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Abstract

A major objective of evolutionary biology is to understand the processes by which

organisms have adapted to various environments, and to predict the response of or-

ganisms to new or future conditions. The availability of large genomic and envi-

ronmental data sets provides an opportunity to address those questions, and the R

package LEA has been introduced to facilitate population and ecological genomic

analyses in this context. By using latent factor models, the program computes an-

cestry coefficients from population genetic data, and performs genotype-environment

association analyses with correction for unobserved confounding variables. In this

study, we present new functionalities of LEA, which include imputation of missing

genotypes, fast algorithms for latent factor mixed models using multivariate predic-

tors for genotype-environment association studies, population differentiation tests for

admixed or continuous populations, and estimation of genetic offset based on climate

models. The new functionalities are implemented in version 3.0 and higher releases

of the package. Using simulated and real data sets, our study provides evaluations

and examples of applications, outlining important practical considerations when an-

alyzing ecological genomic data in R.

Keywords: Predictive ecological genomics, population structure, genotype-environment

association tests, unsupervised machine learning, latent factor models.
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1 Introduction

Landscape and ecological genomics attempt to characterize geographic processes un-

derlying the responses of organisms to their environments (Schoville et al., 2012; Sork

et al., 2013; Manel & Holderegger, 2013; Savolainen, Lascoux, & Merilä, 2013). In

these approaches, the recent availability of large genomic and environmental data

sets have facilitated the identification of biotic and abiotic factors that influence neu-

tral and adaptive genetic diversity patterns, offering opportunities for researchers to

understand those patterns with statistical genetic approaches. Landscape databases

include environmental variables such as climate and habitat descriptors which are

proxies for geographically heterogeneous selection pressures (Fenderson, Kovach, &

Llamas, 2020). Accounting for the confounding effects of demographic processes,

local adaptation can be detected at a genomic level by identifying loci which allele

frequency exhibits significant association with those environmental variables. Thus,

ecological genomic studies could anticipate results from translocation experiments

or exposure to future conditions by relying on analyses of population structure and

genomic signatures of selection. Many methods and computer programs have been

developed to this aim (Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015;

Hoban et al., 2016; Forester, Jones, Joost, Landguth, & Lasky, 2016), and the R

package LEA – for Landscape and Ecological Association studies – is one of those

programs (Frichot & François, 2015).

Methods in LEA are based on the statistical framework of latent factor mod-

els (Frichot, Schoville, Bouchard, & François, 2013; Frichot, Mathieu, Trouillon,

Bouchard, & François, 2014). Latent factors are unobserved variables that repre-

sent data generated by processes linked to population history, population structure
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and technical or statistical artifacts. Latent representations of large data sets are usu-

ally computed as a reduced number of combinations of observed variables, a key step

in statistics and in machine learning (Mardia, Kent, & Bibby, 1979; Murphy, 2012).

Technically, the latent factor methods of LEA belong to the class of unsupervised

machine learning approaches, and enable users to analyze population structure and

detect genomic signatures of local adaptation without assumption on the biological

processes that have generated the data. Several variants of latent factor models have

been successfully applied in population genetic studies. Examples include estimates of

ancestry coefficients with the Bayesian programs structure or tess, computations

of eigenvectors in principal component analysis (PCA), uniform manifold approxi-

mation and projection for dimension reduction, and factor analysis for ancient DNA

samples (Pritchard, Stephens, & Donnelly, 2000; Caye, Jay, Michel, & François, 2018;

Patterson, Price, & Reich, 2006; Diaz-Papkovich, Anderson-Trocmé, & Gravel, 2019;

François & Jay, 2020). In most applications of factor models, projections of individu-

als on factors reflect their levels of admixture from source populations. In genotype-

environment association methods, latent factor regression models were introduced

to separate variation explained by observed environmental variables from variation

explained by unobserved variables (Frichot, Schoville, Bouchard, & François, 2013).

In those regression models, latent factors represent unobserved confounders, and

they have less direct interpretations than in ancestry estimation methods. Machine

learning algorithms that train models to estimate latent factors are generally com-

putationally efficient with minor loss of statistical accuracy compared to Bayesian

Monte-Carlo methods. Thus, they allow their users to increase the volume of data

analyzed compared to previous approaches (Caye, Jumentier, Lepeule, & François,
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2019).

In this study, we present functionalities implemented in LEA version 3 to perform

imputation of missing genotypes, improved estimation in latent factor mixed models

(LFMM), genome scans for selection based on factor models, and prediction of genetic

offset under future environments. Here, future environments should be interpreted

as new environments for which we have actual or projected data. Several algorithms

processing high-throughput sequencing data do not accept missing genotypes, or

handle these values with naive approaches, such as imputation with mean values.

