not change during
differentiation, but lower for those that do (Sup. Fig. S5c).
This decrease can be attributed to several factors. First, bins
whose compartment changes during differentiation are rela-
tively few compared to those that do not (only 24% of bins
change compartment type at least once; Sup. Fig. S5a, pro-
viding less training data for SACSANN to learn cell-type spe-
cific rules. Second, those bins have less well defined com-
partment membership (PC1 values close to zero), making
HOMER’s annotation less reliable (Sup. Fig. S5¢). Third,
it may be that the rules that relate sequence to a compart-
ment change are more complex than SACSANN can learn
from the limited amount of training data available. Notably,
SACSANN’s accuracy is at its lowest for genomic bins that
change from the B to the A compartment and is marginally
better for bins that evolve from A to B. Nonetheless, it is im-
portant to note that the overall AUC score still remains above
80% for all cell types explored.

Sequence determinants of compartment predictions. In an
effort to understand SACSANN’s use of input features to
predict A/B compartments and the differences between cell-
type—specific predictions, each feature was correlated against
SACSANN’s predicted probability of a genomic bin resid-
ing within the A compartment. Since GC-content is a major
determinant of compartments and a covariate of many Tran-
scription Factor Binding Site (TFBS) counts, we performed
the analysis controlling for GC content, using Partial Corre-
lation Scores (PCS) (see Methods). It should be noted that
this analysis does not directly interpret how features are used
in a SACSANN model but only how individual features cor-
relate to SACSANN’s predictions. PCS of each feature is
seen to evolve across differentiation (Fig. 5), providing in-
sight into how sequence determinants correlate with com-
partment predictions across differentiation. For example, the
TFBSs of Nanog, Oct4 and Sox2 are observed to negatively
correlate with compartment A prediction scores, with the for-
mer two exhibiting progressively reduced importance during
differentiation and Sox2 remaining strongly negatively asso-
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ciated throughout. These three transcription factors are crit-
ical for the maintenance of pluripotency in mESCs (15-18).
The fact that Nanog and Oct4 lose their feature importance
over the differentiation is consistent with this maintenance
function. In comparison, Sox2 is a determinant in neuron
progenitors (19), possibly explaining why it remains of high
importance in NPC and CN.

Other features are observed to have their PCS vary across
differentiation. This increase is exemplified by the L1 trans-
posable element and TEAD transcription factor, which be-
come more negatively correlated with A compartment an-
notations over the differentiation. In contrast, TFBSs like
HIF2a, bHLHL E40 and Arnt become more highly positively
correlated as differentiation occurs. Finally, some features,
including Nuclear Factor of Activated T cells and E2A, re-
main almost constant in their PCS. These observations are
consistent with the important role these elements play in
brain development (20-22).

Compartment establishment rules are transferable
across species. We next set out to study the extent to which
compartment establishment rules could be transferred across
species. Training SACSANN to predict mESC compartments
yields a predictor that is only slightly less accurate on hESC
than mESC (AUC of 80.8% vs. 90.0%, respectively). Re-
sults are similar in the reverse direction, with a SACSANN
model trained on human achieving high accuracy on both
human and mouse (AUC of 80.2% and 85.8% for hESC
and mESC, respectively). The counter-intuitive fact that the
human-trained model performs better on mouse than on hu-
man is attributed to the higher quality Hi-C data in mouse
(higher sequencing coverage, more recent protocols), yield-
ing more accurate HOMER-based compartment annotation.
Overall, these results suggest that compartment formation
rules are at least partially shared between similar mouse and
human cell types, which implies a conservation of the com-
partment establishment mechanism across species in embry-
onic stem cells.

We then contrasted the hESC- and mESC-trained SACSANN
models by comparing their feature PCS values (Fig. 6a).
Overall, there is a strong correlation between the way both
predictors use features (Spearman correlation coefficient p =
0.83, p-value = 1.15 x 10716), which supports the ratio-
nale that compartment establishment rules are shared across
species.

This analysis also reveals that SACSANN predictors rely in
part on the presence of various TEs to make their predic-
tions. Notably, the Alu TE has the highest PCS in mESC
(0.39) and second highest in hESC (0.19) (note that in mice,
Alus refer to the B1 family of TEs, which are SINE elements
similar to primate Alus (23)). In humans, Alus are known
to be enriched in gene-rich regions (24), which is consistent
with the positive correlation to A compartments. Alu ele-
ments are known to have a role in regulating the expression
of their neighbouring genes in human (25). These elements
are also known to have an impact on the primate transcrip-
tome through cis-regulation of RNA editing (26). Surpris-
ingly, LINE-1 (L1) is positively correlated with A compart-
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ment predictions in human (0.13), but negatively in mouse
(—=0.19). In humans, Natale et al. (2018) (24) showed that
given their distribution in the genome, L1 and Alu elements
represent chromatin regions with opposing features. L1 el-
ements are generally found within AT rich regions of the
genome, while Alus prefer gene rich regions. However, since
the PCS is calculated by controlling for GC content, this ob-
servation is not necessarily contradictory to Natale et al.’s
findings. It remains surprising that L1 behaves differently
in the two species. SACSANN also relies heavily on a sub-
set of TFBSs, including many homeobox transcription fac-
tors, such as Nanog, Oct6, Pdx1 and Lhx3. These factors are
found to be negatively correlated with A compartment pre-
dictions in both mESC and hESC. Interestingly, Lopes Novo
et al. (2016) (27) showed that Nanog is an important regula-
tor of heterochromatin in mESCs.

Discussion and Conclusion

Chromosome compartments are one of the highest levels
of 3D organization and are associated with gene expres-
sion (4). Compartment establishment is sequence-encoded
and epigenetically-controlled in a cell-type specific manner
(7, 8). Yet their sequence determinants remain largely un-
known, and to date no attempts had been made to predict
compartment organization from sequence alone. In this pa-
per, chromatin A/B compartments were accurately predicted
by SACSANN, a ML algorithm using only sequence-based
features. SACSANN was shown to be robust across different
cell types and species. SACSANN identifies key genomic de-
terminants that define A/B compartments, including Alu TEs
and Nanog TFBSs in ESCs. Alu enrichment in the A com-
partment has been previously linked to a known stabiliza-
tion role in DNA repair for open chromatin (28). Moreover,
SACSANN models trained in one species (mouse or human)
proved capable of accurate prediction in the other, suggesting
an evolutionary conservation of compartment establishment
rules. These conservation results are encouraging for the ap-
plication of our ML methodology to species where no Hi-C
data is currently available, or to computationally inferred an-
cestral genome sequences (29). The observed similarities in
mESC and hESC compartments highlight that such an evolu-
tionary study would probably be insightful given the similar
feature behaviors, at least within eutherian mammals.

Improving the cell-type specificity of SACSANN will be ad-
dressed in future iterations of the software. The most diffi-
cult genomic bins to predict across the mouse neural differ-
entiation (mESC — NPC — CN, see Fig. 4) were those that
changed compartment association. To describe these chang-
ing bins, a more sophisticated model may be needed along
with additional training data and features. One approach to
this problem may be to combine data from many different
species of a given cell type. This approach is supported by
our preliminary results (Fig. 6 and Sup. Fig. S4 ) that differ-
ent species share compartment establishment rules. Perfor-
mance improvements may also be achievable by using pre-
dictive models that do not rely on engineered features but in-
stead automatically learn useful data representations, such as
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convolutional artificial neural networks. Such an approach
would not be limited by our current understanding of ge-
nomics and could lead to the discovery of new sequence-
based determinants, although at a cost in terms of inter-
pretability. Similar ML approaches have been successful at
predicting noncoding-variant effects (30) or DNA accessibil-
ity (31). Additional performance gains may be achievable
through the use of recurrent neural networks (e.g. long short-
term memory networks (32)) to better integrate signals over
the entire chromosome length. We envision that the rapid in-
crease in the amount of Hi-C data available to learn from,
combined with advances in machine learning will enable fur-
ther accuracy gains and help more clearly delineate the se-
quence determinants of compartment formation.