Missing data are problematic in genome-wide regression analyses, such as association

studies, that have decreased power when genotypes are removed (Marchini & Howie,

2010). Missing data are also problematic for PCA when it is used for describing

structure in the data. See Dray & Josse (2015) for imputation strategies related to

PCA. Imputation of missing data has been an intensive field of statistical research

for decades (Van Buuren, 2018). In population genetics, several methods have been

proposed to address this issue based on reference genomes. For example, the fastphase

model imputes missing genotypes by using linkage disequilibrium and hidden Markov

models (Scheet & Stephens, 2006). Reference genomes are however not available for

all organisms, and alternative methods relying on unsupervised machine learning have

been considered (Stekhoven & Bühlmann, 2012; Chi, Zhou, Chen, Del Vecchyo, &

Lange, 2013). LEA 3 implements an imputation algorithm based on factors estimated

in the snmf function with a nonnegative matrix factorization approach (Lee & Seung,

1999; Frichot, Mathieu, Trouillon, Bouchard, & François, 2014). With this approach,

missing genotypes are replaced by predicted genotypes in a way that agrees with the

inference of population structure.
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The R package LEA also implements algorithms for LFMMs, which are statis-

tical models used in genotype-environment association studies to identify genomic

signatures of adaptation to the local environment (Frichot, Schoville, Bouchard, &

François, 2013). LFMMs optimally separate neutral genetic variation – modelled in

the latent factors – from adaptive genetic variation modelled in the effect sizes of

environmental covariates. Adaptive loci are expected to be associated with non-null

effect sizes, that are tested at each locus in the genomic data. Frichot et al. (2013)

used a Bayesian approach and a Markov Chain Monte Carlo (MCMC) algorithm to

adjust LFMMs to the data, and this approach was implemented in the lfmm function

of LEA (Frichot & François, 2015). Based on least-squares optimization methods

(Caye, Jumentier, Lepeule, & François, 2019), much faster algorithms are now im-

plemented in the lfmm2 function of LEA 3.

In addition to genotype-environment association methods, LEA 3 implements

genome scans for selection based on population differentiation – also called outlier

tests. Those tests screen a large number of genomic variants across a genome to iden-

tify loci that have been affected by diversifying selection. To achieve this objective,

they consider the upper tail of the empirical distribution for population differen-

tiation statistics like fixation indices and related measures (Lotterhos & Whitlock,

2015; Duforet-Frebourg, Luu, Laval, Bazin, & Blum, 2016; François, Martins, Caye,

& Schoville, 2016). In this context, admixed individuals and genetically continu-

ous populations complicate the use of population differentiation tests. Extensions

of population differentiation measures have been recently proposed for samples with

admixed individuals (Martins, Caye, Luu, Blum, & François, 2016). LEA 3 imple-

ments the statistics introduced by Martins et al. (2016), and computes significance
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values by comparing the values of those statistics with the genomic background.

Understanding the vulnerability of species and populations to environmental thr-

eats is important for developing effective strategies to conserve them (Foden et al.,

2019). For a target species, genomic data can be used to evaluate evolutionary po-

tential for future adaptations within a fixed time horizon (Sork et al., 2010; Jay et al.,

2012; Pauls, Nowak, Bálint, & Pfenninger, 2013; Aitken & Whitlock, 2013; Razgour et

al., 2019). The genomic approaches exploit the correlation of allele frequencies with

geographical variation of the environment to predict mismatches between current

and future allele distributions under environmental change projections (Fitzpatrick

& Keller, 2015; Rellstab et al., 2016; Capblancq, Fitzpatrick, Bay, Exposito-Alonso,

& Keller, 2020). In most applications, a set of adaptive loci is first identified from

the genomic background using a genotype-environment association method. Then

this set of adaptive loci is used to evaluate genetic offset based on another statistical

approach (Bay et al., 2018; Ingvarsson & Bernhardsson, 2020; Waldvogel et al., 2020).

LEA 3 implements an approach assuming that effects of the environment are poten-

tially weak but highly polygenic. Using effect sizes instead of significance values, the

new approach leverages the entire set of genotyped loci to predict genomic variation

under projected conditions. Several examples and simulation studies illustrate the

functionalities of LEA 3 below.

2 New program functionalities

Imputation of missing data. LEA 3 implements an imputation method based on

allele frequencies and ancestry coefficients estimated from its snmf function (Frichot,

Mathieu, Trouillon, Bouchard, & François, 2014). Assuming n diploid organisms
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genotyped at L loci, the snmf algorithm decomposes the n × L matrix of observed

allele frequencies, P , in a product of two probabilistic matrices

P ≈ QF ,

where the coefficients of P take their values in {0, 1/2, 1} for diploid organisms (Note:

ploidy can be modified in snmf). The matrix Q is similar to the Q-matrix of STRUC-

TURE, representing ancestry coefficients for individuals originating from K source

populations (Pritchard, Stephens, & Donnelly, 2000). The matrix F contains allele

frequencies at each locus for each source population. While P may contain some

missing values, the product matrix, QF , is always a complete probabilistic matrix.