In conclusion, SACSANN allows for the analysis of A/B
compartments in species and cell types where Hi-C is un-
available. The establishment of cell-type-specific models for
A/B compartment prediction provides valuable insight into
the mechanisms at play in establishing chromosomal com-
partments.

Methods

Data sources. The hg19 and mm10 reference genome as-
semblies were used for human and mouse experiments,
respectively.  Computational TFBS prediction was per-
formed using HOMER (13) using default parameters, where
HOMER’s ‘known_motifs’ collection of vertebrate motifs
were applied to reference genome sequences. Repeat Masker
(http://repeatmasker.org/) TE annotations were obtained from
the UCSC Genome Browser (33).

Table 1. Hi-C libraries investigated

Cell type Digest enzyme GEO

mESC, hESC HindIII GSE35156 (2)
mESC, NPC, CN Dpnll GSE96107 (12)
mESC, NPC, CN  HindIIl, Ncol  GSE59027 (11)

Sequenced paired-end reads of Hi-C libraries were obtained
from published datasets (Table 1) and mapped to their re-
spective reference genomes using the Hi-C User Pipeline
(HiCUP) (34).

To produce A/B compartment annotations, both published
and HOMER (13) (using default parameters) produced an-
notation sets at 100 kb resolution were used.

Histone modification, CTCF binding, DNA accessibility, and
expression data were obtained Boneyv et al. (2017) (12), from
the sources listed in Table 2.

Model architecture. Here, we describe the architecture of
SACSANN, which consists of two stacked, fully-connected
Artificial Neural Networks (ANN) (see Fig. 1 for an overview
of the model’s architecture). The first ANN (Intermediate
Network [IN]) assigns the probability for a given 100 kb ge-
nomic bin to belong to the A compartment. The IN takes as
input features representing GC content, TFBS counts and TE
counts for the bin (see Feature Selection). All feature values
are standardized to have a mean of zero and variance of one.
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Table 2. ChIP-seq, DNase-seq, and RNA-seq used from Bonev et al. (2017) (12)

Name GEO
H3K36me3 ChIP-seq GSM1000109
H3K9ac ChIP-seq GSM1000127
H3K27ac ChIP-seq GSM1000099
H3K4me3 ChIP-seq GSM769008
H3K4mel ChIP-seq GSM769009
CTCF TFBS ChIP-seq GSM918748
DNase Hypersensitivity GSM1014154
RNA-Seq GSE96107

For training and validation of SACSANN, target values are
set to O for bins corresponding to compartment A, and 1 for
compartment B. The IN is applied separately to each bin of
a chromosome. Since compartments have an average size of
over 1 Mb and model input/output resolution is 100 kb, most
compartments span several consecutive bins. Therefore, a
second ANN (Smoothing Network [SN]) is then applied to
the output of IN to smooth its A/B compartment predictions.
To accomplish annotation smoothing, SN takes as input the
output of IN for the current bin b and a fixed number of its
preceding and succeeding bins: b — w,....b—1,b+1,...,b,,.
It then produces a revised estimate of the probability of bin b
belonging to compartment A. The number of neighbors w is a
tuned hyper-parameter ( value selection is discussed below)
of the architecture. Overall, IN takes 100 Random Forest
(RF) selected, sequence-based features as input. SN observes
1,000 kb windows flanking a given genomic bin b to provide
the prediction of A compartment assignment, where w was
set to 10 (i.e., 1 Mb on either side).

Both IN and SN were implemented using the scikit-learn neu-
ral_network package (35). Hidden and output layers of the
ANNS s use sigmoid and softmax activation functions, respec-
tively. Cross-entropy is used as the loss function for both
ANNS.

Model training. SACSANN models were trained on data
from an individual or multiple chromosome(s). For multi-
ple chromosome experiments, SACSANN is trained using
chromosome-wise leave-one-out cross-validation (i.e., the
model is repeatedly trained on all but one of the chromo-
somes and tested on the left out chromosome). Because bins
belonging to A and B compartments are generally not found
in equal numbers, we randomly down-sample the majority
class in the training set to achieve a balanced representation.
The two ANNs composing SACSANN are trained separately,
each using the Adam optimizer algorithm (36) and L2 regu-
larization to minimize the cross-entropy loss.

Hyper-parameter tuning. The Bayesian optimization soft-
ware Spearmint (37) was used to tune hyper-parameters
of SACSANN, which include the number of RF-selected
features, initial learning rate, L2 regularization rate, num-
ber of hidden layers, number of nodes per hidden layer
in each ANN, and number of neighbors to take into ac-
count for SN. Parameter tuning was separated into two op-
timization problems: i) parameter tuning of IN and ii) using
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Table 3. Chosen hyperparameters of SACSANN’s Intermediate (IN) and Smoothing
(SN) Networks

Parameter IN SN
Number of input features 100 .
Number of neighbors (w) . 10
Number of hidden layers 1 2
Number of nodes per layer 256 64
Regularization weight 0.001 0.001
Initial learning rate 0.0001 0.01

hyper-parameters values obtained in i) in combination with
Spearmint to tune SN. For the first task, Spearmint was run
for 400 iterations with 80 random starts on two mouse Hi-C
data sets: mESC from Dixon et al. (2012) (2) and CN from
Bonev et al. (2017) (12). For SN, 200 iterations of Spearmint
with 40 random starts were performed on the same two Hi-
C data sets. For each iteration, 5-fold cross-validation over
the entire data set provides an estimate of the current model’s
performance. The results of Spearmint are summarized in
Sup. File S3. For most parameters, the optimal value found
by Spearmint was approximately the same for both Hi-C data
sets investigated. For the number of nodes per layer, the near-
est power of two to the value outputted by Spearmint was
chosen. In the case where parameter values differed across
data sets, these parameters were found to not influence the
model’s performance greatly and a consensus value was arbi-
trarily chosen. To validate Spearmint selected values, the re-
sulting SACSANN model was applied to all other Hi-C data
sets (see Table 1). Table 3 summarizes the final parameter
values of SACSANN’s stacked ANNSs.

Feature selection. To avoid the use of redundant features
and limit overfitting, mouse and human features (370 and
376, respectively) were ranked according to a RF classi-
fier’s feature importance (implemented in Python’s scikit-
learn module (35)). The number of selected features was then
tuned as a hyper-parameter of SACSANN using Spearmint.

Hierarchical clustering. Hierarchical clustering was per-
formed with the Euclidean metric and ‘Ward’ method us-
ing the Python module SciPy’s package cluster.hierarchy (38,
39).

Partial correlation scores. Partial Correlation Scores
(PCS) are used to measure the degree of association be-
tween each input feature and the probability of a genomic
region being in the A compartment. We believe that most
computationally-predicted features are driven by GC content
and thus, calculate PCSs of these two variables (input feature
and A compartment probability) while controlling for GC
content. The PCS of two variables X and Y while control-
ling for variable Z is calculated by correlating the regression
residuals of X and Z against those of Y and Z. Linear re-
gression is performed between features and GC content. Due
to the binary representation of A and B compartment pre-
dictions, logistic regression is used to calculate the residuals
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between compartment predictions and GC content (see Sup.
Fig. S8).
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S1File. Partial Correlation Scores (PCS) and definitions of
the abbreviated feature found in Fig. 5.