Thus imputation of missing genotypes can be achieved by replacing the missing val-

ues with random values sampled from the product matrix distribution. In the same

spirit, an alternative option is to pick the most probable genotype based on the largest

probabilities in a deterministic fashion. Both random and deterministic procedures

were implemented in the impute function of LEA 3.

To evaluate the ability of the impute function to correctly reconstruct missing

genotypes, we performed a simulation study of a two-population model with admix-

ture. The simulation model assumes that a haploid population was genotyped at L

diallelic loci (values 0 and 1) according to the F -model (Balding & Nichols, 1995;

Pritchard, Stephens, & Donnelly, 2000). In the F -model, there is an ancestral gene

pool containing alleles of unknown frequencies, p, having a uniform distribution over

the L loci. At a given time point in the past, the ancestral population split in K sub-

populations (here, K = 2), and the subpopulations diverged with genetic drift equal

to F . Conditional on p, the allele frequency at a particular locus in any subpopula-
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tion follows a beta distribution of shape parameters p(1−F )/F and (1−p)(1−F )/F .

The drift parameter, F , controls the fixation index, FST, with larger values of F caus-

ing FST’s to be larger. In simulations, the drift parameter was varied between 2%

and 30%. In the model, a third population containing admixed genotypes was also

sampled. The admixture rate πadmix was varied between 5% and 50%. For n = 300

individuals, the number of genotypes, L, was varied from 1,000 to 10,000. To create

missing genotypes, we removed genotypes at random at a rate, πmissing, between 10%

and 90%. Ten runs of snmf were performed for each genotypic data set. The best run

was retained on the basis of the cross-entropy criterion, and was used for imputation

of the missing data. Then we checked whether the removed genotypes were correctly

predicted and restored by the deterministic option of the program. The accuracy of

reconstruction was measured as the percentage of correctly reconstructed genotypes,

and with the root mean squared differences between ancestry estimates computed

from the original and reconstructed genotypes. A total of 18,000 program runs for

1,800 data sets were performed. The program snmf was run with K = 2. The reg-

ularization parameter of snmf was increased to α = 100 (default value α = 10) to

account for the relatively small number of loci in the simulations (Frichot, Mathieu,

Trouillon, Bouchard, & François, 2014). Note that parameters used in simulations

do not provide any guidelines for snmf in empirical studies. For example, it is always

better to increase the number of runs. For their studies, users should refer to original

method descriptions, choosing the regularization parameter (and K) based on the

entropy criterion and cross-validation (Owen & Perry, 2009). Turning to real data,

we also simulated missing genotypes in chromosome 5 for 162 European accessions

of Arabidopsis thaliana (53,859 single nucleotide polymorphisms, SNPs) (Atwell et
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al., 2010). This was done by removing actual genotypes with a rate varying between

10% and 90%.

Fast latent factor mixed models. LEA 3 (re)implements the LFMM ridge es-

timation algorithm presented by Caye, Jumentier, Lepeule, & François (2019). The

lfmm2 function handles multivariate environmental data, and estimates locus-specific

effect sizes and latent factors by using a least-squares method. The new implementa-

tion relies on core functions from the base package of R which warrants reproducibil-

ity of analyses on the long term. To compare lfmm2 with the MCMC algorithm

programmed in lfmm, simulations were performed from the LFMM regression model.

The model generates continuous values, and a deterministic link function was added

in order to obtain haploid genotypes (negative values corresponded to allele 0 and

positive values corresponded to allele 1). Following this model, one hundred geno-

typic matrices were created for n = 100 individuals genotyped at L = 2, 000 loci.

True associations were simulated at 100 loci, with effect sizes between −10 and 10.

A Gaussian environmental variable, X, was simulated for each individual, and pop-

ulation structure was modeled by K = 3 Gaussian latent factors, exhibiting various

levels of collinearity with the environmental variable. More precisely, collinearity

between X and the latent factors was measured by the coefficient of determination,

which varied between 10% and 80% in the simulations. High levels of collinearity cor-

responded to strong confounding effects, and were expected to decrease the power of

association tests (Frichot, Schoville, de Villemereuil, Gaggiotti, & François, 2015b).

For the lfmm and lfmm2 tests, power and false discovery rate (FDR) were computed

after a Benjamini-Hochberg procedure was applied with an expected FDR level of
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5% (Benjamini & Hochberg, 1995). Power was computed as the proportion of true

associations that are correctly discovered, and FDR was computed as proportion of

false discoveries among the discoveries. In LFMM analyses, the number of factors

was set equal to K = 3, corresponding to a recommended value obtained from the

elbow in PCA scree-plots for the genetic data.

In a second series of experiments, we compared the relative performances of lfmm2

with genome scans based on redundancy analysis (RDA) (Mardia, Kent, & Bibby,

1979; Forester, Lasky, Wagner, & Urban, 2018). To this objective, we re-analyzed

one hundred simulated data sets from Capblancq, Luu, Blum, & Bazin (2018). Each

data set was obtained from forward simulations of biologically realistic scenarios with

weak population structure, and contained n = 640 diploid individuals genotyped at

L = 1, 000 SNPs. In these scenarios, three quantitative traits were controlled by

10 unlinked loci (QTLs). Ten environmental variables were also created. The first

three environmental variables determined selective pressure on the traits, whereas

the other ones had no effect on the phenotypes. Power and FDR were computed for

lfmm2, RDA and partial RDA. Partial RDA was introduced to correct for confound-

ing due to population structure and to provide a fair comparison of algorithms by

conditioning RDA on latent factors estimated by lfmm2. To compare the results with

(Capblancq, Luu, Blum, & Bazin, 2018), we used the parameters and the computer

codes of their study, performing association analyses with principal components built

on environmental variables and setting the expected FDR level to 10%.

Identifying outlier loci with latent factor models. Statistical tests to iden-

tify loci associated with extreme values of population differentiation statistics were
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implemented in the snmf.pvalues function of LEA 3 (Martins, Caye, Luu, Blum, &

François, 2016). For K ancestral populations, the population differentiation statistics

were defined at each locus as follows

FST = 1−
∑K

k=1 qkfk(1− fk)

f(1− f)
,

where qk, fk and f were obtained from the Q and F estimates computed by the snmf

function. The quantity qk was equal to the average ancestry coefficient across individ-

uals, fk was equal to the allele frequency in population k, and we set f =
∑K

k=1 qkfk.

Based on those modified FST statistics, significance values were computed by using

the Fisher distribution. Fisher tests are similar to chi-squared tests, which have

been extensively studied both for snmf and for PCA (Martins, Caye, Luu, Blum,

& François, 2016; Duforet-Frebourg, Luu, Laval, Bazin, & Blum, 2016; Chen, Lee,

Zhu, Benyamin, & Robinson, 2016; Galinsky et al., 2016). With PCA, genome scans

were performed by fitting a regression model for each SNP, for which the response

variable is the SNP frequency and the explanatory variables are the K − 1 first PCs

of the genetic data. We illustrated the results of outlier tests implemented in the

snmf.pvalues function by re-analyzing SNP data for 49 accessions from Scandina-

vian lines of Arabidopsis thaliana (Atwell et al., 2010). Filtering loci for minor allele

frequency greater than 5% resulted in 205,417 SNPs across the five chromosomes.

We compared the results of the tests with tests based on PCA loadings and with

LFMMs considering latitude as an explanatory variable which correlates with popu-

lation structure (K = 2).
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Genetic offset statistics. LEA 3 allows computing predictive measures of genetic

offset based on future environmental data. This section presents a brief outline of

the theory underlying the computation of genetic offsets, sufficient for the interpre-

tation of the program outputs. For a single population, the offset statistic measures

the divergence between allele frequencies in current conditions and in a fictive pop-

ulation harboring frequencies corresponding to future (or new) conditions. For this

population, the function considers two sets of environmental variables, Xcurrent and

Xfuture, for current and projected individual environmental conditions. The matrix

of current variables is first used to fit an LFMM, and the fitted model is then applied

to the new data for the prediction of responses. Technically, two genetic matrices,

Yfit and Ypred are constructed

Yfit = XcurrentB
T + UVT ,

and

Ypred = XfutureB
T + UVT ,

where B, U, and V are the effect size, factor and loading matrices adjusted by the

lfmm2 algorithm from the current data. In matrix notation, BT denotes the transpose

of the matrix B. Then we considered σpred and σfit the largest singular values of the

matrices Ypred and Yfit, and σpred+fit the largest singular value of the concatenated

matrix (Ypred,Yfit)
T . The singular values were computed with the svd function of R,

after all matrices were standardized. A genetic offset, Foffset, is computed as follows
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1− Foffset =
1− σ2

pred+fit

1− (σ2
pred + σ2

fit)/2
.