S2 File. PCS values of the abbreviated features found in
Fig. 6a.

S3 File. Summary of Area Under the ROC Curve (AUC)
scores achieved for tested hyperparameter combinations.

Supplemental files are found in the SACSANN GitHub
repository:
https://github.com/BlanchetteLab/
SACSANN/tree/master/supplemental_ files
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Fig. 1. Summary of SACSANN compartment prediction pipeline. Each chromosome is first divided into fixed-sized bins (i.e., 100 kb). The sequence of each bin
is analyzed to obtain a feature vector containing GC content, predicted transcription factor binding site counts and transposable element coverage. Feature selection is
performed to identify the top 100 cell-type-specific features based on a Random Forest (RF) model’s feature importance. Those features selected are then used as input to
SACSANN. SACSANN is a stack of two fully connected artificial neural networks, named the Intermediate (IN) and Smoothing (SN) networks, respectively. The IN predicts
the probability of an individual bin being in the A compartment, based solely on that bin’s feature vector. The SN takes as input multiple consecutive IN predictions to provide
a smoothed prediction of A/B compartment annotation. On the bottom left, compartment annotations and predictions for mouse embryonic stem cells chromosome 3 are
shown (prediction errors are represented in red).
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Fig. 2. A/B compartments can be predicted from sequence-based features. Accuracy evaluation of SACSANN across multiple different compartment annotations (100
kb resolution), cell types, and species compared against a random forest algorithm. Each violin represents the Area Under the Curve (AUC) score distribution obtained by

performing chromosome-wise, leave-one-out cross validation for each datasets (i.e., each violin contains 19 or 22 autosome AUC scores for mouse and human, respectively).
Hi-C based compartment annotations were obtained using either HOMER or based on the annotation provided by Fraser et al. (2015) (only for J1 and 46C cells).
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Fig. 3. External validation of SACSANN’s compartment annotations. a) Hierarchical clustering of the epigenetic/expression state vectors in mESC (23,964 100kb bins in
total). Each biological track’s values was scaled between 0.0 and 1.0 with clipping of the top and bottom 1% for visibility purposes. On the right of the hierarchical clustering
heatmap (in blue to red palette): PC1 value for the corresponding bin as provided by HOMER. Right (in black or white), each bin is classified as one of four distinct categories:
bins annotated as A by both HOMER and SACSANN (A — A), B by both HOMER and SACSANN (B — B), A by HOMER and B by SACSANN (A — B) or B by HOMER
and A by SACSANN (B — A). b) and ¢) Venn diagrams comparing the three compartment annotation methods (epigenetic/expression state vectors clustering, Hi-C based
annotations and SACSANN annotations). The diagrams represent the congruence in labelling a bin as being in the A (b) or B (¢) compartment, with respect to the total
number of bins labeled for a given compartment type.
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Fig. 4. Compartments can be learned from an individual chromosome in mouse neural differentiation. From /eft to right: Area Under the Curve (AUC) score heatmaps
for SACSANN compartment predictions of mouse Embryonic Stem Cells (mESC), Neuron Progenitors (NPC) and Cortical Neurons (CN) from the HI-C data of Bonev et al.
(2018). Each entry in a heatmap is the AUC score achieved by SACSANN when trained and evaluated on the corresponding row and column chromosomes, respectively.
The diagonal is set intentionally to an AUC score of 50% as models were not trained and tested on the same chromosome.
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Fig. 5. Sequence determinants of chromosomal compartments evolve across mouse neural differentiation. Partial Correlation Scores (PCS) for the top 100 features
selected in each cell type for mouse Embryonic Stem Cells (mMESC), Neuron Progenitors (NPC) and Cortical Neurons (CN). PCSs correlate feature values with SACSANN’s
prediction of a genomic bin being in the A compartment, while controlling for GC content. White entries correspond to features that were not selected to be in the top 100
features used by the corresponding cell-type-specific model. See Sup. File S1 for PCS values and full feature names.
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Fig. 6. SACSANN identifies sequence determinants of A/B compartments. a) For each species (human and mouse), the Partial Correlation Scores (PCS) between
each of the top 100 features and A compartment predictions scores by SACSANN in embryonic stem cells are calculated while controlling for GC content. The Spearman
correlation score (0.83) of PCSs for the intersection of the top 100 features in human and mouse Embryonic Stem Cells (RESC and mESC, respectively) indicates that a
majority of features are found to be similarly used across species by SACSANN. See Sup. File S2 for PCS values. b) Hierarchical clustering using a combination of relevant
sequence determinants identified by PCS analysis. ChIP-seq peak data tracks were used for transcription factors columns Kif4, c-Myc, and n-Myc. The corresponding PC1
value from HOMER (/eft) highlights the genome segmentation provided by these new sequence determinants of A/B compartments.
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Supplementary Figure S1 SACSANN accurately predicts chromosome compartments. Example ROC curves of SACSANN predictions for the first 10 chromosomes in