This definition of genetic offset is justified by the spectral analysis of population struc-

ture (Patterson, Price, & Reich, 2006). According to the genealogical interpretation

of singular values (McVean, 2009; Bryc, Bryc, & Silverstein, 2013), the quantity Foffset

is similar to a drift coefficient in a two-population model (Slatkin, 1991). The ge-

netic offset measures the amount of genetic drift separating the population adapted

to the current range of environmental variables to the fictive population adapted to

the range of projected variables. In comparison to existing statistics (Fitzpatrick

& Keller, 2015; Rellstab et al., 2016), the new measures do not select a particular

subset of outlier loci but instead integrate over effects of environment at the genome

scale, accounting for population structure. The statistics were implemented in the

genetic.offset function of LEA 3.

To illustrate the function, we considered a subset of the 1,001 Genomes data for

the plant species Arabidopsis thaliana (Alonso-Blanco et al., 2016). Two-hundred

forty-one accessions from Southern, Central and Northern Sweden were extracted

from the database. A matrix of SNP genotypes was obtained by considering vari-

ants with minor allele frequency greater than 5% and a density of variants around

one SNP every 500 bp (334,946 SNPs). Because the genetic offset is a population

statistic, we needed to cluster the individuals into groups. The individuals were

clustered in eight groups after a preliminary analysis of population structure with

snmf and on the basis of geographic proximity. To account for residual population

structure in each of the eight groups, we chose K = 4 factors in the LFMM predic-

tions (a conservative choice having minor impact on the results). Global climate and
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Figure 1. Imputation of missing data. Simulations from a two-population F -
model with admixture. a. Accuracy of reconstructed genotypes as a function of the
rate of missing genotypes. b. Accuracy of reconstructed genotypes as a function of
the drift parameter F .

weather data corresponding to individual geographic coordinates were downloaded

from the WorldClim database (https://worldclim.org). Eighteen bioclimatic vari-

ables, derived from the monthly temperature and rainfall values, were considered as

representing the current environmental matrix. Projected environmental variables

were obtained from three Representative Concentration Pathway (RCP) trajectories

adopted by the IPCC fifth Assessment Report (2014). The pathways described dif-

ferent climate futures, corresponding to RCP 2.6, RCP 4.5, and RCP 8.5 (70 years)

(IPCC, 2014).

3 Results

Imputation of missing data. To evaluate the ability of the impute function to

correctly reconstruct missing genotypes, we analyzed simulated genotypes from two
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populations with divergence and admixture. Over all data sets, the reconstruction

accuracy for a missing genotype was around 76.5%, with a standard deviation of

14.1% (Figure 1). It was similar to the accuracy of reconstruction of non-missing

genotypes by matrix factorization (mean around 77.5% with a standard deviation of

12.3%). The root mean squared differences between ancestry coefficients estimated

from true and imputed genotypes were of the same order as the root mean squared

differences between ancestry coefficients computed from distinct runs on the full

data set (mean = 5.2% with a standard deviation of 3.1%). These results show

that the reconstructed matrices were statistically similar to the original ones having

no missing data. Significant association of accuracy with the proportion of missing

data was observed (Multiple R-squared: 0.27, F -statistic: 660.3 on 1 and 1798 df, P

lower than 2.2e-16). The results indicated that imputation was robust to removing

a large fraction of genotypes, up to 30% (Figure 1A). Significant association was

also observed between accuracy and the drift parameter (Multiple R-squared: 0.65,

F -statistic: 3291 on 1 and 1798 df, P lower than 2.2e-16), indicating that imputation

performed better when the population split occurred at older dates (Figure 1B).

There were weak effects of the number of loci considered and admixture rate, leading

to non-significant p-values. We eventually tested the effect of interaction between the

simulation parameters, and found that accuracy was best explained by the following

combination of simulation parameters (Multiple R-squared: 0.92, F-statistic: 5125 on

4 and 1795 df): 0.747 + 0.221 F - 0.010 πmissing - 0.106 F ×πmissing - 0.073 F ×πadmix.

Accuracy increased with larger values of F but not so much when the rate of missing

values or the admixture rate increased at the same time. Next, we considered missing

genotypes in European accessions of Arabidopsis thaliana by removing a proportion
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πmissing of actual genotypes. Using a model with K = 6 clusters, the accuracy of

reconstructed genotypes varied approximately as 0.784 - 0.009 πmissing - 0.050 π3
missing

(Multiple R-squared: 0.99). For 10% missing values, the total number of correct

genotypes in the imputed data was around 98% of the Arabidopsis data, which had

no missing genotypes. For 80% missing values, the total number of correct genotypes

in the imputed data was around 80% of the original data.