mESC.

2.0 4

1.5 1

1.0 A

0.5+

HOMEREs, p

0.0 A

-0.5 4

-1.0 4

-1.54

1.0

0.8+

Predictions
o© o
= o

1 1

0.2 4

0.0+

T T
B-A A=A B-B

Label - Prediction

T T
B-A A=A B-B A-B

Label - Prediction

A-B

Supplementary Figure S2 Error Analysis of SACSANN predictions in mESCs. a) HOMER PC1 value distribution. Each genomic bin assigned one of the following four
distinct classes: 1) compartments annotated as A by both HOMER and SACSANN (A — A), 2) B by both HOMER and SACSANN (B — B), 3) A by HOMER and B by
SACSANN (A — B), and 4) B by HOMER and A by SACSANN (B — A). b) SACSANN predicted probability of a genomic bin being found in the A compartment for each

compartment class.
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Supplementary Figure S3 Individual chromosome training for hESCs. Repetition of the analysis found in Fig. 4. See caption of Fig. 4 for a description of the analysis.
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Supplementary Figure S4 Compartment predictions across cell types and species. Chromosome-wise cross-validation AUC scores for SACSANN predictions of
a) neural differentiation and b) hESC vs. mESC. SACSANN achieves the highest AUC score for the cell type the algorithm was trained on in the neuron differentiation.
Interestingly, for the comparison of hESC vs. mESC, SACSANN models trained in mouse are slightly more accurate than those trained in human.
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Supplementary Figure S5 A/B Compartment analysis across mouse neuronal differentiation. a) The number of genomic bins as a function of compartment class,
where class label *XYZ’ is the compartment annotation type for mESC (X), NPC (Y) and CN (Z), respectively. b) and ¢) SACSANN accuracy and HOMER PC1 values as a
function of compartment and cell type.
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Supplementary Figure S6 SACSANN identifies sequence determinants in hESCs. Hierarchical clustering of relevant features in hESC according to their PCS score.
KIf4 binding sites were obtained from ChiP-seq peak data (see Methods).
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Supplementary Figure S7 External data re-partition in mESCs. Each data track was binned according to the same categories described in Sup. Fig. S2, where: a)
ChlP-seq peak data for different histone marks and the CTCF transcription factor, b) RNA-seq and ¢) DNase-seq.
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Supplementary Figure S8 Rationale for linear and logistic regression in PCS. Most features are assumed to be driven by GC content. To address this assumption,
we performed Partial Correlation Score (PCS) analyses while controlling for GC content instead of standard correlation analyses. In calculating a PCS, the residuals of two
regressions are correlated to quantify the amount of signal not explained by the controlled variable (i.e., GC content). Based on correlations, we chose to apply linear and
logistic regressions (black and red dotted curves, respectively) for a) features and b) SACSANN predictions.
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