Latent factor mixed models. To compare the statistical performances of the

lfmm and lfmm2 estimation algorithms, 100 genotypic matrices were simulated, based

on the common generative model for both approaches (Figure 2). The average FDR

was around its expected value of 5% for lfmm (mean value 6.4%, Figure 2A). The

average FDR was significantly lower for lfmm2 (mean value 3%, t-test = 6.88, P =

1.2e-10), showing that the least-squares algorithm was more accurate than the MCMC

algorithm when simulations were performed under the generative model. For those

simulations, the two versions had equivalent power to reject loci with null effect sizes

(Figure 2B). Power was generally high (greater than 90%) when collinearity between

population structure and the environmental variable was moderate, corresponding to

values of the coefficient of determination lower than 60%. A sharp decrease in power

was observed when the coefficient of determination reached values higher than 60%.

Next, we compared the relative performances of lfmm2 with approaches based on

RDA and partial RDA, resuming simulations conducted in (Capblancq, Luu, Blum,

& Bazin, 2018) (Figure 3). Power and FDR obtained with RDA and partial RDA

were highly similar, in agreement with weak population structure observed in the

simulations (Capblancq, Luu, Blum, & Bazin, 2018). Power was close to 100% for all

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.327783
http://creativecommons.org/licenses/by-nc-nd/4.0/


lfmm

0.00

0.05

0.10

0.15

0.20

Methods

lfmm2

F
a

ls
e

 D
is

c
o
ve

ry
 R

a
te

0.0 0.2 0.4 0.6 0.8

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Coefficient of Determination

P
o
w

e
r

lfmm

lfmm2

(a)                                                           (b)

Figure 2. Comparisons of lfmm (MCMC) with lfmm2 (least squares). a.
False discovery rates observed for an expected FDR of 5%. b. Power to reject
null effect sizes. The coefficient of determination is the proportion of environmental
variation explained by the hidden factors in the simulated data. The dark blue and
(hidden) brown points correspond to local regressions of the power values.
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Figure 3. Comparisons of lfmm2 with RDA and partial RDA. Simulations
resumed from (Capblancq et al. 2018). a. Power to detect loci under selection, b.
False discovery rate for a controlled FDR level of 10%. Partial RDA (Part. RDA)
includes corrections based on LFMM latent factors.

10 SNPs in QTL2 with all methods. FDRs were around their expected values for all

methods (10%). Overall, lfmm2 had increased power compared to RDA approaches

for SNPs in QTL1 (mean value for lfmm2 = 90%, mean value for RDA = 75%, t-test

= 8.01, P = 1.602e-13) and QTL3 (mean value for lfmm2: 50%, mean value for RDA:

20%, t-test = 11.45, P lower than 2.2e-16), contrasting with results for lfmm reported

in the previous study.

Identifying outlier loci with latent factor models. We illustrated outlier tests

based on population differentiation statistics introduced in Martins, Caye, Luu, Blum,
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Figure 4. Genome scans for selection. SNP genotypes of forty-nine accessions
of Arabidopsis thaliana from Northern and Southern Sweden analyzed with snmf,
PCA, and lfmm2 with latitude used as an explanatory variable. Only loci with -log
P greater than the Bonferroni threshold in one method (= 6.61) are shown. See
Figure S4 for a focus on the region around 113Mb.
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& François (2016) by re-analyzing SNP data for 49 Scandinavian accessions Arabidop-

sis thaliana with snmf.pvalues, with PCA loadings and with lfmm2. The samples

were divided in two geographic groups located in southern (37 individuals) and in

northern Sweden (12 individuals). Latitude was used as an environmental variable in

lfmm2. Although the histograms of P -values exhibited similar shapes for all methods

(Figure S1), differences were observed in the tails of the test statistics. The P -values

were lower in snmf than in lfmm2 and PCA (Figure 4). The Pearson correlation be-

tween snmf and PCA significance values was high, around 95%, and greater than the

correlation between PCA and lfmm2 values (91%). These results can be explained by

a high correlation between ancestry coefficients and PC1 scores (Figure S2). Despite

the differences in the tails of distributions, genome scans based on snmf, PCA and

lfmm2 hit the same genomic regions in chromosomes 1 and 5 of the plant, and the

ranking of association levels were comparable in the three approaches. After Bonfer-

roni correction, there were 1,013 significant hits at the 5% nominal level for snmf, 485

for PCA, and 459 for lfmm2, corresponding to around 50 genomic regions (Figure 4).

The top hits for snmf, with significance values above 50, did not reach the highest

levels in the PCA and LFMM tests. Those 129 hits corresponded to SNPs with allelic

frequencies close to fixation either in the southern or the northern group (Figure S3).

Focusing on a region of chromosome 5 around 113 Mb which was enriched in top

hits, we estimated heterozygozity along the chromosome (Figure S4). This analysis

provided evidence that a few loci exhibit signatures of selective sweep, more often in

the northern group than in the southern group.
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Genetic offset statistics. Leveraging multivariate environmental data analysis

with lfmm2, we illustrated the computation of genetic offset statistics for Scandi-

navian populations of A. thaliana (241 individuals) obtained from the prediction of

eighteen bioclimatic variables based on three RCP trajectories (70 years). In LEA

3, genetic offset has the same interpretation as FST, measuring the percentage of in-

breeding in the population formed by the union of the current and projected samples.

Under RCP 2.6, the genetic offset statistics ranged between 0% and 56%, with a mean

value around 29% (Figure 5). For RCP 4.5 and 8.5, the maximum ranges stretched

to 74% and 79% with mean values around 51% and 60% respectively (Figure 5). In

RCP 2.6, the most exposed populations were at latitude around 50◦N in Southern

Scandinavia. Under RCP 4.5 and RCP 8.5, the most exposed populations were in

the north at latitude around 62◦-64◦N. The risks were poorly explained by latitude

alone (R2 less than 10%), but they were consistent with the principal components

of projected climatic variables under the considered scenarios (PCs shown in Figures

S5-S6).

4 Discussion

Modern molecular ecology studies make extensive use of unsupervised statistical

methods for their analysis of large population genomic data (Hendricks et al., 2018;

Paradis et al., 2017). The R program LEA provides an integrated suite of func-

tions for running such analyses, including model-free inference of population struc-

ture and genome scans for signatures of local adaptation. This computer note pre-

sented functionalities implemented in version 3.1 of the computer program, and sur-

veyed some applications of factorial methods in molecular ecology and ecological
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Figure 5. Genetic offset for Scandinavian populations of Arabidopsis
thaliana . Genetic offset computed from projections of 18 bioclimatic variables ac-
cording to three climate models RCP 2.6, 4.5 and RCP 8.5 (70 years). The genetic
offset statistics were computed for 8 population samples. The values were interpo-
lated by using the kriging algorithm implemented in fields 10.2 at the 241 sampling
sites represented as black dots (Nychka et al. 2017).
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genomics. Since the first release of the package, new factor methods have been

developed and integrated in the development version of the package. These new

methods encompass genome scans based on population differentiation statistics and

genotype-environment association studies, which have been evaluated in previous

studies (Martins, Caye, Luu, Blum, & François, 2016; Caye, Jumentier, Lepeule,

& François, 2019). The inclusion of those methods in LEA will facilitate their ap-

plications by R users, avoiding unnecessary coding or data formatting. Additional

functionalities, including imputation of missing data and predictive values of genetic

offset increase the range of applications of the package. A drawback of latent repre-

sentations built in machine learning algorithms is to favor prediction to the detriment

of interpretation (Lipton, 2018). With latent factor models, interpretation of results

in terms of standard population genetic concepts, such as ancestry coefficients, pop-

ulation differentiation and genetic drift is preserved, as well as their appropriateness

for predictive objectives.

Concerning missing data, the method implemented in LEA 3 is a novel approach,

based on matrix factorization and on ancestry coefficients estimated by snmf (Frichot,

Mathieu, Trouillon, Bouchard, & François, 2014). The matrix factorization technique

has been frequently employed in machine learning applications where it has been

successful in collective filtering and recommender systems (Koren, Bell, & Volinsky,

2009). The approach is conceptually similar to the imputation methods used by

Bayesian programs like structure (Pritchard, Stephens, & Donnelly, 2000). Impu-

tation based on snmf factors is consistent with respect to the allele frequencies in the

’ancestral’ populations. Thus the method is appropriate for genotype-environment

association studies and other applications using ancestral allele frequency informa-
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tion. An advantage of matrix factorization approaches is to be efficient without

reference genomes. For example, imputation based on matrix factorization decreased

the proportion of missing data from 10% to 2% in Arabidopsis thaliana simulations.

While the limits on imputation are generally poorly understood and specific to each

data set, we encourage users to remove a small proportion of non-missing genotypes

(for example, 1%) and check the validity of their imputation results in preliminary

analytical stages of their empirical studies.

Regarding genotype-environment association studies, least squares estimates for

latent factor regression models were implemented in the lfmm2 function (Caye, Ju-

mentier, Lepeule, & François, 2019). The function lfmm2 extends lfmm by allowing

multivariate environmental data, which is particularly useful for predictive applica-

tions. The main improvements over lfmm are substantial savings of computer re-

sources thanks to an exact algorithm rather than a Monte Carlo method. Although

the lfmm2 and lfmm methods assumes slightly different sparsity conditions on effect

size estimates, we found that they were equivalent in terms of sensitivity, reaching

high levels of true positive rates when the coefficient measuring collinearity between

environmental variables and latent factors was below 60%. An abrupt decrease in

power was however observed for coefficients greater than 60%. These results suggests

that users should attempt to evaluate the determination coefficient a priori from the

first principal components of the genomic data or a posteriori from factors estimated

by the methods. After reanalyzing simulated data sets from (Capblancq, Luu, Blum,

& Bazin, 2018), we found that the multivariate version of lfmm2 compared favorably

with genome scans based on redundancy analysis. The explanation for improve-

ment over the results reported by Capblancq, Luu, Blum, & Bazin (2018) is that
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our analysis included more environmental information than did the previous study,

exemplifying the benefit of using multivariate environmental data in LFMMs.

Population differentiation tests are often used in assessing genomic signatures of

local adaptation. For Arabidopsis thaliana, population differentiation tests based

on snmf, PCA and association with latitude highlighted similar genomic regions.

Because those regression methods exhibit almost maximal collinearity between pop-

ulation structure and the explanatory variable, the interpretation of genome scans

may be difficult, and it is complicated by the demographic history of Scandinavian

A. thaliana populations (Huber, Nordborg, Hermisson, & Hellmann, 2014; Lee et al.,

2017). A large fraction of the SNPs discovered by the genome scan methods might

have resulted from neutral demographic processes or from linked selection. Choosing

environmental variables not co-varying with population structure could alleviate the

problem in genotype-environment association methods (François, Martins, Caye, &

Schoville, 2016). With dense genomic data, we also suggest that population differ-

entiation tests should be coupled with methods to detect selective sweeps (Vatsiou,

Bazin, & Gaggiotti, 2016). For example, when we focused on a region enriched in

snmf top hits, the analysis of heterozygozity along the fifth chromosome supported

that some hits exhibited convincing signatures of selection, in particular in the north-

ern group.

Following recent approaches in predictive ecological genomics (Bay et al., 2018;

Fitzpatrick & Keller, 2015), LEA 3 can compute genetic offset statistics based on

models of association between environmental variables and allele frequencies. The

new statistic accounts for potentially small effects of the environment that are spread

across the genome and the offset computation assumes that changes in population
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structure will occur only through modification of adaptive allele. In addition, genetic

offset has an interpretation similar to a population differentiation statistic, measuring

drift between allele frequencies in populations under current and future conditions.

According to (Skoglund, Sjödin, Skoglund, Lascoux, & Jakobsson, 2014; Frachon et

al., 2017), the values of this drift coefficient can be converted in generation time using

the equation, t = 4NeFoffset/(1 − Foffset), where Ne is the effective population size.

For Scandinavian populations of A. thaliana, relatively large values of Ne have been

reported, around Ne ≈ 1, 000 (Lundemo, Falahati-Anbaran, & Stenøien, 2009). For

these values, an offset statistic around 30-70% indicates that the evolutionary time

required for adaptation to predicted climates will be around four thousands genera-

tions. While estimates may be biased upward by having removed rare variants from

the analysis, a robust result is that genetic offset was higher in northern populations

under the most extreme RCP scenario.

Computer programs evolve and upgrading LEA to include recent developments

of latent factors in ecological genomics was necessary. The functions implemented

in LEA 3 are built on classes of objects that are fully consistent with the previous

versions of the program, so that users will adapt easily to the new version. Examples

included in the program documentation and in a tutorial are available from www.

bioconductor.org for new users to learn the program quickly.
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S. (2019). Considering adaptive genetic variation in climate change vulnerabil-

ity assessment reduces species range loss projections. Proceedings of the National

Academy of Sciences, 116, 10418-10423.

Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. (2015).

A practical guide to environmental association analysis in landscape genomics.

Molecular Ecology, 24, 4348-4370.

Rellstab, C., Zoller, S., Walthert, L., Lesur, I., Pluess, A. R., Graf, R., ... Gugerli, F.

(2016). Signatures of local adaptation in candidate genes of oaks (Quercus spp.)

with respect to present and future climatic conditions. Molecular Ecology, 25, 5907-

5924.

Savolainen, O., Lascoux, M., & Merilä, J. (2013). Ecological genomics of local adap-

tation. Nature Reviews Genetics, 14, 807-820.

Scheet, P., & Stephens, M. (2006). A fast and flexible statistical model for large-

scale population genotype data: applications to inferring missing genotypes and

haplotypic phase. The American Journal of Human Genetics, 78, 629-644.

Schoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, C., & Manel, S.

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.327783
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2012). Adaptive genetic variation on the landscape: methods and cases. Annual

Review of Ecology, Evolution and Systematics, 43, 23-43.
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